Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2014

Open Access 01-12-2014 | Research article

Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study

Authors: Bolaji E Egbewale, Martyn Lewis, Julius Sim

Published in: BMC Medical Research Methodology | Issue 1/2014

Login to get access

Abstract

Background

Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data.

Methods

126 hypothetical trial scenarios were evaluated (126 000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario.

Results

Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect.

Conclusions

Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rosenberger WF, Lachin JM: Randomization in Clinical Trials: Theory and Practice. 2002, New York, NY: Wiley-InterscienceCrossRef Rosenberger WF, Lachin JM: Randomization in Clinical Trials: Theory and Practice. 2002, New York, NY: Wiley-InterscienceCrossRef
3.
go back to reference Altman DG, Doré CJ: Baseline comparisons in randomized clinical trials. Stat Med. 1991, 10: 797-799.CrossRefPubMed Altman DG, Doré CJ: Baseline comparisons in randomized clinical trials. Stat Med. 1991, 10: 797-799.CrossRefPubMed
4.
go back to reference Tu D, Shalay K, Pater J: Adjustment of treatment effect for covariates in clinical trials: statistical and regulatory issues. Drug Inf J. 2000, 34: 511-523. Tu D, Shalay K, Pater J: Adjustment of treatment effect for covariates in clinical trials: statistical and regulatory issues. Drug Inf J. 2000, 34: 511-523.
5.
go back to reference Ciolino JD, Martin RH, Zhao W, Jauch EC, Hill MD, Palesch YY: Covariate imbalance and adjustment for logistic regression analysis of clinical trial data. J Biopharm Stat. 2013, 23: 1383-1402. 10.1080/10543406.2013.834912.CrossRefPubMedPubMedCentral Ciolino JD, Martin RH, Zhao W, Jauch EC, Hill MD, Palesch YY: Covariate imbalance and adjustment for logistic regression analysis of clinical trial data. J Biopharm Stat. 2013, 23: 1383-1402. 10.1080/10543406.2013.834912.CrossRefPubMedPubMedCentral
6.
go back to reference Piantadosi S: Clinical Trials: a Methodologic Perspective. 2005, New York: Wiley, 2CrossRef Piantadosi S: Clinical Trials: a Methodologic Perspective. 2005, New York: Wiley, 2CrossRef
7.
go back to reference Kernan WN, Makuch RM: Response. J Clin Epidemiol. 2001, 54: 105-10.1016/S0895-4356(00)00285-7.CrossRef Kernan WN, Makuch RM: Response. J Clin Epidemiol. 2001, 54: 105-10.1016/S0895-4356(00)00285-7.CrossRef
8.
go back to reference Scott NW, McPherson GC, Ramsay CR, Campbell MK: The method of minimization for allocation to clinical trials: a review. Control Clin Trials. 2002, 23: 662-674. 10.1016/S0197-2456(02)00242-8.CrossRefPubMed Scott NW, McPherson GC, Ramsay CR, Campbell MK: The method of minimization for allocation to clinical trials: a review. Control Clin Trials. 2002, 23: 662-674. 10.1016/S0197-2456(02)00242-8.CrossRefPubMed
9.
go back to reference Hagino A, Hamada C, Yoshimura I, Ohashi Y, Sakamoto J, Nakazato H: Statistical comparison of random allocation methods in cancer clinical trials. Control Clin Trials. 2004, 25: 572-584. 10.1016/j.cct.2004.08.004.CrossRefPubMed Hagino A, Hamada C, Yoshimura I, Ohashi Y, Sakamoto J, Nakazato H: Statistical comparison of random allocation methods in cancer clinical trials. Control Clin Trials. 2004, 25: 572-584. 10.1016/j.cct.2004.08.004.CrossRefPubMed
10.
go back to reference Taves DR: Faulty assumptions in Atkinson’s criteria for clinical trial design. J R Stat Soc. 2004, 167: 179-181. 10.1046/j.0964--1998.2003.00741.x.CrossRef Taves DR: Faulty assumptions in Atkinson’s criteria for clinical trial design. J R Stat Soc. 2004, 167: 179-181. 10.1046/j.0964--1998.2003.00741.x.CrossRef
11.
go back to reference Rosenberger WF, Sverdlov O: Handling covariates in the design of clinical trials. Stat Sci. 2008, 23: 404-419. 10.1214/08-STS269.CrossRef Rosenberger WF, Sverdlov O: Handling covariates in the design of clinical trials. Stat Sci. 2008, 23: 404-419. 10.1214/08-STS269.CrossRef
12.
go back to reference Frison L, Pocock SJ: Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design. Stat Med. 1992, 11: 1685-1704. 10.1002/sim.4780111304.CrossRefPubMed Frison L, Pocock SJ: Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design. Stat Med. 1992, 11: 1685-1704. 10.1002/sim.4780111304.CrossRefPubMed
13.
go back to reference Hernández AV, Eijkemans MJ, Steyerberg EW: Randomized controlled trials with time-to-event outcomes: how much does prespecified covariate adjustment increase power?. Ann Epidemiol. 2006, 16: 41-48. 10.1016/j.annepidem.2005.09.007.CrossRefPubMed Hernández AV, Eijkemans MJ, Steyerberg EW: Randomized controlled trials with time-to-event outcomes: how much does prespecified covariate adjustment increase power?. Ann Epidemiol. 2006, 16: 41-48. 10.1016/j.annepidem.2005.09.007.CrossRefPubMed
14.
go back to reference Van Breukelen GJP: ANCOVA versus change from baseline had more power in randomized studies and more bias in nonrandomized studies. J Clin Epidemiol. 2006, 59: 920-925. 10.1016/j.jclinepi.2006.02.007.CrossRefPubMed Van Breukelen GJP: ANCOVA versus change from baseline had more power in randomized studies and more bias in nonrandomized studies. J Clin Epidemiol. 2006, 59: 920-925. 10.1016/j.jclinepi.2006.02.007.CrossRefPubMed
15.
go back to reference Kent DM, Trikalinos TA, Hill MD: Are unadjusted analyses of clinical trials inappropriately biased toward the null?. Stroke. 2009, 40: 672-673. 10.1161/STROKEAHA.108.532051.CrossRefPubMedPubMedCentral Kent DM, Trikalinos TA, Hill MD: Are unadjusted analyses of clinical trials inappropriately biased toward the null?. Stroke. 2009, 40: 672-673. 10.1161/STROKEAHA.108.532051.CrossRefPubMedPubMedCentral
16.
go back to reference Ciolino JD, Martin RH, Zhao W, Hill MD, Jauch EC, Palesch YY: Measuring continuous baseline covariate imbalances in clinical trial data. Stat Methods Med Res. 2011, doi:10.1177/0962280211416038 Ciolino JD, Martin RH, Zhao W, Hill MD, Jauch EC, Palesch YY: Measuring continuous baseline covariate imbalances in clinical trial data. Stat Methods Med Res. 2011, doi:10.1177/0962280211416038
17.
go back to reference Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB: A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. J Clin Epidemiol. 2010, 63: 142-153. 10.1016/j.jclinepi.2009.06.002.CrossRefPubMed Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB: A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. J Clin Epidemiol. 2010, 63: 142-153. 10.1016/j.jclinepi.2009.06.002.CrossRefPubMed
18.
go back to reference Vickers AJ: The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study. BMC Med Res Methodol. 2001, 1: 6-10.1186/1471-2288-1-6.CrossRefPubMedPubMedCentral Vickers AJ: The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study. BMC Med Res Methodol. 2001, 1: 6-10.1186/1471-2288-1-6.CrossRefPubMedPubMedCentral
19.
go back to reference Matthews JNS: Introduction to Randomized Controlled Clinical Trials. 2006, Boca Raton, FL: Chapman & Hall/CRC, 2CrossRef Matthews JNS: Introduction to Randomized Controlled Clinical Trials. 2006, Boca Raton, FL: Chapman & Hall/CRC, 2CrossRef
20.
go back to reference Huitema B: The Analysis of Covariance and Alternatives: Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies. 2011, Hoboken, NJ: Wiley, 2CrossRef Huitema B: The Analysis of Covariance and Alternatives: Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies. 2011, Hoboken, NJ: Wiley, 2CrossRef
21.
go back to reference Christensen E, Neuberger J, Crowe J, Altman DG, Popper H, Portmann B, Doniach D, Ranek L, Tygstrup N, Williams R: Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Final results of an international trial. Gastroenterology. 1985, 89: 1084-1091.CrossRefPubMed Christensen E, Neuberger J, Crowe J, Altman DG, Popper H, Portmann B, Doniach D, Ranek L, Tygstrup N, Williams R: Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Final results of an international trial. Gastroenterology. 1985, 89: 1084-1091.CrossRefPubMed
22.
go back to reference Beach ML, Meier P: Choosing covariates in the analysis of clinical trials. Control Clin Trials. 1989, 10 (4 Suppl): 161S-175S.CrossRefPubMed Beach ML, Meier P: Choosing covariates in the analysis of clinical trials. Control Clin Trials. 1989, 10 (4 Suppl): 161S-175S.CrossRefPubMed
23.
go back to reference Steyerberg EW, Bossuyt PMM, Lee KL: Clinical trials in acute myocardial infarction: should we adjust for baseline characteristics?. Am Heart J. 2000, 139: 745-751.CrossRefPubMed Steyerberg EW, Bossuyt PMM, Lee KL: Clinical trials in acute myocardial infarction: should we adjust for baseline characteristics?. Am Heart J. 2000, 139: 745-751.CrossRefPubMed
24.
25.
26.
go back to reference Overall JE, Magee KN: Directional baseline differences and Type I error probabilities in randomized clinical trials. J Biopharm Stat. 1992, 2: 189-203. 10.1080/10543409208835039.CrossRefPubMed Overall JE, Magee KN: Directional baseline differences and Type I error probabilities in randomized clinical trials. J Biopharm Stat. 1992, 2: 189-203. 10.1080/10543409208835039.CrossRefPubMed
27.
go back to reference Overall JE, Doyle SR: Implications of chance baseline differences in repeated measurement designs. J Biopharm Stat. 1994, 4: 199-216. 10.1080/10543409408835083.CrossRefPubMed Overall JE, Doyle SR: Implications of chance baseline differences in repeated measurement designs. J Biopharm Stat. 1994, 4: 199-216. 10.1080/10543409408835083.CrossRefPubMed
28.
go back to reference Chu R, Walter SD, Guyatt G, Devereaux PJ, Walsh M, Thorlund K, Thabane L: Assessment and implication of prognostic imbalance in randomized controlled trials with a binary outcome – a simulation study. PLoS One. 2012, 7: e36677-10.1371/journal.pone.0036677.CrossRefPubMedPubMedCentral Chu R, Walter SD, Guyatt G, Devereaux PJ, Walsh M, Thorlund K, Thabane L: Assessment and implication of prognostic imbalance in randomized controlled trials with a binary outcome – a simulation study. PLoS One. 2012, 7: e36677-10.1371/journal.pone.0036677.CrossRefPubMedPubMedCentral
29.
go back to reference Pocock SJ, Assmann SE, Enos LE, Kasten LE: Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med. 2002, 21: 2917-2930. 10.1002/sim.1296.CrossRefPubMed Pocock SJ, Assmann SE, Enos LE, Kasten LE: Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med. 2002, 21: 2917-2930. 10.1002/sim.1296.CrossRefPubMed
30.
go back to reference Cohen J: Statistical Power Analysis for the Behavioral Sciences. 1988, Hillsdale NJ: Lawrence Erlbaum, 2 Cohen J: Statistical Power Analysis for the Behavioral Sciences. 1988, Hillsdale NJ: Lawrence Erlbaum, 2
31.
go back to reference Tu YK, Blance A, Clerehugh V, Gilthorpe MS: Statistical power for analyses of changes in randomized controlled trials. J Dent Res. 2005, 84: 283-287. 10.1177/154405910508400315.CrossRefPubMed Tu YK, Blance A, Clerehugh V, Gilthorpe MS: Statistical power for analyses of changes in randomized controlled trials. J Dent Res. 2005, 84: 283-287. 10.1177/154405910508400315.CrossRefPubMed
32.
go back to reference Wei L, Zhang J: Analysis of data with imbalance in the baseline outcome variable for randomized clinical trials. Drug Inf J. 2001, 35: 1201-1214. 10.1177/009286150103500417.CrossRef Wei L, Zhang J: Analysis of data with imbalance in the baseline outcome variable for randomized clinical trials. Drug Inf J. 2001, 35: 1201-1214. 10.1177/009286150103500417.CrossRef
33.
go back to reference Egger MJ, Coleman ML, Ward JR, Reading JC, Williams HJ: Uses and abuses of analysis of covariance in clinical trials. Control Clin Trials. 1985, 6: 12-24. 10.1016/0197-2456(85)90093-5.CrossRefPubMed Egger MJ, Coleman ML, Ward JR, Reading JC, Williams HJ: Uses and abuses of analysis of covariance in clinical trials. Control Clin Trials. 1985, 6: 12-24. 10.1016/0197-2456(85)90093-5.CrossRefPubMed
34.
go back to reference Twisk J, Proper K: Evaluation of the result of a randomized controlled trial: how to define changes between baseline and follow up. J Clin Epidemiol. 2004, 57: 223-228. 10.1016/j.jclinepi.2003.07.009.CrossRefPubMed Twisk J, Proper K: Evaluation of the result of a randomized controlled trial: how to define changes between baseline and follow up. J Clin Epidemiol. 2004, 57: 223-228. 10.1016/j.jclinepi.2003.07.009.CrossRefPubMed
35.
go back to reference Assmann SF, Pocock SJ, Enos LE, Kasten LE: Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet. 2000, 355: 1064-1069. 10.1016/S0140-6736(00)02039-0.CrossRefPubMed Assmann SF, Pocock SJ, Enos LE, Kasten LE: Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet. 2000, 355: 1064-1069. 10.1016/S0140-6736(00)02039-0.CrossRefPubMed
36.
go back to reference Armitage P, Gehan EA: Statistical methods for the identification and use of prognostic factors. Int J Cancer. 1974, 13: 16-36. 10.1002/ijc.2910130104.CrossRefPubMed Armitage P, Gehan EA: Statistical methods for the identification and use of prognostic factors. Int J Cancer. 1974, 13: 16-36. 10.1002/ijc.2910130104.CrossRefPubMed
37.
go back to reference Senn SJ: Covariate imbalance and random allocation in clinical trials. Stat Med. 1989, 8: 467-475. 10.1002/sim.4780080410.CrossRefPubMed Senn SJ: Covariate imbalance and random allocation in clinical trials. Stat Med. 1989, 8: 467-475. 10.1002/sim.4780080410.CrossRefPubMed
38.
go back to reference Senn SJ: Testing for baseline balance in clinical trials. Stat Med. 1994, 13: 1715-1726. 10.1002/sim.4780131703.CrossRefPubMed Senn SJ: Testing for baseline balance in clinical trials. Stat Med. 1994, 13: 1715-1726. 10.1002/sim.4780131703.CrossRefPubMed
39.
go back to reference Raab GM, Day S, Sales J: How to select covariates to include in the analysis of a clinical trial. Control Clin Trials. 2000, 21: 330-342. 10.1016/S0197-2456(00)00061-1.CrossRefPubMed Raab GM, Day S, Sales J: How to select covariates to include in the analysis of a clinical trial. Control Clin Trials. 2000, 21: 330-342. 10.1016/S0197-2456(00)00061-1.CrossRefPubMed
40.
go back to reference DHHS: Guidance for Industry E9: Statistical Principles for Clinical Trials. 1998, Rockville MD: Department of Health and Human Services DHHS: Guidance for Industry E9: Statistical Principles for Clinical Trials. 1998, Rockville MD: Department of Health and Human Services
41.
go back to reference Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jeric K, Laupacis A, Moher D: SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013, 346: e7586-10.1136/bmj.e7586.CrossRefPubMedPubMedCentral Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jeric K, Laupacis A, Moher D: SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013, 346: e7586-10.1136/bmj.e7586.CrossRefPubMedPubMedCentral
42.
go back to reference Ciolino J, Zhao W, Martin R, Palesch Y: Quantifying the cost in power of ignoring continuous covariates imbalances in clinical trial randomization. Contemp Clin Trials. 2011, 32: 250-259. 10.1016/j.cct.2010.11.005.CrossRefPubMed Ciolino J, Zhao W, Martin R, Palesch Y: Quantifying the cost in power of ignoring continuous covariates imbalances in clinical trial randomization. Contemp Clin Trials. 2011, 32: 250-259. 10.1016/j.cct.2010.11.005.CrossRefPubMed
43.
go back to reference Kernan WN, Viscoli CM, Makuch RW, Brass LM, Horwitz RI: Stratified randomization for clinical trials. J Clin Epidemiol. 1999, 52: 19-26. 10.1016/S0895-4356(98)00138-3.CrossRefPubMed Kernan WN, Viscoli CM, Makuch RW, Brass LM, Horwitz RI: Stratified randomization for clinical trials. J Clin Epidemiol. 1999, 52: 19-26. 10.1016/S0895-4356(98)00138-3.CrossRefPubMed
44.
go back to reference Kahan BC, Morris TP: Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. BMJ. 2012, 345: e5840-10.1136/bmj.e5840.CrossRefPubMedPubMedCentral Kahan BC, Morris TP: Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. BMJ. 2012, 345: e5840-10.1136/bmj.e5840.CrossRefPubMedPubMedCentral
45.
go back to reference Overall JE, Ashby B: Baseline corrections in experimental and quasi-experimental clinical trials. Neuropsychopharmacology. 1991, 4: 273-281.PubMed Overall JE, Ashby B: Baseline corrections in experimental and quasi-experimental clinical trials. Neuropsychopharmacology. 1991, 4: 273-281.PubMed
46.
go back to reference Hernández AV, Steyerberg EW, Habbema JD: Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements. J Clin Epidemiol. 2004, 57: 454-460. 10.1016/j.jclinepi.2003.09.014.CrossRefPubMed Hernández AV, Steyerberg EW, Habbema JD: Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements. J Clin Epidemiol. 2004, 57: 454-460. 10.1016/j.jclinepi.2003.09.014.CrossRefPubMed
Metadata
Title
Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study
Authors
Bolaji E Egbewale
Martyn Lewis
Julius Sim
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2014
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-14-49

Other articles of this Issue 1/2014

BMC Medical Research Methodology 1/2014 Go to the issue