Skip to main content
Top
Published in: BMC Immunology 1/2009

Open Access 01-12-2009 | Research article

Characterization of rag 1 mutant zebrafish leukocytes

Authors: Lora Petrie-Hanson, Claudia Hohn, Larry Hanson

Published in: BMC Immunology | Issue 1/2009

Login to get access

Abstract

Background

Zebrafish may prove to be one of the best vertebrate models for innate immunology. These fish have sophisticated immune components, yet rely heavily on innate immune mechanisms. Thus, the development and characterization of mutant and/or knock out zebrafish are critical to help define immune cell and immune gene functions in the zebrafish model. The use of Severe Combined Immunodeficient (SCID) and recombination activation gene 1 and 2 mutant mice has allowed the investigation of the specific contribution of innate defenses in many infectious diseases. Similar zebrafish mutants are now being used in biomedical and fish immunology related research. This report describes the leukocyte populations in a unique model, recombination activation gene 1-/- mutant zebrafish (rag 1 mutants).

Results

Differential counts of peripheral blood leukocytes (PBL) showed that rag 1 mutants had significantly decreased lymphocyte-like cell populations (34.7%) compared to wild-types (70.5%), and significantly increased granulocyte populations (52.7%) compared to wild-types (17.6%). Monocyte/macrophage populations were similar between mutants and wild-types, 12.6% and 11.3%, respectively. Differential leukocyte counts of rag 1 mutant kidney hematopoietic tissue showed a significantly reduced lymphocyte-like cell population (8%), a significantly increased myelomonocyte population (57%), 34.8% precursor cells, and 0.2% thrombocytes, while wild-type hematopoietic kidney tissue showed 29.4% lymphocytes/lymphocyte-like cells, 36.4% myelomonocytes, 33.8% precursors and 0.5% thrombocytes.
Flow cytometric analyses of kidney hematopoietic tissue revealed three leukocyte populations. Population A was monocytes and granulocytes and comprised 34.7% of the gated cells in rag 1 mutants and 17.6% in wild-types. Population B consisted of hematopoietic precursors, and comprised 50% of the gated cells for rag 1 mutants and 53% for wild-types. Population C consisted of lymphocytes and lymphocyte-like cells and comprised 7% of the gated cells in the rag 1 mutants and 26% in the wild-types.
Reverse transcriptase polymerase chain reaction (RT-PCR) assays demonstrated rag 1 mutant kidney hematopoietic tissue expressed mRNA encoding Non-specific Cytotoxic cell receptor protein-1 (NCCRP-1) and Natural Killer (NK) cell lysin but lacked T cell receptor (TCR) and immunoglobulin (Ig) transcript expression, while wild-type kidney hematopoietic tissue expressed NCCRP-1, NK lysin, TCR and Ig transcript expression.

Conclusion

Our study demonstrates that in comparison to wild-type zebrafish, rag 1 mutants have a significantly reduced lymphocyte-like cell population that likely includes Non-specific cytotoxic cells (NCC) and NK cells (and lacks functional T and B lymphocytes), a similar macrophage/monocyte population, and a significantly increased neutrophil population. These zebrafish have comparable leukocyte populations to SCID and rag 1 and/or 2 mutant mice, that possess macrophages, natural killer cells and neutrophils, but lack T and B lymphocytes. Rag 1 mutant zebrafish will provide the platform for remarkable investigations in fish and innate immunology, as rag 1 and 2 mutant mice did for mammalian immunology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Traver D, Herbomel P, Patton E, Murphey R, Yoder J, Litman G, Catic A, Amemiya C, Zon L, Trede N: The zebrafish as a model organism to study development of the immune system. Advances in Immunology. 2003, 81: 253-330.PubMed Traver D, Herbomel P, Patton E, Murphey R, Yoder J, Litman G, Catic A, Amemiya C, Zon L, Trede N: The zebrafish as a model organism to study development of the immune system. Advances in Immunology. 2003, 81: 253-330.PubMed
3.
go back to reference Trede NS, Langenau DM, Traver D, Look AT, Zon LI: The use of zebrafish to understand immunology. Immunity. 2004, 20: 367-379. 10.1016/S1074-7613(04)00084-6.CrossRefPubMed Trede NS, Langenau DM, Traver D, Look AT, Zon LI: The use of zebrafish to understand immunology. Immunity. 2004, 20: 367-379. 10.1016/S1074-7613(04)00084-6.CrossRefPubMed
4.
go back to reference Dorschkind K: The severe combined immunodeficient (SCID) mouse. Immunological disorders in mice. Edited by: Rihova B, VVetvicka V. 1990, Boca Raton, Fla.: CRC Press, Inc, 1-21. Dorschkind K: The severe combined immunodeficient (SCID) mouse. Immunological disorders in mice. Edited by: Rihova B, VVetvicka V. 1990, Boca Raton, Fla.: CRC Press, Inc, 1-21.
5.
go back to reference Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992, 68: 869-77. 10.1016/0092-8674(92)90030-G.CrossRefPubMed Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE: RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992, 68: 869-77. 10.1016/0092-8674(92)90030-G.CrossRefPubMed
6.
go back to reference Wienholds E, Merker SS, Walderich B, Plasterk RHA: Target-Selected inactivation of the Zebrafish rag1 Gene. Science. 2002, 297: 99-101. 10.1126/science.1071762.CrossRefPubMed Wienholds E, Merker SS, Walderich B, Plasterk RHA: Target-Selected inactivation of the Zebrafish rag1 Gene. Science. 2002, 297: 99-101. 10.1126/science.1071762.CrossRefPubMed
7.
go back to reference Schatz D, Oettinger M, Baltimore D: The V(D)J recombination activating gene, RAG-1. Cell. 1989, 59: 1035-48. 10.1016/0092-8674(89)90760-5.CrossRefPubMed Schatz D, Oettinger M, Baltimore D: The V(D)J recombination activating gene, RAG-1. Cell. 1989, 59: 1035-48. 10.1016/0092-8674(89)90760-5.CrossRefPubMed
8.
go back to reference Haire R, Rast J, Litman R, Litman G: Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor a in zebrafish. Immunogenetics. 2000, 51: 915-923. 10.1007/s002510000229.CrossRefPubMed Haire R, Rast J, Litman R, Litman G: Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor a in zebrafish. Immunogenetics. 2000, 51: 915-923. 10.1007/s002510000229.CrossRefPubMed
9.
go back to reference Murtha J, Qi W, Keller E: Hematological and serum biochemical values for zebrafish (Danio rerio). Comparative Medicine. 2003, 52: 37-41. Murtha J, Qi W, Keller E: Hematological and serum biochemical values for zebrafish (Danio rerio). Comparative Medicine. 2003, 52: 37-41.
10.
go back to reference Traver D, Paw B, Poss K, Penberthy W, Lin S, Zon L: Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunology. 2003, 4: 1238-1246. 10.1038/ni1007.CrossRefPubMed Traver D, Paw B, Poss K, Penberthy W, Lin S, Zon L: Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunology. 2003, 4: 1238-1246. 10.1038/ni1007.CrossRefPubMed
11.
go back to reference Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, Langenau DM, Delahaye-Brown A, Zon LI, Fleming MD, et al.: Myelopoiesis in the zebrafish, Danio rerio. Blood. 2001, 98: 643-651. 10.1182/blood.V98.3.643.CrossRefPubMed Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, Langenau DM, Delahaye-Brown A, Zon LI, Fleming MD, et al.: Myelopoiesis in the zebrafish, Danio rerio. Blood. 2001, 98: 643-651. 10.1182/blood.V98.3.643.CrossRefPubMed
12.
go back to reference Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE: Morphological and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood. 2001, 96: 3087-3096. 10.1182/blood.V98.10.3087.CrossRef Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE: Morphological and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood. 2001, 96: 3087-3096. 10.1182/blood.V98.10.3087.CrossRef
13.
go back to reference Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D: Identification and characterization of zebrafish thrombocytes. British Journal of Haematology. 1999, 107: 731-738. 10.1046/j.1365-2141.1999.01763.x.CrossRefPubMed Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D: Identification and characterization of zebrafish thrombocytes. British Journal of Haematology. 1999, 107: 731-738. 10.1046/j.1365-2141.1999.01763.x.CrossRefPubMed
15.
go back to reference Traver D, Winzeler A, Stern H, Mayhall E, Langenau D, Kutok J, Look A, Zon L: Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood. 2004, 104: 1298-1305. 10.1182/blood-2004-01-0100.CrossRefPubMed Traver D, Winzeler A, Stern H, Mayhall E, Langenau D, Kutok J, Look A, Zon L: Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood. 2004, 104: 1298-1305. 10.1182/blood-2004-01-0100.CrossRefPubMed
16.
go back to reference Schorpp M, Bialecki M, Diekhoff D, Walderich B, Odenthal J, Maischein H, Zapata A, Consortium TS, Group FS, Boehm T: Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J Immunol. 2006, 177 (4): 2463-2476.CrossRefPubMed Schorpp M, Bialecki M, Diekhoff D, Walderich B, Odenthal J, Maischein H, Zapata A, Consortium TS, Group FS, Boehm T: Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J Immunol. 2006, 177 (4): 2463-2476.CrossRefPubMed
17.
go back to reference Morgan J, Pottinger T, Rippon P: Evaluation of flow cytometry as a method for quantification of circulating blood cell populations in salmonid fish. Journal of Fish Biology. 1993, 42: 131-141. 10.1111/j.1095-8649.1993.tb00311.x.CrossRef Morgan J, Pottinger T, Rippon P: Evaluation of flow cytometry as a method for quantification of circulating blood cell populations in salmonid fish. Journal of Fish Biology. 1993, 42: 131-141. 10.1111/j.1095-8649.1993.tb00311.x.CrossRef
18.
go back to reference Inoue T, Moritomo T, Tamura Y, Mamiya S, Fujino H, Nakanishi T: A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish & Shellfish Immunology. 2002, 13: 379-390. 10.1006/fsim.2002.0413.CrossRef Inoue T, Moritomo T, Tamura Y, Mamiya S, Fujino H, Nakanishi T: A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish & Shellfish Immunology. 2002, 13: 379-390. 10.1006/fsim.2002.0413.CrossRef
19.
go back to reference Uchiyama R, Moritomo T, Kai O, Uwatoko K, Inoue Y, Nakanishi T: Counting absolute number of lymphocytes in quail blood by flow cytometry. Journal of Veterinary Medical Science. 2005, 67: 441-444. 10.1292/jvms.67.441.CrossRefPubMed Uchiyama R, Moritomo T, Kai O, Uwatoko K, Inoue Y, Nakanishi T: Counting absolute number of lymphocytes in quail blood by flow cytometry. Journal of Veterinary Medical Science. 2005, 67: 441-444. 10.1292/jvms.67.441.CrossRefPubMed
20.
go back to reference Su F, Juarez M, Cooke C, LaPointe L, Shavit J, Yamaoka J, Lyons S: Differential Regulation of Primitive Myelopoiesis in the Zebrafish by Spi-1 = Pu.1 and C = ebp1. Zebrafish. 2007, 4: 1-13. 10.1089/zeb.2007.0505.CrossRef Su F, Juarez M, Cooke C, LaPointe L, Shavit J, Yamaoka J, Lyons S: Differential Regulation of Primitive Myelopoiesis in the Zebrafish by Spi-1 = Pu.1 and C = ebp1. Zebrafish. 2007, 4: 1-13. 10.1089/zeb.2007.0505.CrossRef
21.
go back to reference Crowhurst M, Layton J, Lieschke G: Developmental biology of zebrafish myeloid cells. Int J Dev Biol. 2002, 46: 483-492.PubMed Crowhurst M, Layton J, Lieschke G: Developmental biology of zebrafish myeloid cells. Int J Dev Biol. 2002, 46: 483-492.PubMed
22.
go back to reference Yoder JA: Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol C Toxicol Pharmacol. 2004, 138 (3): 271-280. 10.1016/j.cca.2004.03.008.CrossRefPubMed Yoder JA: Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol C Toxicol Pharmacol. 2004, 138 (3): 271-280. 10.1016/j.cca.2004.03.008.CrossRefPubMed
23.
go back to reference Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L: Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infection and Immunity. 2006, 74: 6108-6117. 10.1128/IAI.00887-06.PubMedCentralCrossRefPubMed Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L: Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infection and Immunity. 2006, 74: 6108-6117. 10.1128/IAI.00887-06.PubMedCentralCrossRefPubMed
24.
go back to reference O'Leary J, Mahmoud G, Drayton D, Andrian Uv: T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunology. 2006, 7: 507-516. 10.1038/ni1332.CrossRefPubMed O'Leary J, Mahmoud G, Drayton D, Andrian Uv: T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunology. 2006, 7: 507-516. 10.1038/ni1332.CrossRefPubMed
25.
go back to reference Feng B, Bulchand S, Yaksi E, Friedrich RW, Jesuthasan S: The recombination activating gene I (RagI) is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection. BMC Neuroscience. 2005, 6: 46-57. 10.1186/1471-2202-6-46.PubMedCentralCrossRefPubMed Feng B, Bulchand S, Yaksi E, Friedrich RW, Jesuthasan S: The recombination activating gene I (RagI) is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection. BMC Neuroscience. 2005, 6: 46-57. 10.1186/1471-2202-6-46.PubMedCentralCrossRefPubMed
26.
go back to reference Hohn CM, Petrie-Hanson L: Low-cost aquatic lab animal holding system. Zebrafish. 2007, 4: 117-122. 10.1089/zeb.2006.0501.CrossRefPubMed Hohn CM, Petrie-Hanson L: Low-cost aquatic lab animal holding system. Zebrafish. 2007, 4: 117-122. 10.1089/zeb.2006.0501.CrossRefPubMed
27.
go back to reference Tübingen 2000 Screen Consortium: Max-Planck-Institut fur Entwicklungsbiologie, Tubingen, Bebber van F, Busch-Nentwich E, Dahm R, Frohnhofer H-G, Geiger H, Gilmour D, Holley S, Hooge J, Julich D, Knaut H, Maderspacher F, Maischein H-M, Neumann C, Nicolson T, Nusslein-Volhard C, Roehl H, Schonberger U, Seiler C, Sollner C, Sonawane M, Wehner A, Weiler C, Exelis Deutschland GmbH, Tubingen, Erker P, Habeck H, Hagner U, Hennen Kaps C, Kirchner A, Koblizek T, Langheinrich U, Loeschke C, Metzger C, Nordin R, Odenthal J, Pezzuti A, Schlombs K, deSantana-Stamm J, Trowe T, Vacun G, Walderich B, Walker A, Weiler C: Tübingen 2000 Screen Consortium: Max-Planck-Institut fur Entwicklungsbiologie, Tubingen, Bebber van F, Busch-Nentwich E, Dahm R, Frohnhofer H-G, Geiger H, Gilmour D, Holley S, Hooge J, Julich D, Knaut H, Maderspacher F, Maischein H-M, Neumann C, Nicolson T, Nusslein-Volhard C, Roehl H, Schonberger U, Seiler C, Sollner C, Sonawane M, Wehner A, Weiler C, Exelis Deutschland GmbH, Tubingen, Erker P, Habeck H, Hagner U, Hennen Kaps C, Kirchner A, Koblizek T, Langheinrich U, Loeschke C, Metzger C, Nordin R, Odenthal J, Pezzuti A, Schlombs K, deSantana-Stamm J, Trowe T, Vacun G, Walderich B, Walker A, Weiler C:
28.
go back to reference RJ Roberts, (ed): Fish Pathology. 2001, London: W.B. Saunders, Harcourt Publishers Ltd, Third RJ Roberts, (ed): Fish Pathology. 2001, London: W.B. Saunders, Harcourt Publishers Ltd, Third
29.
go back to reference MK Stoskopf: Fish Medicine. 1993, Philadelphia: W.B. Saunders Company MK Stoskopf: Fish Medicine. 1993, Philadelphia: W.B. Saunders Company
Metadata
Title
Characterization of rag 1 mutant zebrafish leukocytes
Authors
Lora Petrie-Hanson
Claudia Hohn
Larry Hanson
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2009
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-10-8

Other articles of this Issue 1/2009

BMC Immunology 1/2009 Go to the issue