Skip to main content
Top
Published in: BMC Geriatrics 1/2014

Open Access 01-12-2014 | Research article

Alterations in proton leak, oxidative status and uncoupling protein 3 content in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria in old rats

Authors: Raffaella Crescenzo, Francesca Bianco, Arianna Mazzoli, Antonia Giacco, Giovanna Liverini, Susanna Iossa

Published in: BMC Geriatrics | Issue 1/2014

Login to get access

Abstract

Background

We considered of interest to evaluate how aging affects mitochondrial function in skeletal muscle.

Methods

We measured mitochondrial oxidative capacity and proton leak, together with lipid oxidative damage, superoxide dismutase specific activity and uncoupling protein 3 content, in subsarcolemmal and intermyofibrillar mitochondria from adult (six months) and old (two years) rats. Body composition, resting metabolic rate and plasma non esterified fatty acid levels were also assessed.

Results

Old rats displayed significantly higher body energy and lipids, while body proteins were significantly lower, compared to adult rats. In addition, plasma non esterified fatty acid levels were significantly higher, while resting metabolic rates were found to be significantly lower, in old rats compared to adult ones. Significantly lower oxidative capacities in whole tissue homogenates and in intermyofibrillar and subsarcolemmal mitochondria were found in old rats compared to adult ones. Subsarcolemmal and intermyofibrillar mitochondria from old rats exhibited a significantly lower proton leak rate, while oxidative damage was found to be significantly higher only in subsarcolemmal mitochondria. Mitochondrial superoxide dismutase specific activity was not significantly affected in old rats, while significantly higher content of uncoupling protein 3 was found in both mitochondrial populations from old rats compared to adult ones, although the magnitude of the increase was lower in subsarcolemmal than in intermyofibrillar mitochondria.

Conclusions

The decrease in oxidative capacity and proton leak in intermyofibrillar and subsarcolemmal mitochondria could induce a decline in energy expenditure and thus contribute to the reduced resting metabolic rate found in old rats, while oxidative damage is present only in subsarcolemmal mitochondria.
Appendix
Available only for authorised users
Literature
1.
go back to reference Figueiredo PA, Mota MP, Appell HJ, Duarte JA: The role of mitochondria in aging of skeletal muscle. Biogerontol. 2008, 9: 67-84. 10.1007/s10522-007-9121-7.CrossRef Figueiredo PA, Mota MP, Appell HJ, Duarte JA: The role of mitochondria in aging of skeletal muscle. Biogerontol. 2008, 9: 67-84. 10.1007/s10522-007-9121-7.CrossRef
2.
go back to reference Kwong LK, Sohal RS: Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys. 2000, 373 (1): 16-22. 10.1006/abbi.1999.1495.CrossRefPubMed Kwong LK, Sohal RS: Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys. 2000, 373 (1): 16-22. 10.1006/abbi.1999.1495.CrossRefPubMed
3.
go back to reference Lenaz G: Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta. 1998, 1366 (1–2): 53-67.CrossRefPubMed Lenaz G: Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta. 1998, 1366 (1–2): 53-67.CrossRefPubMed
4.
go back to reference Lenaz G, D’Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, Parenti Castelli G: Mitochondrial bioenergetics in aging. Biochim Biophys Acta. 2000, 1459 (2–3): 397-404.CrossRefPubMed Lenaz G, D’Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, Parenti Castelli G: Mitochondrial bioenergetics in aging. Biochim Biophys Acta. 2000, 1459 (2–3): 397-404.CrossRefPubMed
5.
go back to reference Shigenaga MK, Hagen TM, Ames BN: Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994, 91 (23): 10771-10778. 10.1073/pnas.91.23.10771.CrossRefPubMedPubMedCentral Shigenaga MK, Hagen TM, Ames BN: Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994, 91 (23): 10771-10778. 10.1073/pnas.91.23.10771.CrossRefPubMedPubMedCentral
6.
go back to reference Cogswell AM, Stevens RJ, Hood DA: Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol. 1993, 264: C383-C389.PubMed Cogswell AM, Stevens RJ, Hood DA: Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol. 1993, 264: C383-C389.PubMed
7.
go back to reference Mollica MP, Lionetti L, Crescenzo R, D’Andrea E, Ferraro M, Liverini G, Iossa S: Heterogeneous bioenergetic behaviour of subsarcolemmal and intermyofibrillar mitochondria in fed and fasted rats. Cell Mol Life Sci. 2006, 63: 358-366. 10.1007/s00018-005-5443-2.CrossRefPubMed Mollica MP, Lionetti L, Crescenzo R, D’Andrea E, Ferraro M, Liverini G, Iossa S: Heterogeneous bioenergetic behaviour of subsarcolemmal and intermyofibrillar mitochondria in fed and fasted rats. Cell Mol Life Sci. 2006, 63: 358-366. 10.1007/s00018-005-5443-2.CrossRefPubMed
8.
go back to reference Farrar RP, Martin TP, Ardies CM: The interaction of aging and endurance exercise upon the mitochondrial function of skeletal muscle. J Gerontol. 1981, 36 (6): 642-647. 10.1093/geronj/36.6.642.CrossRefPubMed Farrar RP, Martin TP, Ardies CM: The interaction of aging and endurance exercise upon the mitochondrial function of skeletal muscle. J Gerontol. 1981, 36 (6): 642-647. 10.1093/geronj/36.6.642.CrossRefPubMed
9.
go back to reference Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA: Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell. 2008, 7 (1): 2-12. 10.1111/j.1474-9726.2007.00347.x.CrossRefPubMed Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA: Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell. 2008, 7 (1): 2-12. 10.1111/j.1474-9726.2007.00347.x.CrossRefPubMed
10.
go back to reference Iossa S, Mollica MP, Lionetti L, Crescenzo R, Tasso R, Liverini G: A possible link between skeletal muscle mitochondrial efficiency and age-induced insulin resistance. Diabetes. 2004, 53 (11): 2861-2866. 10.2337/diabetes.53.11.2861.CrossRefPubMed Iossa S, Mollica MP, Lionetti L, Crescenzo R, Tasso R, Liverini G: A possible link between skeletal muscle mitochondrial efficiency and age-induced insulin resistance. Diabetes. 2004, 53 (11): 2861-2866. 10.2337/diabetes.53.11.2861.CrossRefPubMed
11.
go back to reference Lombardi A, Busiello RA, Napolitano L, Cioffi F, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F: UCP3 translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupling. J Biol Chem. 2010, 285: 16599-16605. 10.1074/jbc.M110.102699.CrossRefPubMedPubMedCentral Lombardi A, Busiello RA, Napolitano L, Cioffi F, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F: UCP3 translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupling. J Biol Chem. 2010, 285: 16599-16605. 10.1074/jbc.M110.102699.CrossRefPubMedPubMedCentral
12.
go back to reference Folch J, Lees M, Stanley GHS: A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957, 226: 497-510.PubMed Folch J, Lees M, Stanley GHS: A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957, 226: 497-510.PubMed
13.
go back to reference Dulloo AG, Girardier L: Influence of dietary composition on energy expenditure during recovery of body weight in the rat: implications for catch-up growth and obesity relapse. Metab. 1992, 41: 1336-1342. 10.1016/0026-0495(92)90105-J.CrossRef Dulloo AG, Girardier L: Influence of dietary composition on energy expenditure during recovery of body weight in the rat: implications for catch-up growth and obesity relapse. Metab. 1992, 41: 1336-1342. 10.1016/0026-0495(92)90105-J.CrossRef
14.
go back to reference Armsby HP: The Nutrition of Farm Animals. 1917, New York: The Macmillan CompanyCrossRef Armsby HP: The Nutrition of Farm Animals. 1917, New York: The Macmillan CompanyCrossRef
15.
go back to reference Iossa S, Mollica MP, Lionetti L, Crescenzo R, Botta M, Liverini G: Skeletal muscle oxidative capacity in rats fed high-fat diet. Int J Obes. 2002, 26: 65-72. 10.1038/sj.ijo.0801844.CrossRef Iossa S, Mollica MP, Lionetti L, Crescenzo R, Botta M, Liverini G: Skeletal muscle oxidative capacity in rats fed high-fat diet. Int J Obes. 2002, 26: 65-72. 10.1038/sj.ijo.0801844.CrossRef
16.
go back to reference Lionetti L, Mollica MP, Crescenzo R, D’Andrea E, Ferraro M, Bianco F, Liverini G, Iossa S: Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes. 2007, 31: 1596-1604. 10.1038/sj.ijo.0803636.CrossRef Lionetti L, Mollica MP, Crescenzo R, D’Andrea E, Ferraro M, Bianco F, Liverini G, Iossa S: Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes. 2007, 31: 1596-1604. 10.1038/sj.ijo.0803636.CrossRef
17.
go back to reference Fernandes MA, Custodio JBA, Santos MS, Moreno AJ, Vicente JA: Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion. 2006, 6: 176-185. 10.1016/j.mito.2006.06.002.CrossRefPubMed Fernandes MA, Custodio JBA, Santos MS, Moreno AJ, Vicente JA: Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion. 2006, 6: 176-185. 10.1016/j.mito.2006.06.002.CrossRefPubMed
19.
go back to reference Holmes D, Moody P, Dine D: Research Methods for the Biosciences. 2011, Oxford: Oxford University Press, 2 Holmes D, Moody P, Dine D: Research Methods for the Biosciences. 2011, Oxford: Oxford University Press, 2
20.
go back to reference Petersen CM, Johannsen DL, Ravussin E: Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012, 2012: 1-20.CrossRef Petersen CM, Johannsen DL, Ravussin E: Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012, 2012: 1-20.CrossRef
21.
go back to reference Rolfe DFS, Brown GC: Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997, 77: 731-758.PubMed Rolfe DFS, Brown GC: Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997, 77: 731-758.PubMed
22.
go back to reference Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD: Mitochondrial proton and electron leaks. Essays Biochem. 2010, 47: 53-67. 10.1042/bse0470053.CrossRefPubMedPubMedCentral Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD: Mitochondrial proton and electron leaks. Essays Biochem. 2010, 47: 53-67. 10.1042/bse0470053.CrossRefPubMedPubMedCentral
23.
go back to reference Koltai E, Hart N, Taylor AW, Goto S, Ngo JK, Davies KJA, Radak Z: Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol. 2012, 303: R127-R134. Koltai E, Hart N, Taylor AW, Goto S, Ngo JK, Davies KJA, Radak Z: Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol. 2012, 303: R127-R134.
24.
go back to reference Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, Miraux S, Thiaudiere E, Pasdois P, Detaille D, Franconi JM, Babot M, Trézéguet V, Arsac L, Diolez P: Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell. 2014, 13: 39-48. 10.1111/acel.12147.CrossRefPubMed Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, Miraux S, Thiaudiere E, Pasdois P, Detaille D, Franconi JM, Babot M, Trézéguet V, Arsac L, Diolez P: Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell. 2014, 13: 39-48. 10.1111/acel.12147.CrossRefPubMed
25.
go back to reference Hafner RP, Brown GC, Brand MD: Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990, 188 (2): 313-319. 10.1111/j.1432-1033.1990.tb15405.x.CrossRefPubMed Hafner RP, Brown GC, Brand MD: Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990, 188 (2): 313-319. 10.1111/j.1432-1033.1990.tb15405.x.CrossRefPubMed
26.
go back to reference Korshunov SS, Skulachev VP, Starkov AA: High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416: 15-18. 10.1016/S0014-5793(97)01159-9.CrossRefPubMed Korshunov SS, Skulachev VP, Starkov AA: High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997, 416: 15-18. 10.1016/S0014-5793(97)01159-9.CrossRefPubMed
27.
go back to reference Mailloux RJ, Harper ME: Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med. 2011, 51 (6): 1106-1115. 10.1016/j.freeradbiomed.2011.06.022.CrossRefPubMed Mailloux RJ, Harper ME: Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med. 2011, 51 (6): 1106-1115. 10.1016/j.freeradbiomed.2011.06.022.CrossRefPubMed
28.
go back to reference Goglia F, Skulachev VP: A function for novel uncoupling proteins: antioxidant defence of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J. 2003, 17: 1585-1591. 10.1096/fj.03-0159hyp.CrossRefPubMed Goglia F, Skulachev VP: A function for novel uncoupling proteins: antioxidant defence of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J. 2003, 17: 1585-1591. 10.1096/fj.03-0159hyp.CrossRefPubMed
29.
go back to reference Lal SB, Ramsey JJ, Monemdjou S, Weindruch R, Harper ME: Effects of caloric restriction on skeletal muscle mitochondrial proton leak in aging rats. J Gerontol. 2001, 56A: B116-B122.CrossRef Lal SB, Ramsey JJ, Monemdjou S, Weindruch R, Harper ME: Effects of caloric restriction on skeletal muscle mitochondrial proton leak in aging rats. J Gerontol. 2001, 56A: B116-B122.CrossRef
30.
go back to reference Schrauwen P, Hoeks J, Hesselink MK: Putative function and physiological relevance of the mitochondrial uncoupling protein-3: involvement in fatty acid metabolism?. Prog Lipid Res. 2006, 45: 17-41. 10.1016/j.plipres.2005.11.001.CrossRefPubMed Schrauwen P, Hoeks J, Hesselink MK: Putative function and physiological relevance of the mitochondrial uncoupling protein-3: involvement in fatty acid metabolism?. Prog Lipid Res. 2006, 45: 17-41. 10.1016/j.plipres.2005.11.001.CrossRefPubMed
31.
go back to reference Barazzoni R, Nair KS: Changes in uncoupling protein-2 and -3 expression in aging rat skeletal muscle, liver, and heart. Am J Physiol. 2001, 280: E413-E419. Barazzoni R, Nair KS: Changes in uncoupling protein-2 and -3 expression in aging rat skeletal muscle, liver, and heart. Am J Physiol. 2001, 280: E413-E419.
32.
go back to reference Kerner J, Turkaly PJ, Minkler PE, Hoppel CL: Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content. Am J Physiol. 2001, 281: E1054-E1062. Kerner J, Turkaly PJ, Minkler PE, Hoppel CL: Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content. Am J Physiol. 2001, 281: E1054-E1062.
33.
go back to reference Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME: Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol. 2005, 289: E429-E438. Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME: Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol. 2005, 289: E429-E438.
34.
go back to reference Hood D: Plasticity in skeletal, cardiac, and smooth muscle: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001, 90: 1137-1157.PubMed Hood D: Plasticity in skeletal, cardiac, and smooth muscle: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001, 90: 1137-1157.PubMed
35.
go back to reference Beyer RE, Starnes JW, Edington DW, Lipton RJ, Compton RT, Kwasman MA: Exercise-induced reversal of age-related declines of oxidative reactions, mitochondrial yield, and flavins in skeletal muscle of the rat. Mech Ageing Dev. 1984, 24 (3): 309-323. 10.1016/0047-6374(84)90116-7.CrossRefPubMed Beyer RE, Starnes JW, Edington DW, Lipton RJ, Compton RT, Kwasman MA: Exercise-induced reversal of age-related declines of oxidative reactions, mitochondrial yield, and flavins in skeletal muscle of the rat. Mech Ageing Dev. 1984, 24 (3): 309-323. 10.1016/0047-6374(84)90116-7.CrossRefPubMed
Metadata
Title
Alterations in proton leak, oxidative status and uncoupling protein 3 content in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria in old rats
Authors
Raffaella Crescenzo
Francesca Bianco
Arianna Mazzoli
Antonia Giacco
Giovanna Liverini
Susanna Iossa
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2014
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/1471-2318-14-79

Other articles of this Issue 1/2014

BMC Geriatrics 1/2014 Go to the issue