Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2014

Open Access 01-12-2014 | Research article

An assessment of the relationship between clinical utility and predictive ability measures and the impact of mean risk in the population

Authors: Kevin McGeechan, Petra Macaskill, Les Irwig, Patrick MM Bossuyt

Published in: BMC Medical Research Methodology | Issue 1/2014

Login to get access

Abstract

Background

Measures of clinical utility (net benefit and event free life years) have been recommended in the assessment of a new predictor in a risk prediction model. However, it is not clear how they relate to the measures of predictive ability and reclassification, such as the c-statistic and Net Reclassification Improvement (NRI), or how these measures are affected by differences in mean risk between populations when a fixed cutpoint to define high risk is assumed.

Methods

We examined the relationship between measures of clinical utility (net benefit, event free life years) and predictive ability (c-statistic, binary c-statistic, continuous NRI(0), NRI with two cutpoints, binary NRI) using simulated data and the Framingham dataset.

Results

In the analysis of simulated data, the addition of a new predictor tended to result in more people being treated when the mean risk was less than the cutpoint, and fewer people being treated for mean risks beyond the cutpoint. The reclassification and clinical utility measures showed similar relationships with mean risk when the mean risk was less than the cutpoint and the baseline model was not strong. However, when the mean risk was greater than the cutpoint, or the baseline model was strong, the reclassification and clinical utility measures diverged in their relationship with mean risk.
Although the risk of CVD was lower for women compared to men in the Framingham dataset, the measures of predictive ability, reclassification and clinical utility were both larger for women. The difference in these results was, in part, due to the larger hazard ratio associated with the additional risk predictor (systolic blood pressure) for women.

Conclusion

Measures such as the c-statistic and the measures of reclassification do not capture the consequences of implementing different prediction models. We do not recommend their use in evaluating which new predictors may be clinically useful in a particular population. We recommend that a measure such as net benefit or EFLY is calculated and, where appropriate, the measure is weighted to account for differences in the distribution of risks between the study population and the population in which the new predictors will be implemented.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG: Prognosis and prognostic research: what, why, and how?. BMJ. 2009, 338: b375-CrossRefPubMed Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG: Prognosis and prognostic research: what, why, and how?. BMJ. 2009, 338: b375-CrossRefPubMed
2.
go back to reference Kannel WB, D'Agostino RB, Sullivan L, Wilson PW: Concept and usefulness of cardiovascular risk profiles. Am Heart J. 2004, 148 (1): 16-26.CrossRefPubMed Kannel WB, D'Agostino RB, Sullivan L, Wilson PW: Concept and usefulness of cardiovascular risk profiles. Am Heart J. 2004, 148 (1): 16-26.CrossRefPubMed
3.
go back to reference Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989, 81 (24): 1879-1886.CrossRefPubMed Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989, 81 (24): 1879-1886.CrossRefPubMed
4.
go back to reference Helfand M, Buckley DI, Freeman M, Fu R, Rogers K, Fleming C, Humphrey LL: Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann Intern Med. 2009, 151 (7): 496-507.CrossRefPubMed Helfand M, Buckley DI, Freeman M, Fu R, Rogers K, Fleming C, Humphrey LL: Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann Intern Med. 2009, 151 (7): 496-507.CrossRefPubMed
5.
go back to reference Pencina MJ, D'Agostino RB, Pencina KM, Janssens AC, Greenland P: Interpreting incremental value of markers added to risk prediction models. Am J Epidemiol. 2012, 176 (6): 473-481.CrossRefPubMedPubMedCentral Pencina MJ, D'Agostino RB, Pencina KM, Janssens AC, Greenland P: Interpreting incremental value of markers added to risk prediction models. Am J Epidemiol. 2012, 176 (6): 473-481.CrossRefPubMedPubMedCentral
6.
go back to reference Rapsomaniki E, White IR, Wood AM, Thompson SG: A framework for quantifying net benefits of alternative prognostic models. Stat Med. 2012, 31 (2): 114-130.CrossRefPubMed Rapsomaniki E, White IR, Wood AM, Thompson SG: A framework for quantifying net benefits of alternative prognostic models. Stat Med. 2012, 31 (2): 114-130.CrossRefPubMed
10.
go back to reference Hlatky MA, Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, Go AS, Harrell FE, Hong Y, Howard BV, Howard VJ, Hsue PY, Kramer CM, McConnell JP, Normand SL, O'Donnell CJ, Smith SC, Wilson PW: Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009, 119 (17): 2408-2416.CrossRefPubMedPubMedCentral Hlatky MA, Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, Go AS, Harrell FE, Hong Y, Howard BV, Howard VJ, Hsue PY, Kramer CM, McConnell JP, Normand SL, O'Donnell CJ, Smith SC, Wilson PW: Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009, 119 (17): 2408-2416.CrossRefPubMedPubMedCentral
11.
go back to reference Steyerberg EW, Pencina MJ, Lingsma HF, Kattan MW, Vickers AJ, Van Calster B: Assessing the incremental value of diagnostic and prognostic markers: a review and illustration. Eur J Clin Invest. 2012, 42 (2): 216-228.CrossRefPubMed Steyerberg EW, Pencina MJ, Lingsma HF, Kattan MW, Vickers AJ, Van Calster B: Assessing the incremental value of diagnostic and prognostic markers: a review and illustration. Eur J Clin Invest. 2012, 42 (2): 216-228.CrossRefPubMed
12.
go back to reference Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW: Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician's guide. Ann Intern Med. 2014, 160 (2): 122-131.CrossRefPubMed Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW: Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician's guide. Ann Intern Med. 2014, 160 (2): 122-131.CrossRefPubMed
13.
go back to reference Cook NR: Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007, 115 (7): 928-935.CrossRefPubMed Cook NR: Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007, 115 (7): 928-935.CrossRefPubMed
14.
go back to reference Mihaescu R, van Zitteren M, van Hoek M, Sijbrands EJ, Uitterlinden AG, Witteman JC, Hofman A, Hunink MG, van Duijn CM, Janssens AC: Improvement of risk prediction by genomic profiling: reclassification measures versus the area under the receiver operating characteristic curve. Am J Epidemiol. 2010, 172 (3): 353-361.CrossRefPubMed Mihaescu R, van Zitteren M, van Hoek M, Sijbrands EJ, Uitterlinden AG, Witteman JC, Hofman A, Hunink MG, van Duijn CM, Janssens AC: Improvement of risk prediction by genomic profiling: reclassification measures versus the area under the receiver operating characteristic curve. Am J Epidemiol. 2010, 172 (3): 353-361.CrossRefPubMed
15.
go back to reference Greenland S: The need for reorientation toward cost-effective prediction: comments on 'evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond' by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med. 2008, 27 (2): 199-206.CrossRefPubMed Greenland S: The need for reorientation toward cost-effective prediction: comments on 'evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond' by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929). Stat Med. 2008, 27 (2): 199-206.CrossRefPubMed
16.
go back to reference Van Calster B, Steyerberg EW, D'Agostino RB, Pencina MJ: Sensitivity and specificity can change in opposite directions when new predictive markers are added to risk models. Med Decis Making. 2014, 34 (4): 513-522.CrossRefPubMed Van Calster B, Steyerberg EW, D'Agostino RB, Pencina MJ: Sensitivity and specificity can change in opposite directions when new predictive markers are added to risk models. Med Decis Making. 2014, 34 (4): 513-522.CrossRefPubMed
17.
go back to reference JBS 2: Joint British Societies' guidelines on prevention of cardiovascular disease in clinical practice. Heart. 2005, 91 (Suppl 5): v1-v52. JBS 2: Joint British Societies' guidelines on prevention of cardiovascular disease in clinical practice. Heart. 2005, 91 (Suppl 5): v1-v52.
18.
go back to reference National Heart Foundation of New Zealand, Stroke Foundation of New Zealand, New Zealand Ministry of Health, New Zealand Guidelines Group: The assessment and management of cardiovascular risk. 2003, Wellington, NZ: New Zealand Guidelines Group, 190- National Heart Foundation of New Zealand, Stroke Foundation of New Zealand, New Zealand Ministry of Health, New Zealand Guidelines Group: The assessment and management of cardiovascular risk. 2003, Wellington, NZ: New Zealand Guidelines Group, 190-
19.
go back to reference National Cholesterol Education Program (U.S.). Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults: Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (adult treatment panel III): final report. NIH publication; no. 02–52152002. 2002, Bethesda, Md: National Cholesterol Education Program, National Heart, Lung, and Blood Institute, National Institutes of Health. 1 v. (various pagings) National Cholesterol Education Program (U.S.). Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults: Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (adult treatment panel III): final report. NIH publication; no. 02–52152002. 2002, Bethesda, Md: National Cholesterol Education Program, National Heart, Lung, and Blood Institute, National Institutes of Health. 1 v. (various pagings)
20.
go back to reference Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Op Reimer WS, Weissberg P, Wood D, Yarnell J, Zamorano JL: European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Atherosclerosis. 2007, 194 (1): 1-45.CrossRefPubMed Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Op Reimer WS, Weissberg P, Wood D, Yarnell J, Zamorano JL: European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Atherosclerosis. 2007, 194 (1): 1-45.CrossRefPubMed
21.
go back to reference Danesh J, Erqou S, Walker M, Thompson SG, Tipping R, Ford C, Pressel S, Walldius G, Jungner I, Folsom AR, Chambless LE, Knuiman M, Whincup PH, Wannamethee SG, Morris RW, Willeit J, Kiechl S, Santer P, Mayr A, Wald N, Ebrahim S, Lawlor DA, Yarnell JW, Gallacher J, Casiglia E, Tikhonoff V, Nietert PJ, Sutherland SE, Bachman DL, Keil JE: The emerging risk factors collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 2007, 22 (12): 839-869.CrossRefPubMed Danesh J, Erqou S, Walker M, Thompson SG, Tipping R, Ford C, Pressel S, Walldius G, Jungner I, Folsom AR, Chambless LE, Knuiman M, Whincup PH, Wannamethee SG, Morris RW, Willeit J, Kiechl S, Santer P, Mayr A, Wald N, Ebrahim S, Lawlor DA, Yarnell JW, Gallacher J, Casiglia E, Tikhonoff V, Nietert PJ, Sutherland SE, Bachman DL, Keil JE: The emerging risk factors collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 2007, 22 (12): 839-869.CrossRefPubMed
22.
go back to reference D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008, 117 (6): 743-753.CrossRefPubMed D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008, 117 (6): 743-753.CrossRefPubMed
23.
go back to reference Harrell FE, Lee KL, Mark DB: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996, 15 (4): 361-387.CrossRefPubMed Harrell FE, Lee KL, Mark DB: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996, 15 (4): 361-387.CrossRefPubMed
24.
go back to reference Pencina MJ, D'Agostino RB, Steyerberg EW: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011, 30 (1): 11-21.CrossRefPubMed Pencina MJ, D'Agostino RB, Steyerberg EW: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011, 30 (1): 11-21.CrossRefPubMed
25.
go back to reference Steyerberg EW, Pencina MJ: Reclassification calculations for persons with incomplete follow-up. Ann Intern Med. 2010, 152 (3): 195-196. author reply 196–7CrossRefPubMed Steyerberg EW, Pencina MJ: Reclassification calculations for persons with incomplete follow-up. Ann Intern Med. 2010, 152 (3): 195-196. author reply 196–7CrossRefPubMed
26.
go back to reference Vickers AJ, Cronin AM, Elkin EB, Gonen M: Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008, 8: 53-CrossRefPubMedPubMedCentral Vickers AJ, Cronin AM, Elkin EB, Gonen M: Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008, 8: 53-CrossRefPubMedPubMedCentral
27.
go back to reference Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005, 366 (9493): 1267-1278.CrossRefPubMed Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005, 366 (9493): 1267-1278.CrossRefPubMed
29.
go back to reference Bender R, Augustin T, Blettner M: Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005, 24 (11): 1713-1723.CrossRefPubMed Bender R, Augustin T, Blettner M: Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005, 24 (11): 1713-1723.CrossRefPubMed
30.
go back to reference Rothman KJ, Greenland S, Lash TL: Modern epidemiology. 2008, Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 758-3 Rothman KJ, Greenland S, Lash TL: Modern epidemiology. 2008, Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 758-3
31.
go back to reference Paynter NP, Everett BM, Cook NR: Cardiovascular disease risk prediction in women: is there a role for novel biomarkers?. Clin Chem. 2014, 60 (1): 88-97.CrossRefPubMed Paynter NP, Everett BM, Cook NR: Cardiovascular disease risk prediction in women: is there a role for novel biomarkers?. Clin Chem. 2014, 60 (1): 88-97.CrossRefPubMed
32.
go back to reference Baker SG, Cook NR, Vickers A, Kramer BS: Using relative utility curves to evaluate risk prediction. J R Stat Soc Ser A Stat Soc. 2009, 172 (4): 729-748.CrossRefPubMedPubMedCentral Baker SG, Cook NR, Vickers A, Kramer BS: Using relative utility curves to evaluate risk prediction. J R Stat Soc Ser A Stat Soc. 2009, 172 (4): 729-748.CrossRefPubMedPubMedCentral
33.
go back to reference Van Calster B, Vickers AJ, Pencina MJ, Baker SG, Timmerman D, Steyerberg EW: Evaluation of markers and risk prediction models: overview of relationships between NRI and decision-analytic measures. Med Decis Making. 2013, 33 (4): 490-501.CrossRefPubMed Van Calster B, Vickers AJ, Pencina MJ, Baker SG, Timmerman D, Steyerberg EW: Evaluation of markers and risk prediction models: overview of relationships between NRI and decision-analytic measures. Med Decis Making. 2013, 33 (4): 490-501.CrossRefPubMed
34.
go back to reference Pepe MS, Fan J, Seymour CW: Estimating the receiver operating characteristic curve in studies that match controls to cases on covariates. Acad Radiol. 2013, 20 (7): 863-873.CrossRefPubMedPubMedCentral Pepe MS, Fan J, Seymour CW: Estimating the receiver operating characteristic curve in studies that match controls to cases on covariates. Acad Radiol. 2013, 20 (7): 863-873.CrossRefPubMedPubMedCentral
35.
go back to reference Di Angelantonio E, Gao P, Pennells L, Kaptoge S, Caslake M, Thompson A, Butterworth AS, Sarwar N, Wormser D, Saleheen D, Ballantyne CM, Psaty BM, Sundstrom J, Ridker PM, Nagel D, Gillum RF, Ford I, Ducimetiere P, Kiechl S, Koenig W, Dullaart RP, Assmann G, D'Agostino RB, Dagenais GR, Cooper JA, Kromhout D, Onat A, Tipping RW, Gomez-de-la-Camara A, Rosengren A: Lipid-related markers and cardiovascular disease prediction. JAMA. 2012, 307 (23): 2499-2506.PubMed Di Angelantonio E, Gao P, Pennells L, Kaptoge S, Caslake M, Thompson A, Butterworth AS, Sarwar N, Wormser D, Saleheen D, Ballantyne CM, Psaty BM, Sundstrom J, Ridker PM, Nagel D, Gillum RF, Ford I, Ducimetiere P, Kiechl S, Koenig W, Dullaart RP, Assmann G, D'Agostino RB, Dagenais GR, Cooper JA, Kromhout D, Onat A, Tipping RW, Gomez-de-la-Camara A, Rosengren A: Lipid-related markers and cardiovascular disease prediction. JAMA. 2012, 307 (23): 2499-2506.PubMed
36.
go back to reference Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJ, Barr EL, Barrett-Connor E, Benjamin EJ, Bjorkelund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushman M, Dagenais GR, D'Agostino RB, Dankner R, Davey-Smith G, Deeg D, Dekker JM: C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012, 367 (14): 1310-1320.CrossRefPubMed Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJ, Barr EL, Barrett-Connor E, Benjamin EJ, Bjorkelund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushman M, Dagenais GR, D'Agostino RB, Dankner R, Davey-Smith G, Deeg D, Dekker JM: C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012, 367 (14): 1310-1320.CrossRefPubMed
37.
go back to reference Rousson V, Zumbrunn T: Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case–control studies. BMC Med Inform Decis Mak. 2011, 11: 45-CrossRefPubMedPubMedCentral Rousson V, Zumbrunn T: Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case–control studies. BMC Med Inform Decis Mak. 2011, 11: 45-CrossRefPubMedPubMedCentral
Metadata
Title
An assessment of the relationship between clinical utility and predictive ability measures and the impact of mean risk in the population
Authors
Kevin McGeechan
Petra Macaskill
Les Irwig
Patrick MM Bossuyt
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2014
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-14-86

Other articles of this Issue 1/2014

BMC Medical Research Methodology 1/2014 Go to the issue