Skip to main content
Top
Published in: BMC Infectious Diseases 1/2011

Open Access 01-12-2011 | Research article

Modeling the variations in pediatric respiratory syncytial virus seasonal epidemics

Authors: Molly Leecaster, Per Gesteland, Tom Greene, Nephi Walton, Adi Gundlapalli, Robert Rolfs, Carrie Byington, Matthew Samore

Published in: BMC Infectious Diseases | Issue 1/2011

Login to get access

Abstract

Background

Seasonal respiratory syncytial virus (RSV) epidemics occur annually in temperate climates and result in significant pediatric morbidity and increased health care costs. Although RSV epidemics generally occur between October and April, the size and timing vary across epidemic seasons and are difficult to predict accurately. Prediction of epidemic characteristics would support management of resources and treatment.

Methods

The goals of this research were to examine the empirical relationships among early exponential growth rate, total epidemic size, and timing, and the utility of specific parameters in compartmental models of transmission in accounting for variation among seasonal RSV epidemic curves. RSV testing data from Primary Children's Medical Center were collected on children under two years of age (July 2001-June 2008). Simple linear regression was used explore the relationship between three epidemic characteristics (final epidemic size, days to peak, and epidemic length) and exponential growth calculated from four weeks of daily case data. A compartmental model of transmission was fit to the data and parameter estimated used to help describe the variation among seasonal RSV epidemic curves.

Results

The regression results indicated that exponential growth was correlated to epidemic characteristics. The transmission modeling results indicated that start time for the epidemic and the transmission parameter co-varied with the epidemic season.

Conclusions

The conclusions were that exponential growth was somewhat empirically related to seasonal epidemic characteristics and that variation in epidemic start date as well as the transmission parameter over epidemic years could explain variation in seasonal epidemic size. These relationships are useful for public health, health care providers, and infectious disease researchers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stensballe L, Devasundaram J, Simoes E: Respiratory syncytial virus epidemics: the ups and downs of a seasonal virus. Pediatr Infect Dis J. 2003, 22 (2 Suppl): S21-32.PubMed Stensballe L, Devasundaram J, Simoes E: Respiratory syncytial virus epidemics: the ups and downs of a seasonal virus. Pediatr Infect Dis J. 2003, 22 (2 Suppl): S21-32.PubMed
2.
go back to reference Forster J, Ihorst G, Rieger C, Stephan V, Frank H, Gurth H, Berner R, Rohwedder A, Werchau H, Schumacher M, Tsai T, Petersen G: Prospective population-based study of viral lower respiratory tract infections in children under 3 years of age (the PRIDE study). Eur J Pediatr. 2004, 163 (12): 709-716. 10.1007/s00431-004-1523-9.CrossRefPubMed Forster J, Ihorst G, Rieger C, Stephan V, Frank H, Gurth H, Berner R, Rohwedder A, Werchau H, Schumacher M, Tsai T, Petersen G: Prospective population-based study of viral lower respiratory tract infections in children under 3 years of age (the PRIDE study). Eur J Pediatr. 2004, 163 (12): 709-716. 10.1007/s00431-004-1523-9.CrossRefPubMed
3.
go back to reference Leader S, Kohlhase K: Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. J Pediatr. 2003, 143 (5 Suppl): S127-132.CrossRefPubMed Leader S, Kohlhase K: Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. J Pediatr. 2003, 143 (5 Suppl): S127-132.CrossRefPubMed
4.
go back to reference Paramore L, Ciuryla V, Ciesla G, Liu L: Economic impact of respiratory syncytial virus-related illness in the US: an analysis of national databases. Pharmacoeconomics. 2004, 22 (5): 275-284. 10.2165/00019053-200422050-00001.CrossRefPubMed Paramore L, Ciuryla V, Ciesla G, Liu L: Economic impact of respiratory syncytial virus-related illness in the US: an analysis of national databases. Pharmacoeconomics. 2004, 22 (5): 275-284. 10.2165/00019053-200422050-00001.CrossRefPubMed
5.
go back to reference Shay D, Holman R, Newman R, Liu L, Stout J, Anderson L: Bronchiolitis-associated hospitalizations among US children, 1980-1996. JAMA. 1999, 282 (15): 1440-1446. 10.1001/jama.282.15.1440.CrossRefPubMed Shay D, Holman R, Newman R, Liu L, Stout J, Anderson L: Bronchiolitis-associated hospitalizations among US children, 1980-1996. JAMA. 1999, 282 (15): 1440-1446. 10.1001/jama.282.15.1440.CrossRefPubMed
6.
go back to reference Terletskaia-Ladwig E, Enders G, Schalasta G, Enders M: Defining the timing of respiratory syncytial virus (RSV) outbreaks: an epidemiological study. BMC Infect Dis. 2005, 5 (1): 20.-10.1186/1471-2334-5-20.CrossRefPubMedPubMedCentral Terletskaia-Ladwig E, Enders G, Schalasta G, Enders M: Defining the timing of respiratory syncytial virus (RSV) outbreaks: an epidemiological study. BMC Infect Dis. 2005, 5 (1): 20.-10.1186/1471-2334-5-20.CrossRefPubMedPubMedCentral
7.
go back to reference Panozzo C, Fowlkes A, Anderson L: Variation in timing of respiratory syncytial virus outbreaks: lessons from national surveillance. Pediatr Infect Dis J. 2007, 26 (11 Suppl): S41-45.CrossRefPubMed Panozzo C, Fowlkes A, Anderson L: Variation in timing of respiratory syncytial virus outbreaks: lessons from national surveillance. Pediatr Infect Dis J. 2007, 26 (11 Suppl): S41-45.CrossRefPubMed
8.
go back to reference Weber A, Weber M, Milligan P: Modeling epidemics caused by respiratory syncytial virus (RSV). Math Biosci. 2001, 172 (2): 95-113. 10.1016/S0025-5564(01)00066-9.CrossRefPubMed Weber A, Weber M, Milligan P: Modeling epidemics caused by respiratory syncytial virus (RSV). Math Biosci. 2001, 172 (2): 95-113. 10.1016/S0025-5564(01)00066-9.CrossRefPubMed
9.
go back to reference White L, Mandl J, Gomes M, Bodley-Tickell A, Cane P, Perez-Brena P, Aguilar J, Siqueira M, Portes S, Straliotto S, Waris M, Nokes D, Medley G: Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences. 2007, 209: 222-239. 10.1016/j.mbs.2006.08.018.CrossRefPubMedPubMedCentral White L, Mandl J, Gomes M, Bodley-Tickell A, Cane P, Perez-Brena P, Aguilar J, Siqueira M, Portes S, Straliotto S, Waris M, Nokes D, Medley G: Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences. 2007, 209: 222-239. 10.1016/j.mbs.2006.08.018.CrossRefPubMedPubMedCentral
10.
go back to reference Lipsitch M, Cohen T, Cooper B, Robins J, Ma S, James L, Gopalakrishna G, Chew S, Tan C, Samore M, Fisman D, Murray M: Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003, 300: 1966-1970. 10.1126/science.1086616.CrossRefPubMedPubMedCentral Lipsitch M, Cohen T, Cooper B, Robins J, Ma S, James L, Gopalakrishna G, Chew S, Tan C, Samore M, Fisman D, Murray M: Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003, 300: 1966-1970. 10.1126/science.1086616.CrossRefPubMedPubMedCentral
11.
go back to reference Lipsitch M, Bergstrom C: Invited commentary: real-time tracking of control measures for emerging infections. Am J Epidemiol. 2004, 160 (6): 517-519. 10.1093/aje/kwh256. discussion 520CrossRefPubMed Lipsitch M, Bergstrom C: Invited commentary: real-time tracking of control measures for emerging infections. Am J Epidemiol. 2004, 160 (6): 517-519. 10.1093/aje/kwh256. discussion 520CrossRefPubMed
12.
go back to reference Wallinga J, Teunis P: Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004, 160 (6): 509-516. 10.1093/aje/kwh255.CrossRefPubMed Wallinga J, Teunis P: Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004, 160 (6): 509-516. 10.1093/aje/kwh255.CrossRefPubMed
15.
go back to reference Koopman J: Modeling infection transmission. Annu Rev Public Health. 2004, 25: 303-326. 10.1146/annurev.publhealth.25.102802.124353.CrossRefPubMed Koopman J: Modeling infection transmission. Annu Rev Public Health. 2004, 25: 303-326. 10.1146/annurev.publhealth.25.102802.124353.CrossRefPubMed
16.
go back to reference Crowcroft N, Zambon M, Harrison T, Mok Q, Heath P, Miller E: Respiratory syncytial virus infection in infants admitted to paediatric intensive care units in London, and in their families. Eur J Pediatr. 2008, 167 (4): 395-399. 10.1007/s00431-007-0509-9.CrossRefPubMed Crowcroft N, Zambon M, Harrison T, Mok Q, Heath P, Miller E: Respiratory syncytial virus infection in infants admitted to paediatric intensive care units in London, and in their families. Eur J Pediatr. 2008, 167 (4): 395-399. 10.1007/s00431-007-0509-9.CrossRefPubMed
17.
go back to reference Hall C, Douglas R, Geiman J: Respiratory syncytial virus infections in infants: quantitation and duration of shedding. J Pediatr. 1976, 89 (1): 11-15. 10.1016/S0022-3476(76)80918-3.CrossRefPubMed Hall C, Douglas R, Geiman J: Respiratory syncytial virus infections in infants: quantitation and duration of shedding. J Pediatr. 1976, 89 (1): 11-15. 10.1016/S0022-3476(76)80918-3.CrossRefPubMed
18.
go back to reference Setzer R: odesolve: Solvers for Ordinary Differential Equations. R package version 0.5-18 edn. 2007, Vienna, Austria: R Foundation for Statistical Computing Setzer R: odesolve: Solvers for Ordinary Differential Equations. R package version 0.5-18 edn. 2007, Vienna, Austria: R Foundation for Statistical Computing
19.
go back to reference R Development Core Team: A Language and Environment for Statistical Computing. 2007, Vienna, Austria: R Foundation for Statistical Computing R Development Core Team: A Language and Environment for Statistical Computing. 2007, Vienna, Austria: R Foundation for Statistical Computing
20.
go back to reference Cavanaugh J, Neath A: Generalizing the derivation of the Schwarz information criterion. Communications in Statistics - Theory and Methods. 1999, 28 (1): 49-66. 10.1080/03610929908832282.CrossRef Cavanaugh J, Neath A: Generalizing the derivation of the Schwarz information criterion. Communications in Statistics - Theory and Methods. 1999, 28 (1): 49-66. 10.1080/03610929908832282.CrossRef
21.
go back to reference Landaw E, DiStefano J: Multiexponential, multicompartmental and non-compartmental modeling, II: Data analysis and statistical considerations. American Journal of Physiology (Regulatory Integrative Comparative Physiology 15). 1984, 246: 665-677. Landaw E, DiStefano J: Multiexponential, multicompartmental and non-compartmental modeling, II: Data analysis and statistical considerations. American Journal of Physiology (Regulatory Integrative Comparative Physiology 15). 1984, 246: 665-677.
22.
go back to reference Waris M: Pattern of respiratory syncytial virus epidemics in Finland: two-year cycles with alternating prevalence of groups A and B. Journal of Infectious Diseases. 1991, 163 (3): 464-10.1093/infdis/163.3.464.CrossRefPubMed Waris M: Pattern of respiratory syncytial virus epidemics in Finland: two-year cycles with alternating prevalence of groups A and B. Journal of Infectious Diseases. 1991, 163 (3): 464-10.1093/infdis/163.3.464.CrossRefPubMed
23.
go back to reference Hall C, Walsh E, Schnabel K, Long C, McConnochie K, Hildreth S, Anderson L: Occurrence of groups A and B of respiratory syncytial virus over 15 years: associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. Journal of Infectious Diseases. 1990, 162 (6): 1283-10.1093/infdis/162.6.1283.CrossRefPubMed Hall C, Walsh E, Schnabel K, Long C, McConnochie K, Hildreth S, Anderson L: Occurrence of groups A and B of respiratory syncytial virus over 15 years: associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. Journal of Infectious Diseases. 1990, 162 (6): 1283-10.1093/infdis/162.6.1283.CrossRefPubMed
24.
go back to reference Dietz K: The incidence of infectious diseases under the influence of seasonal fluctuation. Lecture Notes in Biomathematics. Edited by: L S. 1976, New York: Springer, 11: Dietz K: The incidence of infectious diseases under the influence of seasonal fluctuation. Lecture Notes in Biomathematics. Edited by: L S. 1976, New York: Springer, 11:
25.
go back to reference Novotni D, Weber A: A stochastic method for solving inverse problems in epidemic modeling. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. 2003, 467-473. Novotni D, Weber A: A stochastic method for solving inverse problems in epidemic modeling. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. 2003, 467-473.
26.
go back to reference O'Neill P, Roberts G: Bayesian inference for partially observed stochastic epidemics. Journal of the Royal Statistical Society. 1999, 162 (1): 121-129. 10.1111/1467-985X.00125.CrossRef O'Neill P, Roberts G: Bayesian inference for partially observed stochastic epidemics. Journal of the Royal Statistical Society. 1999, 162 (1): 121-129. 10.1111/1467-985X.00125.CrossRef
27.
go back to reference Glass K, Becker N, Clements M: Predicting case numbers during infectious disease outbreaks when some cases are undiagnosed. Statistics in Medicine. 2007, 26: 171-183. 10.1002/sim.2523.CrossRefPubMed Glass K, Becker N, Clements M: Predicting case numbers during infectious disease outbreaks when some cases are undiagnosed. Statistics in Medicine. 2007, 26: 171-183. 10.1002/sim.2523.CrossRefPubMed
29.
go back to reference Becker N: Statistical challenges of epidemic data. Epidemic Models: Their structure and relation to data. Edited by: Mollison D. 1995, Cambridge: Cambridge University Press, 339-349. Becker N: Statistical challenges of epidemic data. Epidemic Models: Their structure and relation to data. Edited by: Mollison D. 1995, Cambridge: Cambridge University Press, 339-349.
Metadata
Title
Modeling the variations in pediatric respiratory syncytial virus seasonal epidemics
Authors
Molly Leecaster
Per Gesteland
Tom Greene
Nephi Walton
Adi Gundlapalli
Robert Rolfs
Carrie Byington
Matthew Samore
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2011
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-11-105

Other articles of this Issue 1/2011

BMC Infectious Diseases 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.