Skip to main content
Top
Published in: BMC Hematology 1/2012

Open Access 01-12-2012 | Research article

Zinc finger nucleases for targeted mutagenesis and repair of the sickle-cell disease mutation: An in-silico study

Author: Misaki Wayengera

Published in: BMC Hematology | Issue 1/2012

Login to get access

Abstract

Background

Sickle cell disease (or simply, SCD) is an inherited hemoglobinopathy which is mostly prevalent among persons of African descent. SCD results from a monogenic (Hemoglobin, beta) point-mutation (substitution of the base Adenine with Thymine at position six) that leads to replacement of the amino acid glutamic acid (E) with valine (V). Management of SCD within resource-poor settings is largely syndromic, since the option of cure offered by bone-marrow transplantation (BMT) is risky and unaffordable by most affected individuals. Despite previous reports of repair and inhibition of the sickle beta-globin gene and messenger ribonucleic acids (mRNAs), respectively in erythrocyte precursor cells via gene-targeting using an oligomer-restriction enzyme construct and either ribozyme- or RNA-DNA chimeric oligonucleotides (or simply third strand binding), gene-therapy to treat SCD still remains largely preclinical. In the wake of the advances in target- gene- mutagenesis and repair wrought by zinc finger nuclease (ZFN) technology, it was hypothesized that SCD may be cured by the same. The goal of this study thus, was constructing a database of zinc finger arrays (ZFAs) and engineering ZFNs, that respectively bind and cleave within or around specific sequences in the sickle hemoglobin, beta (−β S) gene.

Methods and results

First , using the complete 1606 genomic DNA base pair (bp) sequences of the normal hemoglobin-beta (β A) chain gene, and the ZiFiT-CoDA-ZFA software preset at default, 57 three-finger arrays (ZFAs) that specifically bind 9 base-pair sequences within the normal hemoglobin-beta chain, were computationally assembled. Second , by serial linkage of these ZFAs to the Flavobacterium okeanokoites endonuclease Fok I― four ZFNs with unique specificity to >24 bp target-sequences at the genomic contextual positions 82, 1333, 1334, and 1413 of the βA chain-gene were constructed in-silico. Third , localizing the point-mutation of SCD at genomic contextual position −69-70-71- bp (a position corresponding to the 6th codon) of the β A chain-gene, inspired the final design of five more ZFNs specific to >24 bp target-sequences within the 8,954 bp that are genomically adjacent to the 5′ end of the β A chain-gene.

Conclusions

This set of 57 ZFAs and 9 ZFNs offers us gene-therapeutic precursors for the targeted mutagenesis and repair of the SCD mutation or genotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ballas SK, Lewis CN, Noone AM, Krasnow SH, Kamarulzaman E, Burka ER: Clinical, hematological, and biochemical features of Hb SC disease. Am J Hemat. 1982, 13: 37-51. 10.1002/ajh.2830130106.CrossRefPubMed Ballas SK, Lewis CN, Noone AM, Krasnow SH, Kamarulzaman E, Burka ER: Clinical, hematological, and biochemical features of Hb SC disease. Am J Hemat. 1982, 13: 37-51. 10.1002/ajh.2830130106.CrossRefPubMed
2.
go back to reference Blouin M-J, Beauchemin H, Wright A, De Paepe M, Sorette M, Bleau A-M, Nakamoto B, Ou C-N, Stamatoyannopoulos G, Trudel M: Genetic correction of sickle cell disease: insights using transgenic mouse models. Nature Med. 2000, 6: 177-182. 10.1038/72279.CrossRefPubMed Blouin M-J, Beauchemin H, Wright A, De Paepe M, Sorette M, Bleau A-M, Nakamoto B, Ou C-N, Stamatoyannopoulos G, Trudel M: Genetic correction of sickle cell disease: insights using transgenic mouse models. Nature Med. 2000, 6: 177-182. 10.1038/72279.CrossRefPubMed
3.
go back to reference Herrick JB: Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med. 1910, 6: 517-521.CrossRef Herrick JB: Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med. 1910, 6: 517-521.CrossRef
5.
go back to reference Ashley-Koch A, Murphy CC, Khoury MJ, Boyle CA: Contribution of sickle cell disease to the occurrence of developmental disabilities: a population-based study. Genet Med. 2001, 3: 181-186. 10.1097/00125817-200105000-00006.CrossRefPubMed Ashley-Koch A, Murphy CC, Khoury MJ, Boyle CA: Contribution of sickle cell disease to the occurrence of developmental disabilities: a population-based study. Genet Med. 2001, 3: 181-186. 10.1097/00125817-200105000-00006.CrossRefPubMed
6.
go back to reference Rees DC, Williams TN, Gladwin MT: Sickle cell disease. Lancet. 2010, 376: 2018-2031. 10.1016/S0140-6736(10)61029-X.CrossRefPubMed Rees DC, Williams TN, Gladwin MT: Sickle cell disease. Lancet. 2010, 376: 2018-2031. 10.1016/S0140-6736(10)61029-X.CrossRefPubMed
7.
go back to reference Geller AK, O’Connor MK: The sickle cell crisis: a dilemma in pain relief. Mayo Clin Proc. 2008, 83 (3): 320-323. 10.4065/83.3.320.CrossRefPubMed Geller AK, O’Connor MK: The sickle cell crisis: a dilemma in pain relief. Mayo Clin Proc. 2008, 83 (3): 320-323. 10.4065/83.3.320.CrossRefPubMed
8.
go back to reference Dunlop RJ, Bennett KC: Pain management for sickle cell disease. Cochrane Database Syst Rev. 2006, 19 (2): CD003350- Dunlop RJ, Bennett KC: Pain management for sickle cell disease. Cochrane Database Syst Rev. 2006, 19 (2): CD003350-
10.
go back to reference Friedman MJ, Trager W: The biochemistry of resistance to malaria. Sci Am. 1981, 244 (3): 154-164. 10.1038/scientificamerican0381-154.CrossRefPubMed Friedman MJ, Trager W: The biochemistry of resistance to malaria. Sci Am. 1981, 244 (3): 154-164. 10.1038/scientificamerican0381-154.CrossRefPubMed
12.
go back to reference Luzzatto L, Goodfellow P: Sickle cell anemia: a simple disease with no cure. Nature. 1989, 337: 17-18. 10.1038/337017a0.CrossRefPubMed Luzzatto L, Goodfellow P: Sickle cell anemia: a simple disease with no cure. Nature. 1989, 337: 17-18. 10.1038/337017a0.CrossRefPubMed
13.
go back to reference Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC, Davies SC, Ohene-Frempong K, Bernaudin F, Matthews DC, Storb R, Sullivan KM: Bone marrow transplantation for sickle cell disease. N Engl J Med. 1996, 335 (6): 369-376. 10.1056/NEJM199608083350601.CrossRefPubMed Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC, Davies SC, Ohene-Frempong K, Bernaudin F, Matthews DC, Storb R, Sullivan KM: Bone marrow transplantation for sickle cell disease. N Engl J Med. 1996, 335 (6): 369-376. 10.1056/NEJM199608083350601.CrossRefPubMed
14.
go back to reference Walters MC, Storb R, Patience M, Leisenring W, Taylor T, Sanders JE, Buchanan GE, Rogers ZR, Dinndorf P, Davies SC, Roberts IA, Dickerhoff R, Yeager AM, Hsu L, Kurtzberg J, Ohene-Frempong K, Bunin N, Bernaudin F, Wong WY, Scott JP, Margolis D, Vichinsky E, Wall DA, Wayne AS, Pegelow C, Redding-Lallinger R, Wiley J, Klemperer M, Mentzer WC, Smith FO, Sullivan KM: Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood. 2000, 95 (6): 1918-1924.PubMed Walters MC, Storb R, Patience M, Leisenring W, Taylor T, Sanders JE, Buchanan GE, Rogers ZR, Dinndorf P, Davies SC, Roberts IA, Dickerhoff R, Yeager AM, Hsu L, Kurtzberg J, Ohene-Frempong K, Bunin N, Bernaudin F, Wong WY, Scott JP, Margolis D, Vichinsky E, Wall DA, Wayne AS, Pegelow C, Redding-Lallinger R, Wiley J, Klemperer M, Mentzer WC, Smith FO, Sullivan KM: Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood. 2000, 95 (6): 1918-1924.PubMed
15.
16.
go back to reference Shesely EG, KiM H-K, Shehee RW, Papayannopoulou N, Smithies O, Popovicht BW: Correction of a human βS-globin gene by gene targeting. Proc Natl Acad Sci USA. 1991, 88: 4294-4298. 10.1073/pnas.88.10.4294.CrossRefPubMedPubMedCentral Shesely EG, KiM H-K, Shehee RW, Papayannopoulou N, Smithies O, Popovicht BW: Correction of a human βS-globin gene by gene targeting. Proc Natl Acad Sci USA. 1991, 88: 4294-4298. 10.1073/pnas.88.10.4294.CrossRefPubMedPubMedCentral
17.
go back to reference Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA: Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science. 1998, 280 (5369): 1593-1596. 10.1126/science.280.5369.1593.CrossRefPubMed Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA: Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science. 1998, 280 (5369): 1593-1596. 10.1126/science.280.5369.1593.CrossRefPubMed
18.
go back to reference Weatherall DJ: Gene therapy: repairing haemoglobin disorders with ribozymes. Curr Biol. 1998, 8 (19): R696-R698. 10.1016/S0960-9822(98)70439-7.CrossRefPubMed Weatherall DJ: Gene therapy: repairing haemoglobin disorders with ribozymes. Curr Biol. 1998, 8 (19): R696-R698. 10.1016/S0960-9822(98)70439-7.CrossRefPubMed
19.
go back to reference Alami R, Gilman JG, Feng YQ, Marmorato A, Rochlin I, Suzuka SM, Fabry ME, Nagel RL, Bouhassira EE: Anti-beta s-ribozyme reduces beta s mRNA levels in transgenic mice: potential application to the gene therapy of sickle cell anemia. Blood Cells Mol Dis. 1999, 25 (2): 110-119. 10.1006/bcmd.1999.0235.CrossRefPubMed Alami R, Gilman JG, Feng YQ, Marmorato A, Rochlin I, Suzuka SM, Fabry ME, Nagel RL, Bouhassira EE: Anti-beta s-ribozyme reduces beta s mRNA levels in transgenic mice: potential application to the gene therapy of sickle cell anemia. Blood Cells Mol Dis. 1999, 25 (2): 110-119. 10.1006/bcmd.1999.0235.CrossRefPubMed
20.
go back to reference Xu L, Ferry AE, Monteiro C, Pace BS: Beta globin gene inhibition by antisense RNA transcripts. Gene Ther. 2000, 7 (5): 438-444. 10.1038/sj.gt.3301106.CrossRefPubMed Xu L, Ferry AE, Monteiro C, Pace BS: Beta globin gene inhibition by antisense RNA transcripts. Gene Ther. 2000, 7 (5): 438-444. 10.1038/sj.gt.3301106.CrossRefPubMed
21.
go back to reference Pace BS, Qian X, Ofori-Acquah SF: Selective inhibition of beta-globin RNA transcripts by antisense RNA molecules. Cell Mol Biol (Noisy-le-grand). 2004, 50 (1): 43-51. Pace BS, Qian X, Ofori-Acquah SF: Selective inhibition of beta-globin RNA transcripts by antisense RNA molecules. Cell Mol Biol (Noisy-le-grand). 2004, 50 (1): 43-51.
22.
go back to reference Amosova O, Broitman SL, Fresco JR: Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence. Nucleic Acids Research. 2003, 31 (16): 4673-4681. 10.1093/nar/gkg659.CrossRefPubMedPubMedCentral Amosova O, Broitman SL, Fresco JR: Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence. Nucleic Acids Research. 2003, 31 (16): 4673-4681. 10.1093/nar/gkg659.CrossRefPubMedPubMedCentral
24.
go back to reference Lui L, Rice MC, Kmiec EB: In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res. 2001, 29 (20): 4238-4250. 10.1093/nar/29.20.4238.CrossRef Lui L, Rice MC, Kmiec EB: In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res. 2001, 29 (20): 4238-4250. 10.1093/nar/29.20.4238.CrossRef
25.
go back to reference Wayengera M: Bone marrow transplantation (BMT) and gene replacement therapy (GRT) in sickle cell anemia. Niger J Med. 2008, 17 (3): 251-256. Wayengera M: Bone marrow transplantation (BMT) and gene replacement therapy (GRT) in sickle cell anemia. Niger J Med. 2008, 17 (3): 251-256.
26.
go back to reference Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD: Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010, 11 (9): 636-646. 10.1038/nrg2842.CrossRefPubMed Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD: Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010, 11 (9): 636-646. 10.1038/nrg2842.CrossRefPubMed
27.
go back to reference Cathomen T, Joung JK: Zinc-finger nucleases: the next generation emerges. Mol Ther. 2008, 16 (7): 1200-1207. 10.1038/mt.2008.114.CrossRefPubMed Cathomen T, Joung JK: Zinc-finger nucleases: the next generation emerges. Mol Ther. 2008, 16 (7): 1200-1207. 10.1038/mt.2008.114.CrossRefPubMed
28.
go back to reference Guo J, Gaj T, Barbas CF: Directed Evolution of an Enhanced and Highly Efficient FokI Cleavage Domain for Zinc Finger Nucleases. Journal of Molecular Biology. 2010, 400 (1): 96-10.1016/j.jmb.2010.04.060.CrossRefPubMedPubMedCentral Guo J, Gaj T, Barbas CF: Directed Evolution of an Enhanced and Highly Efficient FokI Cleavage Domain for Zinc Finger Nucleases. Journal of Molecular Biology. 2010, 400 (1): 96-10.1016/j.jmb.2010.04.060.CrossRefPubMedPubMedCentral
29.
go back to reference Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S: Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl Acids Res. 2005, 33 (18): 5978-5990. 10.1093/nar/gki912.CrossRefPubMedPubMedCentral Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S: Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl Acids Res. 2005, 33 (18): 5978-5990. 10.1093/nar/gki912.CrossRefPubMedPubMedCentral
30.
go back to reference Porteus MH, Carroll D: Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005, 23 (8): 967-973. 10.1038/nbt1125.CrossRefPubMed Porteus MH, Carroll D: Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005, 23 (8): 967-973. 10.1038/nbt1125.CrossRefPubMed
31.
go back to reference Perez E, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008, 26 (7): 808-816. 10.1038/nbt1410.CrossRefPubMedPubMedCentral Perez E, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008, 26 (7): 808-816. 10.1038/nbt1410.CrossRefPubMedPubMedCentral
32.
go back to reference Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM: Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010, 28 (8): 839-847. 10.1038/nbt.1663.CrossRefPubMedPubMedCentral Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM: Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010, 28 (8): 839-847. 10.1038/nbt.1663.CrossRefPubMedPubMedCentral
33.
go back to reference Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, Sherrill-Mix SA, Patro SC, Secreto AJ, Jordan APO1, Lee G, Kahn J, Aye PP, Bunnell BA, Lackner AA, Hoxie JA, Danet-Desnoyers GA, Bushman FD, Riley JL, Gregory PD, June CH, Holmes MC, Doms RM: Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathog. 2011, 7 (4): e1002020-10.1371/journal.ppat.1002020.CrossRefPubMedPubMedCentral Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, Sherrill-Mix SA, Patro SC, Secreto AJ, Jordan APO1, Lee G, Kahn J, Aye PP, Bunnell BA, Lackner AA, Hoxie JA, Danet-Desnoyers GA, Bushman FD, Riley JL, Gregory PD, June CH, Holmes MC, Doms RM: Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathog. 2011, 7 (4): e1002020-10.1371/journal.ppat.1002020.CrossRefPubMedPubMedCentral
34.
go back to reference Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chrétien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chrétien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010, 467 (7313): 318-322. 10.1038/nature09328.CrossRefPubMedPubMedCentral Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chrétien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chrétien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010, 467 (7313): 318-322. 10.1038/nature09328.CrossRefPubMedPubMedCentral
35.
go back to reference Ponnazhagan S, Weigel KA, Raikwar SP, Mukherjee P, Yoder MC, Srivastava A: Recombinant human Parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes. J Virol. 1998, 72: 5224-5230.PubMedPubMedCentral Ponnazhagan S, Weigel KA, Raikwar SP, Mukherjee P, Yoder MC, Srivastava A: Recombinant human Parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes. J Virol. 1998, 72: 5224-5230.PubMedPubMedCentral
36.
go back to reference Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D: ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucl Acids Res. 2010, 38: W462-W468. 10.1093/nar/gkq319.CrossRefPubMedPubMedCentral Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D: ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucl Acids Res. 2010, 38: W462-W468. 10.1093/nar/gkq319.CrossRefPubMedPubMedCentral
37.
go back to reference Mandell JG, Barbas CF: Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucl Acids Res. 2006, 34 (SI): W516-W523.CrossRefPubMedPubMedCentral Mandell JG, Barbas CF: Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucl Acids Res. 2006, 34 (SI): W516-W523.CrossRefPubMedPubMedCentral
38.
go back to reference Kim Y-G, Cha J, Chandrasegaran S: Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1995, 93: 1156-1160.CrossRef Kim Y-G, Cha J, Chandrasegaran S: Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1995, 93: 1156-1160.CrossRef
39.
go back to reference Dreier B, Segal DJ, Barbas CF: Insights into the molecular recognition of the 5 '-GNN-3 ' family of DNA sequences by zinc finger domains. J Mol Biol. 2000, 303 (4): 489-502. 10.1006/jmbi.2000.4133.CrossRefPubMed Dreier B, Segal DJ, Barbas CF: Insights into the molecular recognition of the 5 '-GNN-3 ' family of DNA sequences by zinc finger domains. J Mol Biol. 2000, 303 (4): 489-502. 10.1006/jmbi.2000.4133.CrossRefPubMed
40.
go back to reference Herrmann F, Garriga-Canut M, Baumstark R, Fajardo-Sanchez E, Cotterell J, Minoche A, Himmelbauer H, Isalan M: p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing. PLoS One. 2011, 6 (6): e20913-10.1371/journal.pone.0020913.CrossRefPubMedPubMedCentral Herrmann F, Garriga-Canut M, Baumstark R, Fajardo-Sanchez E, Cotterell J, Minoche A, Himmelbauer H, Isalan M: p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing. PLoS One. 2011, 6 (6): e20913-10.1371/journal.pone.0020913.CrossRefPubMedPubMedCentral
41.
go back to reference Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC: Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011, 8 (1): 74-79. 10.1038/nmeth.1539.CrossRefPubMed Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC: Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011, 8 (1): 74-79. 10.1038/nmeth.1539.CrossRefPubMed
42.
go back to reference Mátrai J, Chuah MK, VandenDriessche T: Recent advances in lentiviral vector development and applications. Mol Ther. 2010, 18 (3): 477-490. 10.1038/mt.2009.319.CrossRefPubMedPubMedCentral Mátrai J, Chuah MK, VandenDriessche T: Recent advances in lentiviral vector development and applications. Mol Ther. 2010, 18 (3): 477-490. 10.1038/mt.2009.319.CrossRefPubMedPubMedCentral
43.
go back to reference Silva MM, Rogers PH, Arnone A: A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem. 1992, 267 (24): 17248-17256.PubMed Silva MM, Rogers PH, Arnone A: A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem. 1992, 267 (24): 17248-17256.PubMed
44.
go back to reference Shaanan B: Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983, 171 (1): 31-59. 10.1016/S0022-2836(83)80313-1.CrossRefPubMed Shaanan B: Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983, 171 (1): 31-59. 10.1016/S0022-2836(83)80313-1.CrossRefPubMed
45.
go back to reference Fermi G, Perutz MF, Shaanan B, Fourme R: The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984, 175 (2): 159-174. 10.1016/0022-2836(84)90472-8.CrossRefPubMed Fermi G, Perutz MF, Shaanan B, Fourme R: The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984, 175 (2): 159-174. 10.1016/0022-2836(84)90472-8.CrossRefPubMed
46.
go back to reference Okwi AL, Byarugaba W, Ndugwa CM, Parkes A, Ocaido M, Tumwine JK: An up-date on the prevalence of sickle cell trait in Eastern and Western Uganda. BMC Blood Disord. 2010, 10: 5-10.1186/1471-2326-10-5.PubMedPubMedCentral Okwi AL, Byarugaba W, Ndugwa CM, Parkes A, Ocaido M, Tumwine JK: An up-date on the prevalence of sickle cell trait in Eastern and Western Uganda. BMC Blood Disord. 2010, 10: 5-10.1186/1471-2326-10-5.PubMedPubMedCentral
47.
go back to reference Pattanayak V, Ramirez CL, Joung KJ, Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011, 8 (9): 765-770. 10.1038/nmeth.1670.CrossRefPubMedPubMedCentral Pattanayak V, Ramirez CL, Joung KJ, Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011, 8 (9): 765-770. 10.1038/nmeth.1670.CrossRefPubMedPubMedCentral
48.
go back to reference Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011, 29 (9): 816-823. 10.1038/nbt.1948.CrossRefPubMed Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011, 29 (9): 816-823. 10.1038/nbt.1948.CrossRefPubMed
Metadata
Title
Zinc finger nucleases for targeted mutagenesis and repair of the sickle-cell disease mutation: An in-silico study
Author
Misaki Wayengera
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Hematology / Issue 1/2012
Electronic ISSN: 2052-1839
DOI
https://doi.org/10.1186/1471-2326-12-5

Other articles of this Issue 1/2012

BMC Hematology 1/2012 Go to the issue