Skip to main content
Top
Published in: Respiratory Research 1/2005

Open Access 01-12-2005 | Research

Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis

Authors: Frank Bühling, Aline Wille, Christoph Röcken, Olaf Wiesner, Anja Baier, Ingmar Meinecke, Tobias Welte, Thomas Pap

Published in: Respiratory Research | Issue 1/2005

Login to get access

Abstract

Background

An altered susceptibility of lung fibroblasts to Fas-induced apoptosis has been implicated in the pathogenesis of pulmonary fibrosis; however, the underlying mechanism is not completely understood. Here, we studied the susceptibility of lung fibroblasts, obtained from patients with (f-fibs) and without pulmonary fibrosis (n-fibs), to FasL- (CD95L/APO-1) induced apoptosis in relation to the expression and the amounts of membrane-bound and soluble Fas. We also analysed the effects of tumor necrosis factor-β on FasL-induced cell death.

Methods

Apoptosis was induced with recombinant human FasL, with and without prior stimulation of the fibroblasts with tumor necrosis factor-α and measured by a histone fragmentation assay and flow cytometry. The expression of Fas mRNA was determined by quantitative PCR. The expression of cell surface Fas was determined by flow cytometry, and that of soluble Fas (sFas) was determined by enzyme-linked immunosorbent assay.

Results

When compared to n-fibs, f-fibs were resistant to FasL-induced apoptosis, despite significantly higher levels of Fas mRNA. F-fibs showed lower expression of surface-bound Fas but higher levels of sFas. While TNF-α increased the susceptibility to FasL-induced apoptosis in n-fibs, it had no pro-apoptotic effect in f-fibs.

Conclusions

The data suggest that lower expression of surface Fas, but higher levels of apoptosis-inhibiting sFas, contribute to the resistance of fibroblasts in lung fibrosis against apoptosis, to increased cellularity and also to increased formation and deposition of extracellular matrix.
Literature
1.
2.
go back to reference Jindal SK, Gupta D: Incidence and recognition of interstitial pulmonary fibrosis in developing countries. Curr Opin Pulm Med 1997, 3:378–383.CrossRefPubMed Jindal SK, Gupta D: Incidence and recognition of interstitial pulmonary fibrosis in developing countries. Curr Opin Pulm Med 1997, 3:378–383.CrossRefPubMed
3.
go back to reference Katzenstein AL, Myers JL: Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 1998, 157:1301–1315.CrossRefPubMed Katzenstein AL, Myers JL: Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 1998, 157:1301–1315.CrossRefPubMed
4.
go back to reference Zhang K, Rekhter MD, Gordon D, Phan SH: Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 1994, 145:114–125.PubMedPubMedCentral Zhang K, Rekhter MD, Gordon D, Phan SH: Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 1994, 145:114–125.PubMedPubMedCentral
5.
go back to reference LeBlanc HN, Ashkenazi A: Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003, 10:66–75.CrossRefPubMed LeBlanc HN, Ashkenazi A: Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003, 10:66–75.CrossRefPubMed
6.
go back to reference Zhang HY, Phan SH: Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol 1999, 21:658–665.CrossRefPubMed Zhang HY, Phan SH: Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol 1999, 21:658–665.CrossRefPubMed
7.
go back to reference Moodley YP, Caterina P, Scaffidi AK, Misso NL, Papadimitriou JM, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA: Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis. J Pathol 2004, 202:486–495.CrossRefPubMed Moodley YP, Caterina P, Scaffidi AK, Misso NL, Papadimitriou JM, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA: Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis. J Pathol 2004, 202:486–495.CrossRefPubMed
8.
go back to reference Moodley YP, Misso NL, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA: Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol 2003, 29:490–498.CrossRefPubMed Moodley YP, Misso NL, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA: Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol 2003, 29:490–498.CrossRefPubMed
9.
go back to reference Buhling F, Rocken C, Brasch F, Hartig R, Yasuda Y, Saftig P, Bromme D, Welte T: Pivotal role of cathepsin K in lung fibrosis. Am J Pathol 2004, 164:2203–2216.CrossRefPubMedPubMedCentral Buhling F, Rocken C, Brasch F, Hartig R, Yasuda Y, Saftig P, Bromme D, Welte T: Pivotal role of cathepsin K in lung fibrosis. Am J Pathol 2004, 164:2203–2216.CrossRefPubMedPubMedCentral
10.
go back to reference Peterkofsky B, Diegelmann R: Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry 1971, 10:988–994.CrossRefPubMed Peterkofsky B, Diegelmann R: Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry 1971, 10:988–994.CrossRefPubMed
11.
go back to reference Eickelberg O, Kohler E, Reichenberger F, Bertschin S, Woodtli T, Erne P, Perruchoud AP, Roth M: Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-beta1 and TGF-beta3. Am J Physiol 1999, 276:L814-L824.PubMed Eickelberg O, Kohler E, Reichenberger F, Bertschin S, Woodtli T, Erne P, Perruchoud AP, Roth M: Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-beta1 and TGF-beta3. Am J Physiol 1999, 276:L814-L824.PubMed
12.
go back to reference Agelli M, Wahl SM: Collagen production by fibroblasts. Methods Enzymol 1988, 642–656. Agelli M, Wahl SM: Collagen production by fibroblasts. Methods Enzymol 1988, 642–656.
13.
go back to reference Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, Tschopp J: Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 1999, 18:1824–1831.CrossRefPubMedPubMedCentral Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, Tschopp J: Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 1999, 18:1824–1831.CrossRefPubMedPubMedCentral
14.
go back to reference Machner A, Baier A, Wille A, Drynda S, Pap G, Drynda A, Mawrin C, Buhling F, Gay S, Neumann w, Pap T: Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-alpha in periarticular tenocytes from patients with knee joint osteoarthritis. Arthritis Res Ther 2003, 5:R253-R261.CrossRefPubMedPubMedCentral Machner A, Baier A, Wille A, Drynda S, Pap G, Drynda A, Mawrin C, Buhling F, Gay S, Neumann w, Pap T: Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-alpha in periarticular tenocytes from patients with knee joint osteoarthritis. Arthritis Res Ther 2003, 5:R253-R261.CrossRefPubMedPubMedCentral
15.
go back to reference Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S: Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum 2000, 43:2523–2530.CrossRefPubMed Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S: Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum 2000, 43:2523–2530.CrossRefPubMed
16.
go back to reference Tanaka T, Yoshimi M, Maeyama T, Hagimoto N, Kuwano K, Hara N: Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur Respir J 2002, 20:359–368.CrossRefPubMed Tanaka T, Yoshimi M, Maeyama T, Hagimoto N, Kuwano K, Hara N: Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur Respir J 2002, 20:359–368.CrossRefPubMed
17.
go back to reference Honey K, Benlagha K, Beers C, Forbush K, Teyton L, Kleijmeer MJ, Rudensky AY, Bendelac A: Thymocyte expression of cathepsin L is essential for NKT cell development. Nat Immunol 2002, 3:1069–1074.CrossRefPubMed Honey K, Benlagha K, Beers C, Forbush K, Teyton L, Kleijmeer MJ, Rudensky AY, Bendelac A: Thymocyte expression of cathepsin L is essential for NKT cell development. Nat Immunol 2002, 3:1069–1074.CrossRefPubMed
18.
go back to reference Lynch JP III, White E, Flaherty K: Corticosteroids in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2001, 7:298–308.CrossRefPubMed Lynch JP III, White E, Flaherty K: Corticosteroids in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2001, 7:298–308.CrossRefPubMed
19.
go back to reference Collard HR, King TE Jr: Treatment of idiopathic pulmonary fibrosis: the rise and fall of corticosteroids. Am J Med 2001, 110:326–328.CrossRefPubMed Collard HR, King TE Jr: Treatment of idiopathic pulmonary fibrosis: the rise and fall of corticosteroids. Am J Med 2001, 110:326–328.CrossRefPubMed
20.
go back to reference Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman M, Pardo A: Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol 2001, 24:591–598.CrossRefPubMed Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman M, Pardo A: Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol 2001, 24:591–598.CrossRefPubMed
21.
go back to reference Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M: Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998, 17:931–939.CrossRefPubMed Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M: Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998, 17:931–939.CrossRefPubMed
22.
go back to reference Moulding DA, Akgul C, Derouet M, White MR, Edwards SW: BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. J Leukoc Biol 2001, 70:783–792.PubMed Moulding DA, Akgul C, Derouet M, White MR, Edwards SW: BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. J Leukoc Biol 2001, 70:783–792.PubMed
23.
go back to reference Grassi F, Piacentini A, Cristino S, Toneguzzi S, Facchini A, Lisignoli G: Inhibition of CD95 apoptotic signaling by interferon-gamma in human osteoarthritic chondrocytes is associated with increased expression of FLICE inhibitory protein. Arthritis Rheum 2004, 50:498–506.CrossRefPubMed Grassi F, Piacentini A, Cristino S, Toneguzzi S, Facchini A, Lisignoli G: Inhibition of CD95 apoptotic signaling by interferon-gamma in human osteoarthritic chondrocytes is associated with increased expression of FLICE inhibitory protein. Arthritis Rheum 2004, 50:498–506.CrossRefPubMed
24.
go back to reference Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR: The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 2000,113(Pt 23:4363–71):4363–4371.PubMed Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR: The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 2000,113(Pt 23:4363–71):4363–4371.PubMed
25.
go back to reference Papoff G, Cascino I, Eramo A, Starace G, Lynch DH, Ruberti G: An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro. J Immunol 1996, 156:4622–4630.PubMed Papoff G, Cascino I, Eramo A, Starace G, Lynch DH, Ruberti G: An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro. J Immunol 1996, 156:4622–4630.PubMed
26.
go back to reference Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H, Kimura T: Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol 2001, 28:22–28.PubMed Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H, Kimura T: Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol 2001, 28:22–28.PubMed
27.
go back to reference Corbel M, Caulet-Maugendre S, Germain N, Molet S, Lagente V, Boichot E: Inhibition of bleomycin-induced pulmonary fibrosis in mice by the matrix metalloproteinase inhibitor batimastat. J Pathol 2001, 193:538–545.CrossRefPubMed Corbel M, Caulet-Maugendre S, Germain N, Molet S, Lagente V, Boichot E: Inhibition of bleomycin-induced pulmonary fibrosis in mice by the matrix metalloproteinase inhibitor batimastat. J Pathol 2001, 193:538–545.CrossRefPubMed
28.
go back to reference Corbel M, Belleguic C, Boichot E, Lagente V: Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 2002, 18:51–61.CrossRefPubMed Corbel M, Belleguic C, Boichot E, Lagente V: Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 2002, 18:51–61.CrossRefPubMed
Metadata
Title
Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis
Authors
Frank Bühling
Aline Wille
Christoph Röcken
Olaf Wiesner
Anja Baier
Ingmar Meinecke
Tobias Welte
Thomas Pap
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2005
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-6-37

Other articles of this Issue 1/2005

Respiratory Research 1/2005 Go to the issue