Skip to main content
Top
Published in: Respiratory Research 1/2005

Open Access 01-12-2005 | Research

Inhibition of TNFalpha in vivo prevents hyperoxia-mediated activation of caspase 3 in type II cells

Authors: Florian Guthmann, Heide Wissel, Christian Schachtrup, Angelika Tölle, Mario Rüdiger, Friedrich Spener, Bernd Rüstow

Published in: Respiratory Research | Issue 1/2005

Login to get access

Abstract

Background

The mechanisms during the initial phase of oxygen toxicity leading to pulmonary tissue damage are incompletely known. Increase of tumour necrosis factor alpha (TNFalpha) represents one of the first pulmonary responses to hyperoxia. We hypothesised that, in the initial phase of hyperoxia, TNFalpha activates the caspase cascade in type II pneumocytes (TIIcells).

Methods

Lung sections or freshly isolated TIIcells of control and hyperoxic treated rats (48 hrs) were used for the determination of TNFalpha (ELISA), TNF-receptor 1 (Western blot) and activity of caspases 8, 3, and 9 (colorimetrically). NF-kappaB activation was determined by EMSA, by increase of the p65 subunit in the nuclear fraction, and by immunocytochemistry using a monoclonal anti-NF-kappaB-antibody which selectively stained the activated, nuclear form of NF-kappa B. Apoptotic markers in lung tissue sections (TUNEL) and in TIIcells (cell death detection ELISA, Bax, Bcl-2, mitochondrial membrane potential, and late and early apoptotic cells) were measured using commercially available kits.

Results

In vivo, hyperoxia activated NF-kappaB and increased the expression of TNFalpha, TNF-receptor 1 and the activity of caspase 8 and 3 in freshly isolated TIIcells. Intratracheal application of anti-TNFalpha antibodies prevented the increase of TNFRI and of caspase 3 activity. Under hyperoxia, there was neither a significant change of cytosolic cytochrome C or of caspase 9 activity, nor an increase in apoptosis of TIIcells. Hyperoxia-induced activation of caspase 3 gradually decreased over two days of normoxia without increasing apoptosis. Therefore, activation of caspase 3 is a temporary effect in sublethal hyperoxia and did not mark the "point of no return" in TIIcells.

Conclusion

In the initiation phase of pulmonary oxygen toxicity, an increase of TNFalpha and its receptor TNFR1 leads to the activation of caspase 8 and 3 in TIIcells. Together with the hyperoxic induced increase of Bax and the decrease of the mitochondrial membrane potential, activation of caspase 3 can be seen as sensitisation for apoptosis. Eliminating the TNFalpha effect in vivo by anti-TNFalpha antibodies prevents the pro-apoptotic sensitisation of TIIcells.
Literature
1.
2.
go back to reference Freeman BA, Crapo JD: Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 1981, 256:10986–10992.PubMed Freeman BA, Crapo JD: Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 1981, 256:10986–10992.PubMed
3.
go back to reference Freeman BA, Panus PC, Matalon S, Buckley BJ, Baker RR: Oxidant injury to the alveolar epithelium: biochemical and pharmacologic studies. Res Rep Health Eff Inst 1993, 1–30. Freeman BA, Panus PC, Matalon S, Buckley BJ, Baker RR: Oxidant injury to the alveolar epithelium: biochemical and pharmacologic studies. Res Rep Health Eff Inst 1993, 1–30.
4.
go back to reference Freeman BA, Mason RJ, Williams MC, Crapo JD: Antioxidant enzyme activity in alveolar type II cells after exposure of rats to hyperoxia. Exp Lung Res 1986, 10:203–222.CrossRefPubMed Freeman BA, Mason RJ, Williams MC, Crapo JD: Antioxidant enzyme activity in alveolar type II cells after exposure of rats to hyperoxia. Exp Lung Res 1986, 10:203–222.CrossRefPubMed
5.
go back to reference Ho YS, Dey MS, Crapo JD: Antioxidant enzyme expression in rat lungs during hyperoxia. Am J Physiol 1996, 270:L810-L818.PubMed Ho YS, Dey MS, Crapo JD: Antioxidant enzyme expression in rat lungs during hyperoxia. Am J Physiol 1996, 270:L810-L818.PubMed
6.
go back to reference Perkowski S, Sun J, Singhal S, Santiago J, Leikauf GD, Albelda SM: Gene expression profiling of the early pulmonary response to hyperoxia in mice. Am J Respir Cell Mol Biol 2003, 28:682–696.CrossRefPubMed Perkowski S, Sun J, Singhal S, Santiago J, Leikauf GD, Albelda SM: Gene expression profiling of the early pulmonary response to hyperoxia in mice. Am J Respir Cell Mol Biol 2003, 28:682–696.CrossRefPubMed
7.
go back to reference Crapo JD, Barry BE, Foscue HA, Shelburne J: Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis 1980, 122:123–143.PubMed Crapo JD, Barry BE, Foscue HA, Shelburne J: Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis 1980, 122:123–143.PubMed
8.
go back to reference May M, Strobel P, Preisshofen T, Seidenspinner S, Marx A, Speer CP: Apoptosis and proliferation in lungs of ventilated and oxygen-treated preterm infants. Eur Respir J 2004, 23:113–121.CrossRefPubMed May M, Strobel P, Preisshofen T, Seidenspinner S, Marx A, Speer CP: Apoptosis and proliferation in lungs of ventilated and oxygen-treated preterm infants. Eur Respir J 2004, 23:113–121.CrossRefPubMed
9.
go back to reference Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D, Voelkel NF, Flores SC: Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 2003, 29:88–97.CrossRefPubMed Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D, Voelkel NF, Flores SC: Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 2003, 29:88–97.CrossRefPubMed
10.
go back to reference Matute-Bello G, Winn RK, Jonas M, Chi EY, Martin TR, Liles WC: Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol 2001, 158:153–161.CrossRefPubMedPubMedCentral Matute-Bello G, Winn RK, Jonas M, Chi EY, Martin TR, Liles WC: Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol 2001, 158:153–161.CrossRefPubMedPubMedCentral
11.
go back to reference Janssen YM, Matalon S, Mossman BT: Differential induction of c-fos, c-jun, and apoptosis in lung epithelial cells exposed to ROS or RNS. Am J Physiol 1997, 273:L789-L796.PubMed Janssen YM, Matalon S, Mossman BT: Differential induction of c-fos, c-jun, and apoptosis in lung epithelial cells exposed to ROS or RNS. Am J Physiol 1997, 273:L789-L796.PubMed
12.
go back to reference Gavino R, Johnson L, Bhandari V: Release of cytokines and apoptosis in fetal rat Type II pneumocytes exposed to hyperoxia and nitric oxide: modulatory effects of dexamethasone and pentoxifylline. Cytokine 2002, 20:247–255.CrossRefPubMed Gavino R, Johnson L, Bhandari V: Release of cytokines and apoptosis in fetal rat Type II pneumocytes exposed to hyperoxia and nitric oxide: modulatory effects of dexamethasone and pentoxifylline. Cytokine 2002, 20:247–255.CrossRefPubMed
13.
go back to reference Lukkarinen HP, Laine J, Kaapa PO: Lung epithelial cells undergo apoptosis in neonatal respiratory distress syndrome. Pediatr Res 2003, 53:254–259.CrossRefPubMed Lukkarinen HP, Laine J, Kaapa PO: Lung epithelial cells undergo apoptosis in neonatal respiratory distress syndrome. Pediatr Res 2003, 53:254–259.CrossRefPubMed
14.
go back to reference O'Reilly MA, Staversky RJ, Stripp BR, Finkelstein JN: Exposure to hyperoxia induces p53 expression in mouse lung epithelium. Am J Respir Cell Mol Biol 1998, 18:43–50.CrossRefPubMed O'Reilly MA, Staversky RJ, Stripp BR, Finkelstein JN: Exposure to hyperoxia induces p53 expression in mouse lung epithelium. Am J Respir Cell Mol Biol 1998, 18:43–50.CrossRefPubMed
15.
go back to reference Batenburg JJ, Haagsman HP: The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog Lipid Res 1998, 37:235–276.CrossRefPubMed Batenburg JJ, Haagsman HP: The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog Lipid Res 1998, 37:235–276.CrossRefPubMed
16.
go back to reference Adamson IY, Bowden DH: The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 1974, 30:35–42.PubMed Adamson IY, Bowden DH: The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 1974, 30:35–42.PubMed
17.
go back to reference Sabat R, Kolleck I, Witt W, Volk H, Sinha P, Rüstow B: Immunological dysregulation of lung cells in response to vitamin E deficiency. Free Radic Biol Med 2001, 30:1145–1153.CrossRefPubMed Sabat R, Kolleck I, Witt W, Volk H, Sinha P, Rüstow B: Immunological dysregulation of lung cells in response to vitamin E deficiency. Free Radic Biol Med 2001, 30:1145–1153.CrossRefPubMed
18.
go back to reference Sinha P, Kolleck I, Volk HD, Schlame M, Rüstow B: Vitamin E deficiency sensitizes alveolar type II cells for apoptosis. Biochim Biophys Acta 2002, 1583:91–98.CrossRefPubMed Sinha P, Kolleck I, Volk HD, Schlame M, Rüstow B: Vitamin E deficiency sensitizes alveolar type II cells for apoptosis. Biochim Biophys Acta 2002, 1583:91–98.CrossRefPubMed
19.
go back to reference Wherry JC, Pennington JE, Wenzel RP: Tumor necrosis factor and the therapeutic potential of anti-tumor necrosis factor antibodies. Crit Care Med 1993, 21:S436-S440.CrossRefPubMed Wherry JC, Pennington JE, Wenzel RP: Tumor necrosis factor and the therapeutic potential of anti-tumor necrosis factor antibodies. Crit Care Med 1993, 21:S436-S440.CrossRefPubMed
20.
go back to reference Stephens KE, Ishizaka A, Larrick JW, Raffin TA: Tumor necrosis factor causes increased pulmonary permeability and edema. Comparison to septic acute lung injury. Am Rev Respir Dis 1988, 137:1364–1370.CrossRefPubMed Stephens KE, Ishizaka A, Larrick JW, Raffin TA: Tumor necrosis factor causes increased pulmonary permeability and edema. Comparison to septic acute lung injury. Am Rev Respir Dis 1988, 137:1364–1370.CrossRefPubMed
21.
go back to reference Strieter RM, Kunkel SL, Bone RC: Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med 1993, 21:S447-S463.CrossRefPubMed Strieter RM, Kunkel SL, Bone RC: Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med 1993, 21:S447-S463.CrossRefPubMed
22.
go back to reference Goeddel DV: Signal transduction by tumor necrosis factor: the Parker B. Francis Lectureship. Chest 1999, 116:69S-73S.CrossRefPubMed Goeddel DV: Signal transduction by tumor necrosis factor: the Parker B. Francis Lectureship. Chest 1999, 116:69S-73S.CrossRefPubMed
23.
go back to reference Pryhuber GS, O'Brien DP, Baggs R, Phipps R, Huyck H, Sanz I, Nahm MH: Ablation of tumor necrosis factor receptor type I (p55) alters oxygen-induced lung injury. Am J Physiol 2000, 278:L1082-L1090. Pryhuber GS, O'Brien DP, Baggs R, Phipps R, Huyck H, Sanz I, Nahm MH: Ablation of tumor necrosis factor receptor type I (p55) alters oxygen-induced lung injury. Am J Physiol 2000, 278:L1082-L1090.
24.
go back to reference Aoshiba K, Rennard SI, Spurzem JR: Cell-matrix and cell-cell interactions modulate apoptosis of bronchial epithelial cells. Am J Physiol 1997, 272:L28-L37.PubMed Aoshiba K, Rennard SI, Spurzem JR: Cell-matrix and cell-cell interactions modulate apoptosis of bronchial epithelial cells. Am J Physiol 1997, 272:L28-L37.PubMed
25.
go back to reference Buckley S, Barsky L, Driscoll B, Weinberg K, Anderson KD, Warburton D: Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. Am J Physiol 1998, 274:L714-L720.PubMed Buckley S, Barsky L, Driscoll B, Weinberg K, Anderson KD, Warburton D: Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. Am J Physiol 1998, 274:L714-L720.PubMed
26.
go back to reference Kolleck I, Wissel H, Guthmann F, Schlame M, Sinha P, Rüstow B: HDL-holoparticle uptake by alveolar type II cells: effect of vitamin E status. Am J Respir Cell Mol Biol 2002, 27:57–63.CrossRefPubMed Kolleck I, Wissel H, Guthmann F, Schlame M, Sinha P, Rüstow B: HDL-holoparticle uptake by alveolar type II cells: effect of vitamin E status. Am J Respir Cell Mol Biol 2002, 27:57–63.CrossRefPubMed
27.
go back to reference Zen K, Notarfrancesco K, Oorschot V, Slot JW, Fisher AB, Shuman H: Generation and characterization of monoclonal antibodies to alveolar type II cell lamellar body membrane. Am J Physiol 1998, 275:L172-L183.PubMed Zen K, Notarfrancesco K, Oorschot V, Slot JW, Fisher AB, Shuman H: Generation and characterization of monoclonal antibodies to alveolar type II cell lamellar body membrane. Am J Physiol 1998, 275:L172-L183.PubMed
28.
go back to reference Wissel H, Müller T, Rüdiger M, Krüll M, Wauer RR: Contact of chlamydia pneumoniae with type II cell triggers activation of calcium-mediated NF-kappaB pathway. Biochim Biophys Acta, in press. Wissel H, Müller T, Rüdiger M, Krüll M, Wauer RR: Contact of chlamydia pneumoniae with type II cell triggers activation of calcium-mediated NF-kappaB pathway. Biochim Biophys Acta, in press.
29.
go back to reference Li Y, Zhang W, Mantell LL, Kazzaz JA, Fein AM, Horowitz S: Nuclear factor-kappaB is activated by hyperoxia but does not protect from cell death. J Biol Chem 1997, 272:20646–20649.CrossRefPubMed Li Y, Zhang W, Mantell LL, Kazzaz JA, Fein AM, Horowitz S: Nuclear factor-kappaB is activated by hyperoxia but does not protect from cell death. J Biol Chem 1997, 272:20646–20649.CrossRefPubMed
30.
go back to reference Singhal RK, Jain A: Glutathione ethyl ester supplementation prevents mortality in newborn rats exposed to hyperoxia. Biol Neonate 2000, 77:261–266.CrossRefPubMed Singhal RK, Jain A: Glutathione ethyl ester supplementation prevents mortality in newborn rats exposed to hyperoxia. Biol Neonate 2000, 77:261–266.CrossRefPubMed
31.
go back to reference van-Klaveren RJ, Dinsdale D, Pype JL, Demedts M, Nemery B: Changes in gamma-glutamyltransferase activity in rat lung tissue, BAL, and type II cells after hyperoxia. Am J Physiol 1997, 273:L537-L547.PubMed van-Klaveren RJ, Dinsdale D, Pype JL, Demedts M, Nemery B: Changes in gamma-glutamyltransferase activity in rat lung tissue, BAL, and type II cells after hyperoxia. Am J Physiol 1997, 273:L537-L547.PubMed
32.
go back to reference Aerts C, Wallaert B, Voisin C: In vitro effects of hyperoxia on alveolar type II pneumocytes: inhibition of glutathione synthesis increases hyperoxic cell injury. Exp Lung Res 1992, 18:845–861.CrossRefPubMed Aerts C, Wallaert B, Voisin C: In vitro effects of hyperoxia on alveolar type II pneumocytes: inhibition of glutathione synthesis increases hyperoxic cell injury. Exp Lung Res 1992, 18:845–861.CrossRefPubMed
33.
go back to reference Gius D, Botero A, Shah S, Curry HA: Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett 1999, 106:93–106.CrossRefPubMed Gius D, Botero A, Shah S, Curry HA: Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett 1999, 106:93–106.CrossRefPubMed
34.
go back to reference Li N, Karin M: Is NF-kappaB the sensor of oxidative stress? FASEB J 1999, 13:1137–1143.PubMed Li N, Karin M: Is NF-kappaB the sensor of oxidative stress? FASEB J 1999, 13:1137–1143.PubMed
35.
go back to reference Budihardjo I, Oliver H, Lutter M, Luo X, Wang X: Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999, 15:269–290.CrossRefPubMed Budihardjo I, Oliver H, Lutter M, Luo X, Wang X: Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999, 15:269–290.CrossRefPubMed
37.
38.
go back to reference Johnston CJ, Stripp BR, Piedbeouf B, Wright TW, Mango GW, Reed CK, Finkelstein JN: Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury. Exp Lung Res 1998, 24:189–202.CrossRefPubMed Johnston CJ, Stripp BR, Piedbeouf B, Wright TW, Mango GW, Reed CK, Finkelstein JN: Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury. Exp Lung Res 1998, 24:189–202.CrossRefPubMed
39.
go back to reference Johnston CJ, Wright TW, Reed CK, Finkelstein JN: Comparison of adult and newborn pulmonary cytokine mRNA expression after hyperoxia. Exp Lung Res 1997, 23:537–552.CrossRefPubMed Johnston CJ, Wright TW, Reed CK, Finkelstein JN: Comparison of adult and newborn pulmonary cytokine mRNA expression after hyperoxia. Exp Lung Res 1997, 23:537–552.CrossRefPubMed
40.
go back to reference Horinouchi H, Wang CC, Shepherd KE, Jones R: TNF alpha gene and protein expression in alveolar macrophages in acute and chronic hyperoxia-induced lung injury. Am J Respir Cell Mol Biol 1996, 14:548–555.CrossRefPubMed Horinouchi H, Wang CC, Shepherd KE, Jones R: TNF alpha gene and protein expression in alveolar macrophages in acute and chronic hyperoxia-induced lung injury. Am J Respir Cell Mol Biol 1996, 14:548–555.CrossRefPubMed
41.
go back to reference Desmarquest P, Chadelat K, Corroyer S, Cazals V, Clement A: Effect of hyperoxia on human macrophage cytokine response. Respir Med 1998, 92:951–960.CrossRefPubMed Desmarquest P, Chadelat K, Corroyer S, Cazals V, Clement A: Effect of hyperoxia on human macrophage cytokine response. Respir Med 1998, 92:951–960.CrossRefPubMed
42.
go back to reference Franek WR, Horowitz S, Stansberry L, Kazzaz JA, Koo HC, Li Y, Arita Y, Davis JM, Mantell AS, Scott W, Mantell LL: Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J Biol Chem 2001, 276:569–575.CrossRefPubMed Franek WR, Horowitz S, Stansberry L, Kazzaz JA, Koo HC, Li Y, Arita Y, Davis JM, Mantell AS, Scott W, Mantell LL: Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J Biol Chem 2001, 276:569–575.CrossRefPubMed
43.
go back to reference Beg AA, Baltimore D: An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996, 274:782–784.CrossRefPubMed Beg AA, Baltimore D: An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996, 274:782–784.CrossRefPubMed
44.
go back to reference Wang CY, Mayo MW, Baldwin A-SJ: TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996, 274:784–787.CrossRefPubMed Wang CY, Mayo MW, Baldwin A-SJ: TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996, 274:784–787.CrossRefPubMed
45.
go back to reference Liu ZG, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996, 87:565–576.CrossRefPubMed Liu ZG, Hsu H, Goeddel DV, Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996, 87:565–576.CrossRefPubMed
46.
go back to reference Pryhuber GS, Huyck HL, Staversky RJ, Finkelstein JN, O'Reilly MA: Tumor necrosis factor-alpha-induced lung cell expression of antiapoptotic genes TRAF1 and cIAP2. Am J Respir Cell Mol Biol 2000, 22:150–156.CrossRefPubMed Pryhuber GS, Huyck HL, Staversky RJ, Finkelstein JN, O'Reilly MA: Tumor necrosis factor-alpha-induced lung cell expression of antiapoptotic genes TRAF1 and cIAP2. Am J Respir Cell Mol Biol 2000, 22:150–156.CrossRefPubMed
47.
go back to reference Tateda K, Deng JC, Moore TA, Newstead MW, Paine R, Kobayashi N, Yamaguchi K, Standiford TJ: Hyperoxia mediates acute lung injury and increased lethality in murine Legionella pneumonia: the role of apoptosis. J Immunol 2003, 170:4209–4216.CrossRefPubMed Tateda K, Deng JC, Moore TA, Newstead MW, Paine R, Kobayashi N, Yamaguchi K, Standiford TJ: Hyperoxia mediates acute lung injury and increased lethality in murine Legionella pneumonia: the role of apoptosis. J Immunol 2003, 170:4209–4216.CrossRefPubMed
48.
go back to reference Pagano A, Donati Y, Metrailler I, Barazzone-Argiroffo C: Mitochondrial cytochrome c release is a key event in hyperoxia-induced lung injury: protection by cyclosporin A. Am J Physiol 2004, 286:L275-L283. Pagano A, Donati Y, Metrailler I, Barazzone-Argiroffo C: Mitochondrial cytochrome c release is a key event in hyperoxia-induced lung injury: protection by cyclosporin A. Am J Physiol 2004, 286:L275-L283.
49.
go back to reference Barazzone C, Horowitz S, Donati YR, Rodriguez I, Piguet PF: Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol 1998, 19:573–581.CrossRefPubMed Barazzone C, Horowitz S, Donati YR, Rodriguez I, Piguet PF: Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol 1998, 19:573–581.CrossRefPubMed
50.
go back to reference Fine A, Anderson NL, Rothstein TL, Williams MC, Gochuico BR: Fas expression in pulmonary alveolar type II cells. Am J Physiol 1997, 273:L64-L71.PubMed Fine A, Anderson NL, Rothstein TL, Williams MC, Gochuico BR: Fas expression in pulmonary alveolar type II cells. Am J Physiol 1997, 273:L64-L71.PubMed
51.
go back to reference Fine A, Janssen-Heininger Y, Soultanakis RP, Swisher SG, Uhal BD: Apoptosis in lung pathophysiology. Am J Physiol 2000, 279:L423-L427. Fine A, Janssen-Heininger Y, Soultanakis RP, Swisher SG, Uhal BD: Apoptosis in lung pathophysiology. Am J Physiol 2000, 279:L423-L427.
52.
go back to reference Das KC, Lewis-Molock Y, White CW: Thiol modulation of TNF alpha and IL-1 induced MnSOD gene expression and activation of NF-kappa B. Mol Cell Biochem 1995, 148:45–57.CrossRefPubMed Das KC, Lewis-Molock Y, White CW: Thiol modulation of TNF alpha and IL-1 induced MnSOD gene expression and activation of NF-kappa B. Mol Cell Biochem 1995, 148:45–57.CrossRefPubMed
Metadata
Title
Inhibition of TNFalpha in vivo prevents hyperoxia-mediated activation of caspase 3 in type II cells
Authors
Florian Guthmann
Heide Wissel
Christian Schachtrup
Angelika Tölle
Mario Rüdiger
Friedrich Spener
Bernd Rüstow
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2005
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-6-10

Other articles of this Issue 1/2005

Respiratory Research 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.