Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2013

Open Access 01-12-2013 | Research article

Using imputed pre-treatment cholesterol in a propensity score model to reduce confounding by indication: results from the multi-ethnic study of atherosclerosis

Authors: Neal W Jorgensen, Christopher T Sibley, Robyn L McClelland

Published in: BMC Medical Research Methodology | Issue 1/2013

Login to get access

Abstract

Background

Studying the effects of medications on endpoints in an observational setting is an important yet challenging problem due to confounding by indication. The purpose of this study is to describe methodology for estimating such effects while including prevalent medication users. These techniques are illustrated in models relating statin use to cardiovascular disease (CVD) in a large multi-ethnic cohort study.

Methods

The Multi-Ethnic Study of Atherosclerosis (MESA) includes 6814 participants aged 45-84 years free of CVD. Confounding by indication was mitigated using a two step approach: First, the untreated values of cholesterol were treated as missing data and the values imputed as a function of the observed treated value, dose and type of medication, and participant characteristics. Second, we construct a propensity-score modeling the probability of medication initiation as a function of measured covariates and estimated pre-treatment cholesterol value. The effect of statins on CVD endpoints were assessed using weighted Cox proportional hazard models using inverse probability weights based on the propensity score.

Results

Based on a meta-analysis of randomized controlled trials (RCT) statins are associated with a reduced risk of CVD (relative risk ratio = 0.73, 95% CI: 0.70, 0.77). In an unweighted Cox model adjusting for traditional risk factors we observed little association of statins with CVD (hazard ratio (HR) = 0.97, 95% CI: 0.60, 1.59). Using weights based on a propensity model for statins that did not include the estimated pre-treatment cholesterol we observed a slight protective association (HR = 0.92, 95% CI: 0.54-1.57). Results were similar using a new-user design where prevalent users of statins are excluded (HR = 0.91, 95% CI: 0.45-1.80). Using weights based on a propensity model with estimated pre-treatment cholesterol the effects of statins (HR = 0.74, 95% CI: 0.38, 1.42) were consistent with the RCT literature.

Conclusions

The imputation of pre-treated cholesterol levels for participants on medication at baseline in conjunction with a propensity score yielded estimates that were consistent with the RCT literature. These techniques could be useful in any example where inclusion of participants exposed at baseline in the analysis is desirable, and reasonable estimates of pre-exposure biomarker values can be estimated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robinson JG, Booth B: Statin use and lipid levels in older adults: National Health and Nutrition Examination Survey, 2001 to 2006. J Clin Lipidol. 2010, 4 (6): 483-490. 10.1016/j.jacl.2010.10.002. Nov-Dec Epub 2010 Oct 13CrossRefPubMedPubMedCentral Robinson JG, Booth B: Statin use and lipid levels in older adults: National Health and Nutrition Examination Survey, 2001 to 2006. J Clin Lipidol. 2010, 4 (6): 483-490. 10.1016/j.jacl.2010.10.002. Nov-Dec Epub 2010 Oct 13CrossRefPubMedPubMedCentral
2.
go back to reference Ray WA: Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol. 2003, 158: 915-920. 10.1093/aje/kwg231.CrossRefPubMed Ray WA: Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol. 2003, 158: 915-920. 10.1093/aje/kwg231.CrossRefPubMed
3.
go back to reference Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S: A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006, 59 (5): 437-447.CrossRefPubMed Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S: A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006, 59 (5): 437-447.CrossRefPubMed
4.
go back to reference Rosenbaum PR, Rubin DB: The central role of the propensity score in observational studies for causal effects. Biometrika. 1983, 70: 41-55. 10.1093/biomet/70.1.41.CrossRef Rosenbaum PR, Rubin DB: The central role of the propensity score in observational studies for causal effects. Biometrika. 1983, 70: 41-55. 10.1093/biomet/70.1.41.CrossRef
5.
go back to reference Seeger JD, Walker AM, Williams PL, Saperia GM, Sacks FM: A propensity score-matched cohort study of the effect of statins, mainly fluvastatin, on the occurrence of acute myocardial infarction. Am J Cardiol. 2003, 92: 1447-1451. 10.1016/j.amjcard.2003.08.057.CrossRefPubMed Seeger JD, Walker AM, Williams PL, Saperia GM, Sacks FM: A propensity score-matched cohort study of the effect of statins, mainly fluvastatin, on the occurrence of acute myocardial infarction. Am J Cardiol. 2003, 92: 1447-1451. 10.1016/j.amjcard.2003.08.057.CrossRefPubMed
6.
go back to reference McClelland RL, Kronmal RA, Haessler J, Blumenthal R, Goff DC: Estimation of risk factor associations when the response is influenced by medication use: an imputation approach. Stat Med. 2008, 27: 5039-5053. 10.1002/sim.3341.CrossRefPubMed McClelland RL, Kronmal RA, Haessler J, Blumenthal R, Goff DC: Estimation of risk factor associations when the response is influenced by medication use: an imputation approach. Stat Med. 2008, 27: 5039-5053. 10.1002/sim.3341.CrossRefPubMed
7.
go back to reference Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacobs DR, Kronmal R, Liu K, Clark Nelson J, O'Leary D, Saad MF, Shea S, Szklo M, Tracy RP: Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002, 156: 871-881. 10.1093/aje/kwf11.CrossRefPubMed Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacobs DR, Kronmal R, Liu K, Clark Nelson J, O'Leary D, Saad MF, Shea S, Szklo M, Tracy RP: Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002, 156: 871-881. 10.1093/aje/kwf11.CrossRefPubMed
8.
go back to reference Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18: 499-502.PubMed Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18: 499-502.PubMed
9.
go back to reference Van Buuren S, Boshuizen HC, Knook DL: Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999, 18: 681-694. 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R.CrossRefPubMed Van Buuren S, Boshuizen HC, Knook DL: Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999, 18: 681-694. 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R.CrossRefPubMed
10.
go back to reference Royston P: Multiple imputation of missing values. Stata J. 2004, 4 (3): 227-241. Royston P: Multiple imputation of missing values. Stata J. 2004, 4 (3): 227-241.
11.
go back to reference Royston P: Multiple imputation of missing values: update of ice. Stata J. 2005, 5 (4): 527-536. Royston P: Multiple imputation of missing values: update of ice. Stata J. 2005, 5 (4): 527-536.
12.
go back to reference Rubin DB: Multiple Imputation for Nonresponse in Surveys. 1987, New York: WileyCrossRef Rubin DB: Multiple Imputation for Nonresponse in Surveys. 1987, New York: WileyCrossRef
13.
go back to reference Rubin DB: Inference and missing data (with discussion). Biometrika. 1976, 63: 581-592. 10.1093/biomet/63.3.581.CrossRef Rubin DB: Inference and missing data (with discussion). Biometrika. 1976, 63: 581-592. 10.1093/biomet/63.3.581.CrossRef
14.
go back to reference Schafer JL, Olsen MK: Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivar Behav Res. 1998, 33 (4): 545-571. 10.1207/s15327906mbr3304_5.CrossRef Schafer JL, Olsen MK: Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivar Behav Res. 1998, 33 (4): 545-571. 10.1207/s15327906mbr3304_5.CrossRef
15.
go back to reference Herna´n MA, Robins JM: Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006, 60 (7): 578-586. 10.1136/jech.2004.029496. 10.1136/jech.2004.029496CrossRef Herna´n MA, Robins JM: Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006, 60 (7): 578-586. 10.1136/jech.2004.029496. 10.1136/jech.2004.029496CrossRef
16.
go back to reference Cole SR, Herna´n MA: Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008, 168: 656-664. 10.1093/aje/kwn164. 10.1093/aje/kwn164CrossRefPubMedPubMedCentral Cole SR, Herna´n MA: Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008, 168: 656-664. 10.1093/aje/kwn164. 10.1093/aje/kwn164CrossRefPubMedPubMedCentral
17.
go back to reference Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D: Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value Health. 2010, 13 (2): 273-277. 10.1111/j.1524-4733.2009.00671.x.CrossRefPubMed Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D: Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value Health. 2010, 13 (2): 273-277. 10.1111/j.1524-4733.2009.00671.x.CrossRefPubMed
18.
go back to reference Harder VS, Stuart EA, Anthony J: Propensity score techniques and the assessment of measured covariate balance to test Causal Associations in Psychological Research. Psychol Meth. 2010, 15 (3): 234-249. PMCID NIHMS 192966CrossRef Harder VS, Stuart EA, Anthony J: Propensity score techniques and the assessment of measured covariate balance to test Causal Associations in Psychological Research. Psychol Meth. 2010, 15 (3): 234-249. PMCID NIHMS 192966CrossRef
19.
go back to reference Cheung BM, Lauder IJ, Lau CP, Kumana CR: Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004, 57: 640-651. 10.1111/j.1365-2125.2003.02060.x.CrossRefPubMedPubMedCentral Cheung BM, Lauder IJ, Lau CP, Kumana CR: Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004, 57: 640-651. 10.1111/j.1365-2125.2003.02060.x.CrossRefPubMedPubMedCentral
20.
go back to reference Thavendiranathan P, Bagai A, Brookhart MA, Choudhry NK: Primary prevention of cardiovascular diseases with statin therapy: a meta-analysis of randomized controlled trials. Arch Intern Med. 2006, 166: 2307-2313. 10.1001/archinte.166.21.2307.CrossRefPubMed Thavendiranathan P, Bagai A, Brookhart MA, Choudhry NK: Primary prevention of cardiovascular diseases with statin therapy: a meta-analysis of randomized controlled trials. Arch Intern Med. 2006, 166: 2307-2313. 10.1001/archinte.166.21.2307.CrossRefPubMed
21.
go back to reference Cholesterol Treatment Trialists' (CTT) Collaborators: The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012, 10.1016/S0140- 6736(12)60367-5. Cholesterol Treatment Trialists' (CTT) Collaborators: The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012, 10.1016/S0140- 6736(12)60367-5.
22.
go back to reference Kostis WJ, Cheng JQ, Dobrzynski JM, Cabrera J, Kostis JB: Meta-analysis of statin effects in women versus men. J Am Coll Cardiol. 2012, 59 (6): 572-582. 10.1016/j.jacc.2011.09.067.CrossRefPubMed Kostis WJ, Cheng JQ, Dobrzynski JM, Cabrera J, Kostis JB: Meta-analysis of statin effects in women versus men. J Am Coll Cardiol. 2012, 59 (6): 572-582. 10.1016/j.jacc.2011.09.067.CrossRefPubMed
23.
go back to reference StataCorp: Stata 11 Survival Analysis and Epidemiological Tables Reference Manual. 2009, College Station, TX: Stata Press StataCorp: Stata 11 Survival Analysis and Epidemiological Tables Reference Manual. 2009, College Station, TX: Stata Press
24.
go back to reference Robins JM, Blevins D, Ritter G, Wulfsohn M: G-estimation of the effect of prophylaxis therapy for Pneumocystis carinii pneumonia on the survival of AIDS patients. Epidemiology. 1992, 3: 319-336. 10.1097/00001648-199207000-00007.CrossRefPubMed Robins JM, Blevins D, Ritter G, Wulfsohn M: G-estimation of the effect of prophylaxis therapy for Pneumocystis carinii pneumonia on the survival of AIDS patients. Epidemiology. 1992, 3: 319-336. 10.1097/00001648-199207000-00007.CrossRefPubMed
25.
go back to reference Witteman JC, D’Agostino RB, Stijnen T, Kannel W, Cobb JC, de Ridder MA: G-estimation of causal effects: isolated systolic hypertension and cardiovascular death in the Framingham Heart Study. Am J Epidemiol. 1998, 148 (4): 390-401. 10.1093/oxfordjournals.aje.a009658.CrossRefPubMed Witteman JC, D’Agostino RB, Stijnen T, Kannel W, Cobb JC, de Ridder MA: G-estimation of causal effects: isolated systolic hypertension and cardiovascular death in the Framingham Heart Study. Am J Epidemiol. 1998, 148 (4): 390-401. 10.1093/oxfordjournals.aje.a009658.CrossRefPubMed
Metadata
Title
Using imputed pre-treatment cholesterol in a propensity score model to reduce confounding by indication: results from the multi-ethnic study of atherosclerosis
Authors
Neal W Jorgensen
Christopher T Sibley
Robyn L McClelland
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2013
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-13-81

Other articles of this Issue 1/2013

BMC Medical Research Methodology 1/2013 Go to the issue