Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2013

Open Access 01-12-2013 | Research article

Concordance between administrative health data and medical records for diabetes status in coronary heart disease patients: a retrospective linked data study

Authors: Lee Nedkoff, Matthew Knuiman, Joseph Hung, Frank M Sanfilippo, Judith M Katzenellenbogen, Tom G Briffa

Published in: BMC Medical Research Methodology | Issue 1/2013

Login to get access

Abstract

Background

Administrative data are a valuable source of estimates of diabetes prevalence for groups such as coronary heart disease (CHD) patients. The primary aim of this study was to measure concordance between medical records and linked administrative health data for recording diabetes in CHD patients, and to assess temporal differences in concordance. Secondary aims were to determine the optimal lookback period for identifying diabetes in this patient group, whether concordance differed for Indigenous people, and to identify predictors of false positives and negatives in administrative data.

Methods

A population representative sample of 3943 CHD patients hospitalized in Western Australia in 1998 and 2002–04 were selected, and designated according to the International Classification of Diseases (ICD) version in use at the time (ICD-9 and ICD-10 respectively). Crude prevalence and concordance were compared for the two samples. Concordance measures were estimated from administrative data comparing diabetes status recorded on the selected CHD admission (‘index admission’) and on any hospitalization in the previous 1, 2, 5, 10 or 15 years, against hospital medical records. Potential modifiers of agreement were determined using chi-square tests and multivariable logistic regression models.

Results

Identification of diabetes on the index CHD admission was underestimated more in the ICD-10 than ICD-9 sample (sensitivity 81.5% versus 91.1%, underestimation 15.1% versus 4.4% respectively). Sensitivity increased to 89.6% in the ICD-10 period using at least 10 years of hospitalization history. Sensitivity was higher and specificity lower in Indigenous patients, and followed a similar pattern of improving concordance with increasing lookback period. Characteristics associated with false negatives for diabetes on the index CHD hospital admission were elective admission, in-hospital death, principal diagnosis, and in the ICD-10 period only, fewer recorded comorbidities.

Conclusions

The accuracy of identifying diabetes status in CHD patients is improved in linked administrative health data by using at least 10 years of hospitalization history. Use of this method would reduce bias when measuring temporal trends in diabetes prevalence in this patient group. Concordance measures are as reliable in Indigenous as non-Indigenous patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference National Coding Centre: Australian coding standards for ICD-9-CM: volume 4 of the Australian version of the International Classification of Diseases, 9th revision, clinical modification. 1995, University of Sydney, NSW: National Coding Centre National Coding Centre: Australian coding standards for ICD-9-CM: volume 4 of the Australian version of the International Classification of Diseases, 9th revision, clinical modification. 1995, University of Sydney, NSW: National Coding Centre
2.
go back to reference Tong B, Stevenson C, Australian Institute of Health and Welfare: Comorbidity of cardiovascular disease, diabetes and chronic kidney disease in Australia. Cardiovascular disease series no. 28. Cat. no. CVD 37. 2007, Canberra: AIHW Tong B, Stevenson C, Australian Institute of Health and Welfare: Comorbidity of cardiovascular disease, diabetes and chronic kidney disease in Australia. Cardiovascular disease series no. 28. Cat. no. CVD 37. 2007, Canberra: AIHW
3.
go back to reference Schramm TK, Gislason GH, Køber L, Rasmussen S, Rasmussen JN, Abildstrøm S, Hansen ML, Folke F, Buch P, Madsen M, Vaag A, Torp-Pedersen C: Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation. 2008, 117: 1945-1954.CrossRefPubMed Schramm TK, Gislason GH, Køber L, Rasmussen S, Rasmussen JN, Abildstrøm S, Hansen ML, Folke F, Buch P, Madsen M, Vaag A, Torp-Pedersen C: Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation. 2008, 117: 1945-1954.CrossRefPubMed
4.
go back to reference Nedkoff L, Briffa TG, Knuiman M, Hung J, Norman PE, Hankey GJ, Thompson PL, Geelhoed E, Sanfilippo FM, Hickling S, Bremner A, Hobbs M: Temporal trends in the incidence and recurrence of hospitalised atherothrombotic disease in an Australian population, 2000–07:data linkage study. Heart. 2012, 98: 1449-1456.CrossRefPubMed Nedkoff L, Briffa TG, Knuiman M, Hung J, Norman PE, Hankey GJ, Thompson PL, Geelhoed E, Sanfilippo FM, Hickling S, Bremner A, Hobbs M: Temporal trends in the incidence and recurrence of hospitalised atherothrombotic disease in an Australian population, 2000–07:data linkage study. Heart. 2012, 98: 1449-1456.CrossRefPubMed
5.
go back to reference Humphries KH, Rankin JM, Carere RG, Buller CE, Kiely FM, Spinelli JJ: Co-morbidity data in outcomes research: are clinical data derived from administrative databases a reliable alternative to chart review?. J Clin Epidemiol. 2000, 53: 343-349.CrossRefPubMed Humphries KH, Rankin JM, Carere RG, Buller CE, Kiely FM, Spinelli JJ: Co-morbidity data in outcomes research: are clinical data derived from administrative databases a reliable alternative to chart review?. J Clin Epidemiol. 2000, 53: 343-349.CrossRefPubMed
6.
go back to reference Powell H, Lim LL-Y, Heller RF: Accuracy of administrative data to assess comorbidity in patients with heart disease: an Australian perspective. J Clin Epidemiol. 2001, 54: 687-693.CrossRefPubMed Powell H, Lim LL-Y, Heller RF: Accuracy of administrative data to assess comorbidity in patients with heart disease: an Australian perspective. J Clin Epidemiol. 2001, 54: 687-693.CrossRefPubMed
7.
go back to reference Phillips G, Australian Institute of Health and Welfare: The impact of ICD coding standard changes for diabetes hospital morbidity data. AIHW Cat. No. CVD 26. 2003, Canberra: AIHW Phillips G, Australian Institute of Health and Welfare: The impact of ICD coding standard changes for diabetes hospital morbidity data. AIHW Cat. No. CVD 26. 2003, Canberra: AIHW
8.
go back to reference O’Brien K, Thow AM, Ofei S, Australian Institute of Health and Welfare: Diabetes hospitalizations in Australia, 2003–04. Bulletin no. 47. Cat. No. 84. 2006, Canberra: AIHW O’Brien K, Thow AM, Ofei S, Australian Institute of Health and Welfare: Diabetes hospitalizations in Australia, 2003–04. Bulletin no. 47. Cat. No. 84. 2006, Canberra: AIHW
9.
go back to reference McDermott RA, Li M, Campbell SK: Incidence of type 2 diabetes in two Indigenous Australian populations: a 6-year follow-up study. Med J Aust. 2010, 192: 562-565.PubMed McDermott RA, Li M, Campbell SK: Incidence of type 2 diabetes in two Indigenous Australian populations: a 6-year follow-up study. Med J Aust. 2010, 192: 562-565.PubMed
10.
go back to reference McDermott RA, McCulloch BG, Campbell SK, Young DM: Diabetes in the Torres Strait Islands of Australia: better clinical systems but significant increase in weight and other risk conditions among adults, 1999–2005. Med J Aust. 2007, 186: 505-508.PubMed McDermott RA, McCulloch BG, Campbell SK, Young DM: Diabetes in the Torres Strait Islands of Australia: better clinical systems but significant increase in weight and other risk conditions among adults, 1999–2005. Med J Aust. 2007, 186: 505-508.PubMed
11.
go back to reference Clark A, Preen DB, Ng JQ, Semmens JB, Holman CDJ: Is Western Australia representative of other Australian states and territories in terms of key socio-demographic and health economic indicators?. Aust Health Rev. 2010, 34: 210-215.CrossRefPubMed Clark A, Preen DB, Ng JQ, Semmens JB, Holman CDJ: Is Western Australia representative of other Australian states and territories in terms of key socio-demographic and health economic indicators?. Aust Health Rev. 2010, 34: 210-215.CrossRefPubMed
15.
go back to reference Holman CDJ, Bass AJ, Rosman DL, Smith MB, Semmens JB, Glasson EJ, Brook EL, Trutwein B, Rouse IL, Watson CR, Stanley FJ: A decade of data linkage in Western Australia: strategic design, applications and benefits of the WA data linkage system. Aust Health Rev. 2008, 32: 766-777.CrossRefPubMed Holman CDJ, Bass AJ, Rosman DL, Smith MB, Semmens JB, Glasson EJ, Brook EL, Trutwein B, Rouse IL, Watson CR, Stanley FJ: A decade of data linkage in Western Australia: strategic design, applications and benefits of the WA data linkage system. Aust Health Rev. 2008, 32: 766-777.CrossRefPubMed
16.
go back to reference Holman CDJ, Bass AJ, Rouse IL, Hobbs MST: Population-based linkage of health records in Western Australia: development of a health services research linked database. Aust N Z J Public Health. 1999, 23: 453-459.CrossRefPubMed Holman CDJ, Bass AJ, Rouse IL, Hobbs MST: Population-based linkage of health records in Western Australia: development of a health services research linked database. Aust N Z J Public Health. 1999, 23: 453-459.CrossRefPubMed
17.
go back to reference Sanfilippo FM, Hobbs MST, Knuiman MW, Ridout SC, Bradshaw PJ, Finn JC, Rankin JM, Sprivulis PC, Hung J: Can we monitor heart attack in the troponin era: evidence from a population-based cohort study. BMC Cardiovasc Disord. 2011, 11: 35-CrossRefPubMedPubMedCentral Sanfilippo FM, Hobbs MST, Knuiman MW, Ridout SC, Bradshaw PJ, Finn JC, Rankin JM, Sprivulis PC, Hung J: Can we monitor heart attack in the troponin era: evidence from a population-based cohort study. BMC Cardiovasc Disord. 2011, 11: 35-CrossRefPubMedPubMedCentral
18.
go back to reference Jamrozik K, Dobson A, Hobbs M, McElduff P, Ring I, D’Este K, Crome M: Monitoring the incidence of cardiovascular disease in Australia. Report No. CVD Series 17. 2001, AIHW: Canberra Jamrozik K, Dobson A, Hobbs M, McElduff P, Ring I, D’Este K, Crome M: Monitoring the incidence of cardiovascular disease in Australia. Report No. CVD Series 17. 2001, AIHW: Canberra
19.
go back to reference Briffa TG, Sanfilippo FM, Hobbs MST, Ridout SC, Katzenellenbogen JM, Thompson PL, Thompson SC: Under-ascertainment of Aboriginality in records of cardiovascular disease in hospital morbidity and mortality data in Western Australia: a record linkage study. BMC Med Res Methodol. 2010, 10: 111-CrossRefPubMedPubMedCentral Briffa TG, Sanfilippo FM, Hobbs MST, Ridout SC, Katzenellenbogen JM, Thompson PL, Thompson SC: Under-ascertainment of Aboriginality in records of cardiovascular disease in hospital morbidity and mortality data in Western Australia: a record linkage study. BMC Med Res Methodol. 2010, 10: 111-CrossRefPubMedPubMedCentral
20.
21.
go back to reference Chen G, Khan N, Walker R, Quan H: Validating ICD coding algorithms for diabetes mellitus from administrative data. Diabetes Res Clin Pract. 2010, 89: 189-195.CrossRefPubMed Chen G, Khan N, Walker R, Quan H: Validating ICD coding algorithms for diabetes mellitus from administrative data. Diabetes Res Clin Pract. 2010, 89: 189-195.CrossRefPubMed
22.
go back to reference Preen DB, Holman CDJ, Lawrence DM, Baynham NJ, Semmens JB: Hospital chart review provided more accurate comorbidity information than data from a general practitioner survey or an administrative database. J Clin Epidemiol. 2004, 57: 1295-1304.CrossRefPubMed Preen DB, Holman CDJ, Lawrence DM, Baynham NJ, Semmens JB: Hospital chart review provided more accurate comorbidity information than data from a general practitioner survey or an administrative database. J Clin Epidemiol. 2004, 57: 1295-1304.CrossRefPubMed
23.
go back to reference Quan H, Parsons GA, Ghali WA: Validity of information on comorbidity derived from ICD-9-CCM administrative data. Med Care. 2002, 40: 675-685.CrossRefPubMed Quan H, Parsons GA, Ghali WA: Validity of information on comorbidity derived from ICD-9-CCM administrative data. Med Care. 2002, 40: 675-685.CrossRefPubMed
24.
go back to reference Mnatzaganian G, Ryan P, Norman PE, Hiller JE: Accuracy of hospital morbidity data and the performance of comorbidity scores as predictors of mortality. J Clin Epidemiol. 2012, 65: 107-115.CrossRefPubMed Mnatzaganian G, Ryan P, Norman PE, Hiller JE: Accuracy of hospital morbidity data and the performance of comorbidity scores as predictors of mortality. J Clin Epidemiol. 2012, 65: 107-115.CrossRefPubMed
26.
go back to reference Katzenellenbogen JM, Sanfilippo FM, Hobbs MST, Briffa TG, Ridout SC, Knuiman M, Dimer L, Taylor KP, Thompson PL, Thompson SC: Aboriginal to non-Aboriginal differentials in 2-year outcomes following non-fatal first-ever acute MI persist after adjustment for comorbidity. Eur J Prev Cardiol. 2012, 19: 983-990.CrossRefPubMed Katzenellenbogen JM, Sanfilippo FM, Hobbs MST, Briffa TG, Ridout SC, Knuiman M, Dimer L, Taylor KP, Thompson PL, Thompson SC: Aboriginal to non-Aboriginal differentials in 2-year outcomes following non-fatal first-ever acute MI persist after adjustment for comorbidity. Eur J Prev Cardiol. 2012, 19: 983-990.CrossRefPubMed
27.
go back to reference Brameld KJ, Ward A, Gavin AL, Holman CDJ: Health outcomes in people with type 2 diabetes: a record linkage study. Aust Fam Physician. 2002, 31: 775-782.PubMed Brameld KJ, Ward A, Gavin AL, Holman CDJ: Health outcomes in people with type 2 diabetes: a record linkage study. Aust Fam Physician. 2002, 31: 775-782.PubMed
28.
go back to reference Saydah SH, Geiss LS, Tierney E, Benjamin SM, Engelgau M, Brancati F: Review of the performance of methods to identify diabetes cases among vital statistics, administrative, and survey data. Ann Epidemiol. 2004, 14: 507-516.CrossRefPubMed Saydah SH, Geiss LS, Tierney E, Benjamin SM, Engelgau M, Brancati F: Review of the performance of methods to identify diabetes cases among vital statistics, administrative, and survey data. Ann Epidemiol. 2004, 14: 507-516.CrossRefPubMed
29.
go back to reference Hux JE, Ivis F, Flintoft V, Bica A: Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diab Care. 2002, 25: 512-622.CrossRef Hux JE, Ivis F, Flintoft V, Bica A: Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diab Care. 2002, 25: 512-622.CrossRef
30.
go back to reference Librero J, Peiró S, Ordiñana R: Chronic comorbidity and outcomes of hospital care: length of stay, mortality and readmission at 30 and 365 days. J Clin Epidemiol. 1999, 52: 171-179.CrossRefPubMed Librero J, Peiró S, Ordiñana R: Chronic comorbidity and outcomes of hospital care: length of stay, mortality and readmission at 30 and 365 days. J Clin Epidemiol. 1999, 52: 171-179.CrossRefPubMed
31.
go back to reference Chong WF, Ding YY, Heng BH: A comparison of comorbidities obtained from hospital administrative data and medical charts in older patients with pneumonia. BMC Health Serv Res. 2011, 11: 105-CrossRefPubMedPubMedCentral Chong WF, Ding YY, Heng BH: A comparison of comorbidities obtained from hospital administrative data and medical charts in older patients with pneumonia. BMC Health Serv Res. 2011, 11: 105-CrossRefPubMedPubMedCentral
32.
go back to reference Glynn RJ, Monane M, Gurwitz JH, Choodnovskiy I, Avorn J: Agreement between drug treatment data and a discharge diagnosis of diabetes mellitus in the elderly. Am J Epidemiol. 1999, 149: 541-549.CrossRefPubMed Glynn RJ, Monane M, Gurwitz JH, Choodnovskiy I, Avorn J: Agreement between drug treatment data and a discharge diagnosis of diabetes mellitus in the elderly. Am J Epidemiol. 1999, 149: 541-549.CrossRefPubMed
33.
go back to reference Mannsverk J, Wilsgaard T, Njølstad I, Hopstock L, Løchen M-L, Mathiesen E-B, Thelle DS, Rasmussen K, Bønaa KH: Age and gender differences in incidence and case fatality trends for myocardial infarction: a 30 year followup. The Trømso Study. Eur J Prev Cardiol. 2012, 19: 927-934.CrossRefPubMed Mannsverk J, Wilsgaard T, Njølstad I, Hopstock L, Løchen M-L, Mathiesen E-B, Thelle DS, Rasmussen K, Bønaa KH: Age and gender differences in incidence and case fatality trends for myocardial infarction: a 30 year followup. The Trømso Study. Eur J Prev Cardiol. 2012, 19: 927-934.CrossRefPubMed
Metadata
Title
Concordance between administrative health data and medical records for diabetes status in coronary heart disease patients: a retrospective linked data study
Authors
Lee Nedkoff
Matthew Knuiman
Joseph Hung
Frank M Sanfilippo
Judith M Katzenellenbogen
Tom G Briffa
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2013
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-13-121

Other articles of this Issue 1/2013

BMC Medical Research Methodology 1/2013 Go to the issue