Skip to main content
Top
Published in: Respiratory Research 1/2006

Open Access 01-12-2006 | Research

Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse

Authors: Wolfgang Kummer, Silke Wiegand, Sibel Akinci, Ignatz Wessler, Alfred H Schinkel, Jürgen Wess, Hermann Koepsell, Rainer V Haberberger, Katrin S Lips

Published in: Respiratory Research | Issue 1/2006

Login to get access

Abstract

Background

It has been proposed that serotonin (5-HT)-mediated constriction of the murine trachea is largely dependent on acetylcholine (ACh) released from the epithelium. We recently demonstrated that ACh can be released from non-neuronal cells by corticosteroid-sensitive polyspecific organic cation transporters (OCTs), which are also expressed by airway epithelial cells. Hence, the hypothesis emerged that 5-HT evokes bronchoconstriction by inducing release of ACh from epithelial cells via OCTs.

Methods

We tested this hypothesis by analysing bronchoconstriction in precision-cut murine lung slices using OCT and muscarinic ACh receptor knockout mouse strains. Epithelial ACh content was measured by HPLC, and the tissue distribution of OCT isoforms was determined by immunohistochemistry.

Results

Epithelial ACh content was significantly higher in OCT1/2 double-knockout mice (42 ± 10 % of the content of the epithelium-denuded trachea, n = 9) than in wild-type mice (16.8 ± 3.6 %, n = 11). In wild-type mice, 5-HT (1 μM) caused a bronchoconstriction that slightly exceeded that evoked by muscarine (1 μM) in intact bronchi but amounted to only 66% of the response to muscarine after epithelium removal. 5-HT-induced bronchoconstriction was undiminished in M2/M3 muscarinic ACh receptor double-knockout mice which were entirely unresponsive to muscarine. Corticosterone (1 μM) significantly reduced 5-HT-induced bronchoconstriction in wild-type and OCT1/2 double-knockout mice, but not in OCT3 knockout mice. This effect persisted after removal of the bronchial epithelium. Immunohistochemistry localized OCT3 to the bronchial smooth muscle.

Conclusion

The doubling of airway epithelial ACh content in OCT1/2-/- mice is consistent with the concept that OCT1 and/or 2 mediate ACh release from the respiratory epithelium. This effect, however, does not contribute to 5-HT-induced constriction of murine intrapulmonary bronchi. Instead, this activity involves 1) a non-cholinergic epithelium-dependent component, and 2) direct stimulation of bronchial smooth muscle cells, a response which is partly sensitive to acutely administered corticosterone acting on OCT3. These data provide new insights into the mechanisms involved in 5-HT-induced bronchoconstriction, including novel information about non-genomic, acute effects of corticosteroids on bronchoconstriction.
Literature
1.
go back to reference Levitt RC, Mitzner W: Autosomal recessive inheritance of airway hyperreactivity to 5-hydroxytryptamine. J Appl Physiol 1989, 67:1125–1132.PubMed Levitt RC, Mitzner W: Autosomal recessive inheritance of airway hyperreactivity to 5-hydroxytryptamine. J Appl Physiol 1989, 67:1125–1132.PubMed
2.
go back to reference Eum SY, Norel X, Lefort J, Labat C, Vargaftig BB, Brink C: Anaphylactic bronchoconstriction in BP2 mice: interactions between serotonin and acetylcholine. Br J Pharmacol 1999, 126:312–316.CrossRefPubMedPubMedCentral Eum SY, Norel X, Lefort J, Labat C, Vargaftig BB, Brink C: Anaphylactic bronchoconstriction in BP2 mice: interactions between serotonin and acetylcholine. Br J Pharmacol 1999, 126:312–316.CrossRefPubMedPubMedCentral
3.
go back to reference Moffatt JD, Cocks TM, Page CP: Role of the epithelium and acetylcholine in mediating the contraction to 5-hydroxytryptamine in the mouse isolated trachea. Br J Pharmacol 2004, 141:1159–1166.CrossRefPubMedPubMedCentral Moffatt JD, Cocks TM, Page CP: Role of the epithelium and acetylcholine in mediating the contraction to 5-hydroxytryptamine in the mouse isolated trachea. Br J Pharmacol 2004, 141:1159–1166.CrossRefPubMedPubMedCentral
4.
go back to reference Reinheimer T, Bernedo P, Klapproth H, Oelert H, Zeiske B, Racke K, Wessler I: Acetylcholine in isolated airways of rat, guinea pig, and human: species differences in role of airway mucosa. Am J Physiol 1996, 270:L722-L728.PubMed Reinheimer T, Bernedo P, Klapproth H, Oelert H, Zeiske B, Racke K, Wessler I: Acetylcholine in isolated airways of rat, guinea pig, and human: species differences in role of airway mucosa. Am J Physiol 1996, 270:L722-L728.PubMed
5.
go back to reference Reinheimer T, Munch M, Bittinger F, Racke K, Kirkpatrick CJ, Wessler I: Glucocorticoids mediate reduction of epithelial acetylcholine content in the airways of rats and humans. Eur J Pharmacol 1998, 349:277–284.CrossRefPubMed Reinheimer T, Munch M, Bittinger F, Racke K, Kirkpatrick CJ, Wessler I: Glucocorticoids mediate reduction of epithelial acetylcholine content in the airways of rats and humans. Eur J Pharmacol 1998, 349:277–284.CrossRefPubMed
6.
go back to reference Pfeil U, Lips KS, Eberling L, Grau V, Haberberger RV, Kummer W: Expression of the high-affinity choline transporter, CHT1, in the rat trachea. Am J Respir Cell Mol Biol 2003, 28:473–477.CrossRefPubMed Pfeil U, Lips KS, Eberling L, Grau V, Haberberger RV, Kummer W: Expression of the high-affinity choline transporter, CHT1, in the rat trachea. Am J Respir Cell Mol Biol 2003, 28:473–477.CrossRefPubMed
7.
go back to reference Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER: Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology 2004, 145:2498–2506.CrossRefPubMed Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER: Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology 2004, 145:2498–2506.CrossRefPubMed
8.
go back to reference Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, Ermert L, Kummer W, Koepsell H: Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol 2005, 33:79–88.CrossRefPubMed Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, Ermert L, Kummer W, Koepsell H: Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol 2005, 33:79–88.CrossRefPubMed
9.
go back to reference Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, Kilbinger H: Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol 2001, 134:951–956.CrossRefPubMedPubMedCentral Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, Kilbinger H: Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol 2001, 134:951–956.CrossRefPubMedPubMedCentral
10.
go back to reference Martin C, Uhlig S, Ullrich V: Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur Respir J 1996, 9:2479–2487.CrossRefPubMed Martin C, Uhlig S, Ullrich V: Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur Respir J 1996, 9:2479–2487.CrossRefPubMed
11.
go back to reference Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV: Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol 2003, 64:1444–1451.CrossRefPubMed Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV: Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol 2003, 64:1444–1451.CrossRefPubMed
12.
go back to reference Pfaff M, Powaga N, Akinci S, Schutz W, Banno Y, Wiegand S, Kummer W, Wess J, Haberberger RV: Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways. Respir Res 2005, 6:48–61.CrossRefPubMedPubMedCentral Pfaff M, Powaga N, Akinci S, Schutz W, Banno Y, Wiegand S, Kummer W, Wess J, Haberberger RV: Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways. Respir Res 2005, 6:48–61.CrossRefPubMedPubMedCentral
13.
go back to reference Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP: Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 2001, 21:4188–4196.CrossRefPubMedPubMedCentral Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP: Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 2001, 21:4188–4196.CrossRefPubMedPubMedCentral
14.
go back to reference Jonker JW, Wagenaar E, van Eijl S, Schinkel AH: Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 2003, 23:7902–7908.CrossRefPubMedPubMedCentral Jonker JW, Wagenaar E, van Eijl S, Schinkel AH: Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 2003, 23:7902–7908.CrossRefPubMedPubMedCentral
15.
go back to reference Wessler I, Bender H, Harle P, Hohle KD, Kirdorf G, Klapproth H, Reinheimer T, Ricny J, Schniepp-Mendelssohn KE, Racke K: Release of [3H]acetylcholine in human isolated bronchi. Effect of indomethacin on muscarinic autoinhibition. Am J Respir Crit Care Med 1995, 151:1040–1046.PubMed Wessler I, Bender H, Harle P, Hohle KD, Kirdorf G, Klapproth H, Reinheimer T, Ricny J, Schniepp-Mendelssohn KE, Racke K: Release of [3H]acetylcholine in human isolated bronchi. Effect of indomethacin on muscarinic autoinhibition. Am J Respir Crit Care Med 1995, 151:1040–1046.PubMed
16.
go back to reference Pfeil U, Vollerthun R, Kummer W, Lips KS: Expression of the cholinergic gene locus in the rat placenta. Histochem Cell Biol 2004, 122:121–130.CrossRefPubMed Pfeil U, Vollerthun R, Kummer W, Lips KS: Expression of the cholinergic gene locus in the rat placenta. Histochem Cell Biol 2004, 122:121–130.CrossRefPubMed
17.
go back to reference Fan P, Weight FF: The effect of atropine on the activation of 5-hydroxytryptamine3 channels in rat nodose ganglion neurons. Neuroscience 1994, 62:1287–1292.CrossRefPubMed Fan P, Weight FF: The effect of atropine on the activation of 5-hydroxytryptamine3 channels in rat nodose ganglion neurons. Neuroscience 1994, 62:1287–1292.CrossRefPubMed
18.
go back to reference Aziz I, Lipworth BJ: A bolus of inhaled budesonide rapidly reverses airway subsensitivity and β 2 -adrenoceptor down-regulation after regular inhaled formoterol. Chest 1999, 115:623–628.CrossRefPubMed Aziz I, Lipworth BJ: A bolus of inhaled budesonide rapidly reverses airway subsensitivity and β 2 -adrenoceptor down-regulation after regular inhaled formoterol. Chest 1999, 115:623–628.CrossRefPubMed
19.
go back to reference Lipworth BJ, Aziz I: Bronchodilator response to albuterol after regular formoterol and effects of acute corticosteroid administration. Chest 2000, 117:156–162.CrossRefPubMed Lipworth BJ, Aziz I: Bronchodilator response to albuterol after regular formoterol and effects of acute corticosteroid administration. Chest 2000, 117:156–162.CrossRefPubMed
20.
go back to reference Koepsell H, Schmitt BM, Gorboulev V: Organic cation transporters. Rev Physiol Biochem Pharmacol 2003, 150:36–90.PubMed Koepsell H, Schmitt BM, Gorboulev V: Organic cation transporters. Rev Physiol Biochem Pharmacol 2003, 150:36–90.PubMed
21.
go back to reference Gründemann D, Schechinger B, Rappold GA, Schömig E: Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1998, 1:349–351.CrossRefPubMed Gründemann D, Schechinger B, Rappold GA, Schömig E: Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1998, 1:349–351.CrossRefPubMed
22.
go back to reference Horvath G, Sutto Z, Torbati A, Conner GE, Salathe M, Wanner A: Norepinephrine transport by the extraneuronal monoamine transporter in human bronchial arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003, 285:L829-L837.CrossRefPubMed Horvath G, Sutto Z, Torbati A, Conner GE, Salathe M, Wanner A: Norepinephrine transport by the extraneuronal monoamine transporter in human bronchial arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003, 285:L829-L837.CrossRefPubMed
23.
go back to reference Chang AS, Chang SM, Starnes DM, Schroeter S, Bauman AL, Blakely RD: Cloning and expression of the mouse serotonin transporter. Brain Res Mol Brain Res 1996, 43:185–192.CrossRefPubMed Chang AS, Chang SM, Starnes DM, Schroeter S, Bauman AL, Blakely RD: Cloning and expression of the mouse serotonin transporter. Brain Res Mol Brain Res 1996, 43:185–192.CrossRefPubMed
24.
go back to reference James KM, Bryan-Lluka LJ: Efflux studies allow further characterisation of the noradrenaline and 5-hydroxytryptamine transporters in rat lungs. Naunyn Schmiedebergs Arch Pharmacol 1997, 356:126–133.CrossRefPubMed James KM, Bryan-Lluka LJ: Efflux studies allow further characterisation of the noradrenaline and 5-hydroxytryptamine transporters in rat lungs. Naunyn Schmiedebergs Arch Pharmacol 1997, 356:126–133.CrossRefPubMed
Metadata
Title
Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse
Authors
Wolfgang Kummer
Silke Wiegand
Sibel Akinci
Ignatz Wessler
Alfred H Schinkel
Jürgen Wess
Hermann Koepsell
Rainer V Haberberger
Katrin S Lips
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2006
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-7-65

Other articles of this Issue 1/2006

Respiratory Research 1/2006 Go to the issue