Skip to main content
Top
Published in: BMC Immunology 1/2009

Open Access 01-12-2009 | Research article

A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice

Authors: Boris Shor, Druie Cavender, Crafford Harris

Published in: BMC Immunology | Issue 1/2009

Login to get access

Abstract

Background

The mammalian target of rapamycin protein (mTOR) is an evolutionarily conserved kinase that regulates protein synthesis, cell cycle progression and proliferation in response to various environmental cues. As a critical downstream mediator of PI3K signaling, mTOR is important for lymphocyte development and function of mature T and B-cells. Most studies of mTOR in immune responses have relied on the use of pharmacological inhibitors, such as rapamycin. Rapamycin-FKBP12 complex exerts its immunosuppressive and anti-proliferative effect by binding outside the kinase domain of mTOR, and subsequently inhibiting downstream mTOR signaling.

Results

To determine the requirement for mTOR kinase activity in the immune system function, we generated knock-in mice carrying a mutation (D2338) in the catalytic domain of mTOR. While homozygous mTOR kd/kd embryos died before embryonic day 6.5, heterozygous mTOR+/kd mice appeared entirely normal and are fertile. mTOR +/kd mice exhibited normal T and B cell development and unaltered proliferative responses of splenocytes to IL-2 and TCR/CD28. In addition, heterozygousity for the mTOR kinase-dead allele did not sensitize T cells to rapamycin in a CD3-mediated proliferation assay. Unexpectedly, mTOR kinase activity towards its substrate 4E-BP1 was not decreased in hearts and livers from heterozygous animals.

Conclusion

Altogether, our findings indicate that mTOR kinase activity is indispensable for the early development of mouse embryos. Moreover, a single wild type mTOR allele is sufficient to maintain normal postnatal growth and lymphocyte development and proliferation.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Proud CG: Amino acids and mTOR signalling in anabolic function. Biochem Soc Trans. 2007, 35: 1187-90. 10.1042/BST0351187.CrossRefPubMed Proud CG: Amino acids and mTOR signalling in anabolic function. Biochem Soc Trans. 2007, 35: 1187-90. 10.1042/BST0351187.CrossRefPubMed
3.
go back to reference Abraham RT, Eng CH: Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin Ther Targets. 2008, 12: 209-22. 10.1517/14728222.12.2.209.CrossRefPubMed Abraham RT, Eng CH: Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin Ther Targets. 2008, 12: 209-22. 10.1517/14728222.12.2.209.CrossRefPubMed
4.
go back to reference Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell. 2006, 124: 471-84. 10.1016/j.cell.2006.01.016.CrossRefPubMed Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell. 2006, 124: 471-84. 10.1016/j.cell.2006.01.016.CrossRefPubMed
5.
go back to reference Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y, Maehara Y: Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets. 2008, 8: 27-36. 10.2174/156800908783497140.CrossRefPubMed Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y, Maehara Y: Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets. 2008, 8: 27-36. 10.2174/156800908783497140.CrossRefPubMed
6.
go back to reference Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S: mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004, 24: 6710-8. 10.1128/MCB.24.15.6710-6718.2004.PubMedCentralCrossRefPubMed Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S: mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004, 24: 6710-8. 10.1128/MCB.24.15.6710-6718.2004.PubMedCentralCrossRefPubMed
7.
go back to reference Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G, et al: Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004, 24: 9508-16. 10.1128/MCB.24.21.9508-9516.2004.PubMedCentralCrossRefPubMed Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, Cereghini S, Thomas G, et al: Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004, 24: 9508-16. 10.1128/MCB.24.21.9508-9516.2004.PubMedCentralCrossRefPubMed
8.
go back to reference Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP: Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000, 14: 2712-24. 10.1101/gad.835000.PubMedCentralCrossRefPubMed Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP: Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000, 14: 2712-24. 10.1101/gad.835000.PubMedCentralCrossRefPubMed
9.
go back to reference Makky K, Tekiela J, Mayer AN: Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Dev Biol. 2007, 303: 501-13. 10.1016/j.ydbio.2006.11.030.PubMedCentralCrossRefPubMed Makky K, Tekiela J, Mayer AN: Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Dev Biol. 2007, 303: 501-13. 10.1016/j.ydbio.2006.11.030.PubMedCentralCrossRefPubMed
10.
go back to reference Colombetti S, Benigni F, Basso V, Mondino A: Clonal anergy is maintained independently of T cell proliferation. J Immunol. 2002, 169: 6178-86.CrossRefPubMed Colombetti S, Benigni F, Basso V, Mondino A: Clonal anergy is maintained independently of T cell proliferation. J Immunol. 2002, 169: 6178-86.CrossRefPubMed
11.
go back to reference Morice WG, Brunn GJ, Wiederrecht G, Siekierka JJ, Abraham RT: Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S-phase growth arrest in T lymphocytes. J Biol Chem. 1993, 268: 3734-8.PubMed Morice WG, Brunn GJ, Wiederrecht G, Siekierka JJ, Abraham RT: Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S-phase growth arrest in T lymphocytes. J Biol Chem. 1993, 268: 3734-8.PubMed
12.
go back to reference Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree GR, Roberts JM: Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature. 1994, 372: 570-3. 10.1038/372570a0.CrossRefPubMed Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree GR, Roberts JM: Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature. 1994, 372: 570-3. 10.1038/372570a0.CrossRefPubMed
13.
go back to reference Breslin EM, White PC, Shore AM, Clement M, Brennan P: LY294002 and rapamycin co-operate to inhibit T-cell proliferation. Br J Pharmacol. 2005, 144: 791-800. 10.1038/sj.bjp.0706061.PubMedCentralCrossRefPubMed Breslin EM, White PC, Shore AM, Clement M, Brennan P: LY294002 and rapamycin co-operate to inhibit T-cell proliferation. Br J Pharmacol. 2005, 144: 791-800. 10.1038/sj.bjp.0706061.PubMedCentralCrossRefPubMed
14.
go back to reference Song J, Salek-Ardakani S, So T, Croft M: The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nat Immunol. 2007, 8: 64-73. 10.1038/ni1413.CrossRefPubMed Song J, Salek-Ardakani S, So T, Croft M: The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nat Immunol. 2007, 8: 64-73. 10.1038/ni1413.CrossRefPubMed
15.
go back to reference Sinclair LV, Finlay D, Feijoo C, Cornish GH, Gray A, Ager A, Okkenhaug K, Hagenbeek TJ, Spits H, Cantrell DA: Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol. 2008, 9: 513-21. 10.1038/ni.1603.PubMedCentralCrossRefPubMed Sinclair LV, Finlay D, Feijoo C, Cornish GH, Gray A, Ager A, Okkenhaug K, Hagenbeek TJ, Spits H, Cantrell DA: Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol. 2008, 9: 513-21. 10.1038/ni.1603.PubMedCentralCrossRefPubMed
16.
go back to reference Donahue AC, Fruman DA: Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur J Immunol. 2007, 37: 2923-36. 10.1002/eji.200737281.CrossRefPubMed Donahue AC, Fruman DA: Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur J Immunol. 2007, 37: 2923-36. 10.1002/eji.200737281.CrossRefPubMed
17.
go back to reference Aagaard-Tillery KM, Jelinek DF: Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol. 1994, 156: 493-507. 10.1006/cimm.1994.1193.CrossRefPubMed Aagaard-Tillery KM, Jelinek DF: Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol. 1994, 156: 493-507. 10.1006/cimm.1994.1193.CrossRefPubMed
18.
go back to reference Wicker LS, RC Boltz, Matt V, Nichols EA, Peterson LB, Sigal NH: Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol. 1990, 20: 2277-83. 10.1002/eji.1830201017.CrossRefPubMed Wicker LS, RC Boltz, Matt V, Nichols EA, Peterson LB, Sigal NH: Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol. 1990, 20: 2277-83. 10.1002/eji.1830201017.CrossRefPubMed
20.
go back to reference Wlodarski P, Kasprzycka M, Liu X, Marzec M, Robertson ES, Slupianek A, Wasik MA: Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum. Cancer Res. 2005, 65: 7800-8.PubMed Wlodarski P, Kasprzycka M, Liu X, Marzec M, Robertson ES, Slupianek A, Wasik MA: Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum. Cancer Res. 2005, 65: 7800-8.PubMed
21.
go back to reference Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002, 110: 163-75. 10.1016/S0092-8674(02)00808-5.CrossRefPubMed Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002, 110: 163-75. 10.1016/S0092-8674(02)00808-5.CrossRefPubMed
22.
go back to reference Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J: Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001, 294: 1942-5. 10.1126/science.1066015.CrossRefPubMed Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J: Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001, 294: 1942-5. 10.1126/science.1066015.CrossRefPubMed
23.
go back to reference Yan G, Shen X, Jiang Y: Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. Embo J. 2006, 25: 3546-55. 10.1038/sj.emboj.7601239.PubMedCentralCrossRefPubMed Yan G, Shen X, Jiang Y: Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. Embo J. 2006, 25: 3546-55. 10.1038/sj.emboj.7601239.PubMedCentralCrossRefPubMed
24.
go back to reference Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT: Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 1996, 15: 5256-67.PubMedCentralPubMed Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT: Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 1996, 15: 5256-67.PubMedCentralPubMed
25.
go back to reference Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60: 3504-13.PubMed Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60: 3504-13.PubMed
26.
go back to reference Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004, 24: 200-16. 10.1128/MCB.24.1.200-216.2004.PubMedCentralCrossRefPubMed Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004, 24: 200-16. 10.1128/MCB.24.1.200-216.2004.PubMedCentralCrossRefPubMed
27.
go back to reference Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC, Abraham RT: Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997, 277: 99-101. 10.1126/science.277.5322.99.CrossRefPubMed Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC, Abraham RT: Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997, 277: 99-101. 10.1126/science.277.5322.99.CrossRefPubMed
28.
go back to reference Shen WH, Chen Z, Shi S, Chen H, Zhu W, Penner A, Bu G, Li W, Boyle DW, Rubart M, et al: Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J Biol Chem. 2008, 283: 13842-9. 10.1074/jbc.M801510200.PubMedCentralCrossRefPubMed Shen WH, Chen Z, Shi S, Chen H, Zhu W, Penner A, Bu G, Li W, Boyle DW, Rubart M, et al: Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J Biol Chem. 2008, 283: 13842-9. 10.1074/jbc.M801510200.PubMedCentralCrossRefPubMed
29.
go back to reference Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC: Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 1998, 17: 6649-59. 10.1093/emboj/17.22.6649.PubMedCentralCrossRefPubMed Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC: Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 1998, 17: 6649-59. 10.1093/emboj/17.22.6649.PubMedCentralCrossRefPubMed
30.
go back to reference Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaesebroeck B: Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature. 2006, 441: 366-70. 10.1038/nature04694.CrossRefPubMed Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaesebroeck B: Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature. 2006, 441: 366-70. 10.1038/nature04694.CrossRefPubMed
31.
go back to reference Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, Mills GB, Kondo S: Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene. 2007, 26: 1840-51. 10.1038/sj.onc.1209992.CrossRefPubMed Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, Mills GB, Kondo S: Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene. 2007, 26: 1840-51. 10.1038/sj.onc.1209992.CrossRefPubMed
32.
go back to reference Hou G, Xue L, Lu Z, Fan T, Tian F, Xue Y: An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Lett. 2007, 253: 236-48. 10.1016/j.canlet.2007.01.026.CrossRefPubMed Hou G, Xue L, Lu Z, Fan T, Tian F, Xue Y: An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Lett. 2007, 253: 236-48. 10.1016/j.canlet.2007.01.026.CrossRefPubMed
33.
go back to reference Juntilla MM, Koretzky GA: Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett. 2008, 116: 104-10. 10.1016/j.imlet.2007.12.008.PubMedCentralCrossRefPubMed Juntilla MM, Koretzky GA: Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett. 2008, 116: 104-10. 10.1016/j.imlet.2007.12.008.PubMedCentralCrossRefPubMed
34.
go back to reference Haxhinasto S, Mathis D, Benoist C: The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med. 2008, 205: 565-74. 10.1084/jem.20071477.PubMedCentralCrossRefPubMed Haxhinasto S, Mathis D, Benoist C: The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med. 2008, 205: 565-74. 10.1084/jem.20071477.PubMedCentralCrossRefPubMed
35.
go back to reference Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O'Connor E, et al: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008, 105: 7797-802. 10.1073/pnas.0800928105.PubMedCentralCrossRefPubMed Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O'Connor E, et al: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008, 105: 7797-802. 10.1073/pnas.0800928105.PubMedCentralCrossRefPubMed
36.
go back to reference Edinger AL, Linardic CM, Chiang GG, Thompson CB, Abraham RT: Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res. 2003, 63: 8451-60.PubMed Edinger AL, Linardic CM, Chiang GG, Thompson CB, Abraham RT: Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res. 2003, 63: 8451-60.PubMed
37.
go back to reference Hentges KE, Sirry B, Gingeras AC, Sarbassov D, Sonenberg N, Sabatini D, Peterson AS: FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc Natl Acad Sci USA. 2001, 98: 13796-801. 10.1073/pnas.241184198.PubMedCentralCrossRefPubMed Hentges KE, Sirry B, Gingeras AC, Sarbassov D, Sonenberg N, Sabatini D, Peterson AS: FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc Natl Acad Sci USA. 2001, 98: 13796-801. 10.1073/pnas.241184198.PubMedCentralCrossRefPubMed
38.
go back to reference Hentges K, Thompson K, Peterson A: The flat-top gene is required for the expansion and regionalization of the telencephalic primordium. Development. 1999, 126: 1601-9.PubMed Hentges K, Thompson K, Peterson A: The flat-top gene is required for the expansion and regionalization of the telencephalic primordium. Development. 1999, 126: 1601-9.PubMed
39.
go back to reference Richard M, Hoskin DW: Inhibition of anti-CD3 antibody-induced mouse T cell activation by pentoxifylline in combination with rapamycin or A77 1726 (leflunomide). Int J Immunopharmacol. 1998, 20: 241-52. 10.1016/S0192-0561(98)00029-0.CrossRefPubMed Richard M, Hoskin DW: Inhibition of anti-CD3 antibody-induced mouse T cell activation by pentoxifylline in combination with rapamycin or A77 1726 (leflunomide). Int J Immunopharmacol. 1998, 20: 241-52. 10.1016/S0192-0561(98)00029-0.CrossRefPubMed
40.
go back to reference Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH: Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol. 1990, 144: 251-8.PubMed Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH: Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol. 1990, 144: 251-8.PubMed
Metadata
Title
A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice
Authors
Boris Shor
Druie Cavender
Crafford Harris
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2009
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-10-28

Other articles of this Issue 1/2009

BMC Immunology 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.