Skip to main content
Top
Published in: BMC Immunology 1/2009

Open Access 01-12-2009 | Research article

Structure-Function analysis of the CTLA-4 interaction with PP2A

Authors: Wendy A Teft, Thu A Chau, Joaquín Madrenas

Published in: BMC Immunology | Issue 1/2009

Login to get access

Abstract

Background

CTLA-4 functions primarily as an inhibitor of T cell activation. There are several candidate explanations as to how CTLA-4 modulates T cell responses, but the exact mechanism remains undefined. The tail of CTLA-4 does not have any intrinsic enzymatic activity but is able to associate with several signaling molecules including the serine/threonine phosphatase PP2A. PP2A is a heterotrimeric molecule comprised of a regulatory B subunit associated with a core dimer of a scaffolding (A) and a catalytic (C) subunit.

Results

Here, we performed an analysis of the human CTLA-4 interface interacting with PP2A. We show that PP2A interacts with the cytoplasmic tail of CTLA-4 in two different sites, one on the lysine rich motif, and the other on the tyrosine residue located at position 182 (but not the tyrosine 165 of the YVKM motif). Although the interaction between CTLA-4 and PP2A was not required for inhibition of T cell responses, it was important for T cell activation by inverse agonists of CTLA-4. Such an interaction was functionally relevant because the inverse agonists induced IL-2 production in an okadaic acid-dependent manner.

Conclusion

Our studies demonstrate that PP2A interacts with the cytoplasmic tail of human CTLA-4 through two motifs, the lysine rich motif centered at lysine 155 and the tyrosine residue 182. This interaction and the phosphatase activity of PP2A are important for CTLA-4-mediated T cell activation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P: A new member of the immunoglobulin superfamily – CTLA-4. Nature. 1987, 328: 267-270. 10.1038/328267a0.CrossRefPubMed Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P: A new member of the immunoglobulin superfamily – CTLA-4. Nature. 1987, 328: 267-270. 10.1038/328267a0.CrossRefPubMed
2.
go back to reference Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995, 270: 985-988. 10.1126/science.270.5238.985.CrossRefPubMed Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995, 270: 985-988. 10.1126/science.270.5238.985.CrossRefPubMed
3.
go back to reference Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995, 3: 541-547. 10.1016/1074-7613(95)90125-6.CrossRefPubMed Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995, 3: 541-547. 10.1016/1074-7613(95)90125-6.CrossRefPubMed
4.
go back to reference Teft WA, Kirchhof MG, Madrenas J: A molecular perspective of CTLA-4 function. Annu Rev Immunol. 2006, 24: 65-97. 10.1146/annurev.immunol.24.021605.090535.CrossRefPubMed Teft WA, Kirchhof MG, Madrenas J: A molecular perspective of CTLA-4 function. Annu Rev Immunol. 2006, 24: 65-97. 10.1146/annurev.immunol.24.021605.090535.CrossRefPubMed
5.
go back to reference Linsley PS, Clark EA, Ledbetter JA: T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA. 1990, 87: 5031-5035. 10.1073/pnas.87.13.5031.PubMedCentralCrossRefPubMed Linsley PS, Clark EA, Ledbetter JA: T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA. 1990, 87: 5031-5035. 10.1073/pnas.87.13.5031.PubMedCentralCrossRefPubMed
6.
go back to reference Freeman GJ, Borriello F, Hodes RJ, Reiser H, Gribben JG, Ng JW, Kim J, Goldberg JM, Hathcock K, Laszlo G, et al.: Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med. 1993, 178: 2185-2192. 10.1084/jem.178.6.2185.CrossRefPubMed Freeman GJ, Borriello F, Hodes RJ, Reiser H, Gribben JG, Ng JW, Kim J, Goldberg JM, Hathcock K, Laszlo G, et al.: Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med. 1993, 178: 2185-2192. 10.1084/jem.178.6.2185.CrossRefPubMed
7.
go back to reference Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Lombard LA, Gray GS, Nadler LM: Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993, 262: 909-911. 10.1126/science.7694363.CrossRefPubMed Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Lombard LA, Gray GS, Nadler LM: Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993, 262: 909-911. 10.1126/science.7694363.CrossRefPubMed
8.
go back to reference Carreno BM, Bennett F, Chau TA, Ling V, Luxenberg D, Jussif J, Baroja ML, Madrenas J: CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J Immunol. 2000, 165: 1352-1356.CrossRefPubMed Carreno BM, Bennett F, Chau TA, Ling V, Luxenberg D, Jussif J, Baroja ML, Madrenas J: CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J Immunol. 2000, 165: 1352-1356.CrossRefPubMed
9.
go back to reference Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Heiden Vander MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB: The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity. 2000, 13: 313-322. 10.1016/S1074-7613(00)00031-5.CrossRefPubMed Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Heiden Vander MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB: The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity. 2000, 13: 313-322. 10.1016/S1074-7613(00)00031-5.CrossRefPubMed
10.
go back to reference Baroja ML, Vijayakrishnan L, Bettelli E, Darlington PJ, Chau TA, Ling V, Collins M, Carreno BM, Madrenas J, Kuchroo VK: Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol. 2002, 168: 5070-5078.CrossRefPubMed Baroja ML, Vijayakrishnan L, Bettelli E, Darlington PJ, Chau TA, Ling V, Collins M, Carreno BM, Madrenas J, Kuchroo VK: Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol. 2002, 168: 5070-5078.CrossRefPubMed
11.
go back to reference Janssens V, Longin S, Goris J: PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci. 2008, 33: 113-121.CrossRefPubMed Janssens V, Longin S, Goris J: PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci. 2008, 33: 113-121.CrossRefPubMed
12.
go back to reference Sontag E: Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal. 2001, 13: 7-16. 10.1016/S0898-6568(00)00123-6.CrossRefPubMed Sontag E: Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal. 2001, 13: 7-16. 10.1016/S0898-6568(00)00123-6.CrossRefPubMed
13.
go back to reference Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005, 25: 9543-9553. 10.1128/MCB.25.21.9543-9553.2005.PubMedCentralCrossRefPubMed Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL: CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005, 25: 9543-9553. 10.1128/MCB.25.21.9543-9553.2005.PubMedCentralCrossRefPubMed
14.
go back to reference Madrenas J, Chau LA, Teft WA, Wu PW, Jussif J, Kasaian M, Carreno BM, Ling V: Conversion of CTLA-4 from inhibitor to activator of T cells with a bispecific tandem single-chain Fv ligand. J Immunol. 2004, 172: 5948-5956.CrossRefPubMed Madrenas J, Chau LA, Teft WA, Wu PW, Jussif J, Kasaian M, Carreno BM, Ling V: Conversion of CTLA-4 from inhibitor to activator of T cells with a bispecific tandem single-chain Fv ligand. J Immunol. 2004, 172: 5948-5956.CrossRefPubMed
15.
go back to reference Teft WA, Madrenas J: Molecular determinants of inverse agonist activity of biologicals targeting CTLA-4. J Immunol. 2007, 179: 3631-3637.CrossRefPubMed Teft WA, Madrenas J: Molecular determinants of inverse agonist activity of biologicals targeting CTLA-4. J Immunol. 2007, 179: 3631-3637.CrossRefPubMed
16.
go back to reference Rudd CE: The reverse stop-signal model for CTLA4 function. Nat Rev Immunol. 2008, 8: 153-160. 10.1038/nri2253.CrossRefPubMed Rudd CE: The reverse stop-signal model for CTLA4 function. Nat Rev Immunol. 2008, 8: 153-160. 10.1038/nri2253.CrossRefPubMed
17.
go back to reference Baroja ML, Luxenberg D, Chau T, Ling V, Strathdee CA, Carreno BM, Madrenas J: The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation. J Immunol. 2000, 164: 49-55.CrossRefPubMed Baroja ML, Luxenberg D, Chau T, Ling V, Strathdee CA, Carreno BM, Madrenas J: The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation. J Immunol. 2000, 164: 49-55.CrossRefPubMed
18.
go back to reference Ling V, Wu PW, Finnerty HF, Sharpe AH, Gray GS, Collins M: Complete sequence determination of the mouse and human CTLA4 gene loci: cross-species DNA sequence similarity beyond exon borders. Genomics. 1999, 60: 341-355. 10.1006/geno.1999.5930.CrossRefPubMed Ling V, Wu PW, Finnerty HF, Sharpe AH, Gray GS, Collins M: Complete sequence determination of the mouse and human CTLA4 gene loci: cross-species DNA sequence similarity beyond exon borders. Genomics. 1999, 60: 341-355. 10.1006/geno.1999.5930.CrossRefPubMed
19.
go back to reference Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifacino JS, Saito T: Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 1997, 6: 583-589. 10.1016/S1074-7613(00)80346-5.CrossRefPubMed Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifacino JS, Saito T: Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 1997, 6: 583-589. 10.1016/S1074-7613(00)80346-5.CrossRefPubMed
20.
go back to reference Zhang Y, Allison JP: Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci USA. 1997, 94: 9273-9278. 10.1073/pnas.94.17.9273.PubMedCentralCrossRefPubMed Zhang Y, Allison JP: Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci USA. 1997, 94: 9273-9278. 10.1073/pnas.94.17.9273.PubMedCentralCrossRefPubMed
21.
go back to reference Bradshaw JD, Lu P, Leytze G, Rodgers J, Schieven GL, Bennett KL, Linsley PS, Kurtz SE: Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry. 1997, 36: 15975-15982. 10.1021/bi971762i.CrossRefPubMed Bradshaw JD, Lu P, Leytze G, Rodgers J, Schieven GL, Bennett KL, Linsley PS, Kurtz SE: Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry. 1997, 36: 15975-15982. 10.1021/bi971762i.CrossRefPubMed
22.
go back to reference Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A: Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol. 2001, 2: 37-44. 10.1038/83144.CrossRefPubMed Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A: Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol. 2001, 2: 37-44. 10.1038/83144.CrossRefPubMed
23.
go back to reference Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, Gregson BP, June CH, Linsley PS: Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA. 2002, 99: 11790-11795. 10.1073/pnas.162359999.PubMedCentralCrossRefPubMed Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, Gregson BP, June CH, Linsley PS: Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA. 2002, 99: 11790-11795. 10.1073/pnas.162359999.PubMedCentralCrossRefPubMed
24.
go back to reference Millward TA, Zolnierowicz S, Hemmings BA: Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999, 24: 186-191. 10.1016/S0968-0004(99)01375-4.CrossRefPubMed Millward TA, Zolnierowicz S, Hemmings BA: Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999, 24: 186-191. 10.1016/S0968-0004(99)01375-4.CrossRefPubMed
25.
go back to reference Shan X, Czar MJ, Bunnell SC, Liu P, Liu Y, Schwartzberg PL, Wange RL: Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol Cell Biol. 2000, 20: 6945-6957. 10.1128/MCB.20.18.6945-6957.2000.PubMedCentralCrossRefPubMed Shan X, Czar MJ, Bunnell SC, Liu P, Liu Y, Schwartzberg PL, Wange RL: Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol Cell Biol. 2000, 20: 6945-6957. 10.1128/MCB.20.18.6945-6957.2000.PubMedCentralCrossRefPubMed
26.
go back to reference Janssens V, Goris J: Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001, 353: 417-439. 10.1042/0264-6021:3530417.PubMedCentralCrossRefPubMed Janssens V, Goris J: Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001, 353: 417-439. 10.1042/0264-6021:3530417.PubMedCentralCrossRefPubMed
27.
go back to reference Darlington PJ, Baroja ML, Chau TA, Siu E, Ling V, Carreno BM, Madrenas J: Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. J Exp Med. 2002, 195: 1337-1347. 10.1084/jem.20011868.PubMedCentralCrossRefPubMed Darlington PJ, Baroja ML, Chau TA, Siu E, Ling V, Carreno BM, Madrenas J: Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. J Exp Med. 2002, 195: 1337-1347. 10.1084/jem.20011868.PubMedCentralCrossRefPubMed
28.
go back to reference Mustelin T, Altman A: Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene. 1990, 5: 809-813.PubMed Mustelin T, Altman A: Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene. 1990, 5: 809-813.PubMed
29.
go back to reference Xu H, Littman DR: The kinase-dependent function of Lck in T-cell activation requires an intact site for tyrosine autophosphorylation. Ann N Y Acad Sci. 1995, 766: 99-116. 10.1111/j.1749-6632.1995.tb26655.x.CrossRefPubMed Xu H, Littman DR: The kinase-dependent function of Lck in T-cell activation requires an intact site for tyrosine autophosphorylation. Ann N Y Acad Sci. 1995, 766: 99-116. 10.1111/j.1749-6632.1995.tb26655.x.CrossRefPubMed
30.
go back to reference Lefebvre DC, Felberg J, Cross JL, Johnson P: The noncatalytic domains of Lck regulate its dephosphorylation by CD45. Biochim Biophys Acta. 2003, 1650: 40-49.CrossRefPubMed Lefebvre DC, Felberg J, Cross JL, Johnson P: The noncatalytic domains of Lck regulate its dephosphorylation by CD45. Biochim Biophys Acta. 2003, 1650: 40-49.CrossRefPubMed
31.
go back to reference Darlington PJ, Kirchhof MG, Criado G, Sondhi J, Madrenas J: Hierarchical regulation of CTLA-4 dimer-based lattice formation and its biological relevance for T cell inactivation. J Immunol. 2005, 175: 996-1004.CrossRefPubMed Darlington PJ, Kirchhof MG, Criado G, Sondhi J, Madrenas J: Hierarchical regulation of CTLA-4 dimer-based lattice formation and its biological relevance for T cell inactivation. J Immunol. 2005, 175: 996-1004.CrossRefPubMed
32.
go back to reference Chau LA, Bluestone JA, Madrenas J: Dissociation of intracellular signaling pathways in response to partial agonist ligands of the T cell receptor. J Exp Med. 1998, 187: 1699-1709. 10.1084/jem.187.10.1699.PubMedCentralCrossRefPubMed Chau LA, Bluestone JA, Madrenas J: Dissociation of intracellular signaling pathways in response to partial agonist ligands of the T cell receptor. J Exp Med. 1998, 187: 1699-1709. 10.1084/jem.187.10.1699.PubMedCentralCrossRefPubMed
33.
go back to reference Madrenas J, Chau LA, Smith J, Bluestone JA, Germain RN: The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J Exp Med. 1997, 185: 219-229. 10.1084/jem.185.2.219.PubMedCentralCrossRefPubMed Madrenas J, Chau LA, Smith J, Bluestone JA, Germain RN: The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J Exp Med. 1997, 185: 219-229. 10.1084/jem.185.2.219.PubMedCentralCrossRefPubMed
Metadata
Title
Structure-Function analysis of the CTLA-4 interaction with PP2A
Authors
Wendy A Teft
Thu A Chau
Joaquín Madrenas
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2009
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-10-23

Other articles of this Issue 1/2009

BMC Immunology 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.