Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2008

Open Access 01-12-2008 | Technical advance

Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers

Authors: Andrew J Vickers, Angel M Cronin, Elena B Elkin, Mithat Gonen

Published in: BMC Medical Informatics and Decision Making | Issue 1/2008

Login to get access

Abstract

Background

Decision curve analysis is a novel method for evaluating diagnostic tests, prediction models and molecular markers. It combines the mathematical simplicity of accuracy measures, such as sensitivity and specificity, with the clinical applicability of decision analytic approaches. Most critically, decision curve analysis can be applied directly to a data set, and does not require the sort of external data on costs, benefits and preferences typically required by traditional decision analytic techniques.

Methods

In this paper we present several extensions to decision curve analysis including correction for overfit, confidence intervals, application to censored data (including competing risk) and calculation of decision curves directly from predicted probabilities. All of these extensions are based on straightforward methods that have previously been described in the literature for application to analogous statistical techniques.

Results

Simulation studies showed that repeated 10-fold crossvalidation provided the best method for correcting a decision curve for overfit. The method for applying decision curves to censored data had little bias and coverage was excellent; for competing risk, decision curves were appropriately affected by the incidence of the competing risk and the association between the competing risk and the predictor of interest. Calculation of decision curves directly from predicted probabilities led to a smoothing of the decision curve.

Conclusion

Decision curve analysis can be easily extended to many of the applications common to performance measures for prediction models. Software to implement decision curve analysis is provided.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sheridan S, Pignone M, Mulrow C: Framingham-based tools to calculate the global risk of coronary heart disease: a systematic review of tools for clinicians. J Gen Intern Med. 2003, 18 (12): 1039-1052. 10.1111/j.1525-1497.2003.30107.x.CrossRefPubMedPubMedCentral Sheridan S, Pignone M, Mulrow C: Framingham-based tools to calculate the global risk of coronary heart disease: a systematic review of tools for clinicians. J Gen Intern Med. 2003, 18 (12): 1039-1052. 10.1111/j.1525-1497.2003.30107.x.CrossRefPubMedPubMedCentral
2.
go back to reference Marchionni L, Wilson RF, Wolff AC, Marinopoulos S, Parmigiani G, Bass EB, Goodman SN: Systematic review: gene expression profiling assays in early-stage breast cancer. Ann Intern Med. 2008, 148 (5): 358-369.CrossRefPubMed Marchionni L, Wilson RF, Wolff AC, Marinopoulos S, Parmigiani G, Bass EB, Goodman SN: Systematic review: gene expression profiling assays in early-stage breast cancer. Ann Intern Med. 2008, 148 (5): 358-369.CrossRefPubMed
3.
go back to reference Vickers AJ, Elkin EB: Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006, 26 (6): 565-574. 10.1177/0272989X06295361.CrossRefPubMedPubMedCentral Vickers AJ, Elkin EB: Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006, 26 (6): 565-574. 10.1177/0272989X06295361.CrossRefPubMedPubMedCentral
5.
go back to reference Pauker SG, Kassirer JP: The threshold approach to clinical decision making. N Engl J Med. 1980, 302 (20): 1109-1117.CrossRefPubMed Pauker SG, Kassirer JP: The threshold approach to clinical decision making. N Engl J Med. 1980, 302 (20): 1109-1117.CrossRefPubMed
6.
go back to reference Harrell FE: Regression modeling strategies. With applications to linear models, logistic regression and survival. 2001, New York: Springer Harrell FE: Regression modeling strategies. With applications to linear models, logistic regression and survival. 2001, New York: Springer
7.
go back to reference Altman DG, Royston P: What do we mean by validating a prognostic model?. Stat Med. 2000, 19 (4): 453-473. 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5.CrossRefPubMed Altman DG, Royston P: What do we mean by validating a prognostic model?. Stat Med. 2000, 19 (4): 453-473. 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5.CrossRefPubMed
8.
go back to reference Efron B: Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the American Statistical Association. 1983, 78: 316-331. 10.2307/2288636.CrossRef Efron B: Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the American Statistical Association. 1983, 78: 316-331. 10.2307/2288636.CrossRef
9.
go back to reference Claxton K: The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies. J Health Econ. 1999, 18 (3): 341-364. 10.1016/S0167-6296(98)00039-3.CrossRefPubMed Claxton K: The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies. J Health Econ. 1999, 18 (3): 341-364. 10.1016/S0167-6296(98)00039-3.CrossRefPubMed
10.
go back to reference Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001, 54 (8): 774-781. 10.1016/S0895-4356(01)00341-9.CrossRefPubMed Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001, 54 (8): 774-781. 10.1016/S0895-4356(01)00341-9.CrossRefPubMed
11.
go back to reference Begg CB, Cramer LD, Venkatraman ES, Rosai J: Comparing tumour staging and grading systems: a case study and a review of the issues, using thymoma as a model. Stat Med. 2000, 19 (15): 1997-2014. 10.1002/1097-0258(20000815)19:15<1997::AID-SIM511>3.0.CO;2-C.CrossRefPubMed Begg CB, Cramer LD, Venkatraman ES, Rosai J: Comparing tumour staging and grading systems: a case study and a review of the issues, using thymoma as a model. Stat Med. 2000, 19 (15): 1997-2014. 10.1002/1097-0258(20000815)19:15<1997::AID-SIM511>3.0.CO;2-C.CrossRefPubMed
12.
go back to reference Heagerty PJ, Lumley T, Pepe MS: Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000, 56 (2): 337-344. 10.1111/j.0006-341X.2000.00337.x.CrossRefPubMed Heagerty PJ, Lumley T, Pepe MS: Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000, 56 (2): 337-344. 10.1111/j.0006-341X.2000.00337.x.CrossRefPubMed
13.
go back to reference Kalbfleisch JD, Prentice RL: The Statistical Analysis of Failure Time data. 1980, New York: John Wiley and Sons Kalbfleisch JD, Prentice RL: The Statistical Analysis of Failure Time data. 1980, New York: John Wiley and Sons
14.
go back to reference Satagopan JM, Ben-Porat L, Berwick M, Robson M, Kutler D, Auerbach AD: A note on competing risks in survival data analysis. Br J Cancer. 2004, 91 (7): 1229-1235. 10.1038/sj.bjc.6602102.CrossRefPubMedPubMedCentral Satagopan JM, Ben-Porat L, Berwick M, Robson M, Kutler D, Auerbach AD: A note on competing risks in survival data analysis. Br J Cancer. 2004, 91 (7): 1229-1235. 10.1038/sj.bjc.6602102.CrossRefPubMedPubMedCentral
15.
go back to reference Bochner BH, Kattan MW, Vora KC: Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer. J Clin Oncol. 2006, 24 (24): 3967-3972. 10.1200/JCO.2005.05.3884.CrossRefPubMed Bochner BH, Kattan MW, Vora KC: Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer. J Clin Oncol. 2006, 24 (24): 3967-3972. 10.1200/JCO.2005.05.3884.CrossRefPubMed
16.
go back to reference Vickers AJ, Bianco FJ, Serio AM, Eastham JA, Schrag D, Klein EA, Reuther AM, Kattan MW, Pontes JE, Scardino PT: The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 2007, 99 (15): 1171-1177. 10.1093/jnci/djm060.CrossRefPubMed Vickers AJ, Bianco FJ, Serio AM, Eastham JA, Schrag D, Klein EA, Reuther AM, Kattan MW, Pontes JE, Scardino PT: The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 2007, 99 (15): 1171-1177. 10.1093/jnci/djm060.CrossRefPubMed
Metadata
Title
Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers
Authors
Andrew J Vickers
Angel M Cronin
Elena B Elkin
Mithat Gonen
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2008
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-8-53

Other articles of this Issue 1/2008

BMC Medical Informatics and Decision Making 1/2008 Go to the issue