Skip to main content
Top
Published in: Respiratory Research 1/2009

Open Access 01-12-2009 | Review

Mechanisms of the noxious inflammatory cycle in cystic fibrosis

Authors: Mathilde Rottner, Jean-Marie Freyssinet, M Carmen Martínez

Published in: Respiratory Research | Issue 1/2009

Login to get access

Abstract

Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis.
Literature
1.
go back to reference Aschcroft F: Cystic fibrosis transmembrane conductance regulator. In Ion Channel and Disease. Academic Press. San Diego; 1999:211–232. Aschcroft F: Cystic fibrosis transmembrane conductance regulator. In Ion Channel and Disease. Academic Press. San Diego; 1999:211–232.
2.
go back to reference Akabas MH: Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel. J Biol Chem 2000, 275:3729–3732.PubMedCrossRef Akabas MH: Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel. J Biol Chem 2000, 275:3729–3732.PubMedCrossRef
3.
go back to reference Hudson VM: Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 2001, 30:1440–1461.PubMedCrossRef Hudson VM: Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 2001, 30:1440–1461.PubMedCrossRef
4.
go back to reference Kogan I, Ramjeesingh M, Li C, Kidd JF, Wang Y, Leslie EM, Cole SP, Bear CE: CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 2003, 22:1981–1989.PubMedPubMedCentralCrossRef Kogan I, Ramjeesingh M, Li C, Kidd JF, Wang Y, Leslie EM, Cole SP, Bear CE: CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 2003, 22:1981–1989.PubMedPubMedCentralCrossRef
5.
go back to reference Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB: CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 1999, 79:S145–166.PubMed Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB: CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 1999, 79:S145–166.PubMed
7.
go back to reference Yoo JS, Moyer BD, Bannykh S, Yoo HM, Riordan JR, Balch WE: Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway. J Biol Chem 2002, 277:11401–11409.PubMedCrossRef Yoo JS, Moyer BD, Bannykh S, Yoo HM, Riordan JR, Balch WE: Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway. J Biol Chem 2002, 277:11401–11409.PubMedCrossRef
8.
go back to reference Boucher RC: Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 2007, 13:231–240.PubMedCrossRef Boucher RC: Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 2007, 13:231–240.PubMedCrossRef
9.
go back to reference Liedtke CM: Electrolyte transport in the epithelium of pulmonary segments of normal and cystic fibrosis lung. FASEB J 1992, 6:3076–3084.PubMed Liedtke CM: Electrolyte transport in the epithelium of pulmonary segments of normal and cystic fibrosis lung. FASEB J 1992, 6:3076–3084.PubMed
10.
go back to reference Lukacs GL, Chang XB, Kartner N, Rotstein OD, Riordan JR, Grinstein S: The cystic fibrosis transmembrane regulator is present and functional in endosomes. Role as a determinant of endosomal pH. J Biol Chem 1992, 267:14568–14572.PubMed Lukacs GL, Chang XB, Kartner N, Rotstein OD, Riordan JR, Grinstein S: The cystic fibrosis transmembrane regulator is present and functional in endosomes. Role as a determinant of endosomal pH. J Biol Chem 1992, 267:14568–14572.PubMed
11.
go back to reference Rowntree RK, Harris A: The phenotypic consequences of CFTR mutations. Ann Hum Genet 2003, 67:471–485.PubMedCrossRef Rowntree RK, Harris A: The phenotypic consequences of CFTR mutations. Ann Hum Genet 2003, 67:471–485.PubMedCrossRef
12.
go back to reference Lim M, Zeitlin PL: Therapeutic strategies to correct malfunction of CFTR. Paediatr Respir Rev 2001, 2:159–164.PubMed Lim M, Zeitlin PL: Therapeutic strategies to correct malfunction of CFTR. Paediatr Respir Rev 2001, 2:159–164.PubMed
13.
go back to reference Taylor CJ, Aswani N: The pancreas in cystic fibrosis. Paediatr Respir Rev 2002, 3:77–81.PubMed Taylor CJ, Aswani N: The pancreas in cystic fibrosis. Paediatr Respir Rev 2002, 3:77–81.PubMed
14.
go back to reference Boucher RC: An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev 2002, 54:1359–1371.PubMedCrossRef Boucher RC: An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev 2002, 54:1359–1371.PubMedCrossRef
15.
go back to reference Heijerman H: Infection and inflammation in cystic fibrosis: a short review. J Cyst Fibros 2005, 4:3–5.PubMedCrossRef Heijerman H: Infection and inflammation in cystic fibrosis: a short review. J Cyst Fibros 2005, 4:3–5.PubMedCrossRef
16.
go back to reference Dakin CJ, Numa AH, Wang H, Morton JR, Vertzyas CC, Henry RL: Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 2002, 165:904–910.PubMedCrossRef Dakin CJ, Numa AH, Wang H, Morton JR, Vertzyas CC, Henry RL: Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 2002, 165:904–910.PubMedCrossRef
17.
go back to reference Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW: Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995, 151:1075–1082.PubMed Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW: Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995, 151:1075–1082.PubMed
18.
go back to reference Muhlebach MS, Stewart PW, Leigh MW, Noah TL: Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 1999, 160:186–191.PubMedCrossRef Muhlebach MS, Stewart PW, Leigh MW, Noah TL: Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 1999, 160:186–191.PubMedCrossRef
19.
go back to reference Becker MN, Sauer MS, Muhlebach MS, Hirsh AJ, Wu Q, Verghese MW, Randell SH: Cytokine secretion by cystic fibrosis airway epithelial cells. Am J Respir Crit Care Med 2004, 169:645–653.PubMedCrossRef Becker MN, Sauer MS, Muhlebach MS, Hirsh AJ, Wu Q, Verghese MW, Randell SH: Cytokine secretion by cystic fibrosis airway epithelial cells. Am J Respir Crit Care Med 2004, 169:645–653.PubMedCrossRef
20.
go back to reference Hybiske K, Fu Z, Schwarzer C, Tseng J, Do J, Huang N, Machen TE: Effects of cystic fibrosis transmembrane conductance regulator and DeltaF508CFTR on inflammatory response, ER stress, and Ca2+ of airway epithelia. Am J Physiol Lung Cell Mol Physiol 2007, 293:L1250–1260.PubMedCrossRef Hybiske K, Fu Z, Schwarzer C, Tseng J, Do J, Huang N, Machen TE: Effects of cystic fibrosis transmembrane conductance regulator and DeltaF508CFTR on inflammatory response, ER stress, and Ca2+ of airway epithelia. Am J Physiol Lung Cell Mol Physiol 2007, 293:L1250–1260.PubMedCrossRef
21.
go back to reference Escotte S, Tabary O, Dusser D, Majer-Teboul C, Puchelle E, Jacquot J: Fluticasone reduces IL-6 and IL-8 production of cystic fibrosis bronchial epithelial cells via IKK-beta kinase pathway. Eur Respir J 2003, 21:574–581.PubMedCrossRef Escotte S, Tabary O, Dusser D, Majer-Teboul C, Puchelle E, Jacquot J: Fluticasone reduces IL-6 and IL-8 production of cystic fibrosis bronchial epithelial cells via IKK-beta kinase pathway. Eur Respir J 2003, 21:574–581.PubMedCrossRef
22.
go back to reference Rottner M, Kunzelmann C, Mergey M, Freyssinet JM, Martinez MC: Exaggerated apoptosis and NF-kappaB activation in pancreatic and tracheal cystic fibrosis cells. Faseb J 2007, 21:2939–2948.PubMedCrossRef Rottner M, Kunzelmann C, Mergey M, Freyssinet JM, Martinez MC: Exaggerated apoptosis and NF-kappaB activation in pancreatic and tracheal cystic fibrosis cells. Faseb J 2007, 21:2939–2948.PubMedCrossRef
23.
go back to reference Venkatakrishnan A, Stecenko AA, King G, Blackwell TR, Brigham KL, Christman JW, Blackwell TS: Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 2000, 23:396–403.PubMedCrossRef Venkatakrishnan A, Stecenko AA, King G, Blackwell TR, Brigham KL, Christman JW, Blackwell TS: Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 2000, 23:396–403.PubMedCrossRef
24.
go back to reference Bergoin C, Gosset P, Lamblin C, Bolard F, Turck D, Tonnel AB, Wallaert B: Cell and cytokine profile in nasal secretions in cystic fibrosis. J Cyst Fibros 2002, 1:110–115.PubMedCrossRef Bergoin C, Gosset P, Lamblin C, Bolard F, Turck D, Tonnel AB, Wallaert B: Cell and cytokine profile in nasal secretions in cystic fibrosis. J Cyst Fibros 2002, 1:110–115.PubMedCrossRef
25.
go back to reference Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG: Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 1993, 75:2419–2424.PubMed Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG: Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 1993, 75:2419–2424.PubMed
26.
go back to reference Tirouvanziam R, Gernez Y, Conrad CK, Moss RB, Schrijver I, Dunn CE, Davies ZA, Herzenberg LA: Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc Natl Acad Sci USA 2008, 105:4335–4339.PubMedPubMedCentralCrossRef Tirouvanziam R, Gernez Y, Conrad CK, Moss RB, Schrijver I, Dunn CE, Davies ZA, Herzenberg LA: Profound functional and signaling changes in viable inflammatory neutrophils homing to cystic fibrosis airways. Proc Natl Acad Sci USA 2008, 105:4335–4339.PubMedPubMedCentralCrossRef
27.
go back to reference Conese M, Copreni E, Di Gioia S, De Rinaldis P, Fumarulo R: Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J Cyst Fibros 2003, 2:129–135.PubMedCrossRef Conese M, Copreni E, Di Gioia S, De Rinaldis P, Fumarulo R: Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J Cyst Fibros 2003, 2:129–135.PubMedCrossRef
28.
go back to reference Corvol H, Fitting C, Chadelat K, Jacquot J, Tabary O, Boule M, Cavaillon JM, Clement A: Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2003, 284:L997–1003.PubMedCrossRef Corvol H, Fitting C, Chadelat K, Jacquot J, Tabary O, Boule M, Cavaillon JM, Clement A: Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2003, 284:L997–1003.PubMedCrossRef
29.
go back to reference Tabary O, Corvol H, Boncoeur E, Chadelat K, Fitting C, Cavaillon JM, Clement A, Jacquot J: Adherence of airway neutrophils and inflammatory response are increased in CF airway epithelial cell-neutrophil interactions. Am J Physiol Lung Cell Mol Physiol 2006, 290:L588–596.PubMedCrossRef Tabary O, Corvol H, Boncoeur E, Chadelat K, Fitting C, Cavaillon JM, Clement A, Jacquot J: Adherence of airway neutrophils and inflammatory response are increased in CF airway epithelial cell-neutrophil interactions. Am J Physiol Lung Cell Mol Physiol 2006, 290:L588–596.PubMedCrossRef
30.
go back to reference Courtney JM, Ennis M, Elborn JS: Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros 2004, 3:223–231.PubMedCrossRef Courtney JM, Ennis M, Elborn JS: Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros 2004, 3:223–231.PubMedCrossRef
31.
go back to reference Virella-Lowell I, Herlihy JD, Liu B, Lopez C, Cruz P, Muller C, Baker HV, Flotte TR: Effects of CFTR, interleukin-10, and Pseudomonas aeruginosa on gene expression profiles in a CF bronchial epithelial cell Line. Mol Ther 2004, 10:562–573.PubMedCrossRef Virella-Lowell I, Herlihy JD, Liu B, Lopez C, Cruz P, Muller C, Baker HV, Flotte TR: Effects of CFTR, interleukin-10, and Pseudomonas aeruginosa on gene expression profiles in a CF bronchial epithelial cell Line. Mol Ther 2004, 10:562–573.PubMedCrossRef
32.
go back to reference Schottelius AJ, Mayo MW, Sartor RB, Baldwin AS Jr: Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem 1999, 274:31868–31874.PubMedCrossRef Schottelius AJ, Mayo MW, Sartor RB, Baldwin AS Jr: Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem 1999, 274:31868–31874.PubMedCrossRef
33.
go back to reference Saadane A, Soltys J, Berger M: Role of IL-10 deficiency in excessive nuclear factor-kappaB activation and lung inflammation in cystic fibrosis transmembrane conductance regulator knockout mice. J Allergy Clin Immunol 2005, 115:405–411.PubMedCrossRef Saadane A, Soltys J, Berger M: Role of IL-10 deficiency in excessive nuclear factor-kappaB activation and lung inflammation in cystic fibrosis transmembrane conductance regulator knockout mice. J Allergy Clin Immunol 2005, 115:405–411.PubMedCrossRef
34.
go back to reference Verhaeghe C, Remouchamps C, Hennuy B, Vanderplasschen A, Chariot A, Tabruyn SP, Oury C, Bours V: Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 2007, 73:1982–1994.PubMedCrossRef Verhaeghe C, Remouchamps C, Hennuy B, Vanderplasschen A, Chariot A, Tabruyn SP, Oury C, Bours V: Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 2007, 73:1982–1994.PubMedCrossRef
35.
go back to reference Tchilibon S, Zhang J, Yang Q, Eidelman O, Kim H, Caohuy H, Jacobson KA, Pollard BS, Pollard HB: Amphiphilic pyridinium salts block TNF alpha/NF kappa B signaling and constitutive hypersecretion of interleukin-8 (IL-8) from cystic fibrosis lung epithelial cells. Biochem Pharmacol 2005, 70:381–393.PubMedCrossRef Tchilibon S, Zhang J, Yang Q, Eidelman O, Kim H, Caohuy H, Jacobson KA, Pollard BS, Pollard HB: Amphiphilic pyridinium salts block TNF alpha/NF kappa B signaling and constitutive hypersecretion of interleukin-8 (IL-8) from cystic fibrosis lung epithelial cells. Biochem Pharmacol 2005, 70:381–393.PubMedCrossRef
36.
go back to reference Dechecchi MC, Nicolis E, Norez C, Bezzerri V, Borgatti M, Mancini I, Rizzotti P, Ribeiro CM, Gambari R, Becq F, Cabrini G: Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 2008, 7:555–565.PubMedCrossRef Dechecchi MC, Nicolis E, Norez C, Bezzerri V, Borgatti M, Mancini I, Rizzotti P, Ribeiro CM, Gambari R, Becq F, Cabrini G: Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 2008, 7:555–565.PubMedCrossRef
37.
go back to reference Chen J, Kinter M, Shank S, Cotton C, Kelley TJ, Ziady AG: Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS ONE 2008, 3:e3367.PubMedPubMedCentralCrossRef Chen J, Kinter M, Shank S, Cotton C, Kelley TJ, Ziady AG: Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS ONE 2008, 3:e3367.PubMedPubMedCentralCrossRef
38.
go back to reference Weber AJ, Soong G, Bryan R, Saba S, Prince A: Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function. Am J Physiol Lung Cell Mol Physiol 2001, 281:L71–78.PubMed Weber AJ, Soong G, Bryan R, Saba S, Prince A: Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function. Am J Physiol Lung Cell Mol Physiol 2001, 281:L71–78.PubMed
39.
go back to reference Dechecchi MC, Nicolis E, Bezzerri V, Vella A, Colombatti M, Assael BM, Mettey Y, Borgatti M, Mancini I, Gambari R, Becq F, Cabrini G: MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells. Am J Respir Cell Mol Biol 2007, 36:615–624.PubMedCrossRef Dechecchi MC, Nicolis E, Bezzerri V, Vella A, Colombatti M, Assael BM, Mettey Y, Borgatti M, Mancini I, Gambari R, Becq F, Cabrini G: MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells. Am J Respir Cell Mol Biol 2007, 36:615–624.PubMedCrossRef
40.
go back to reference Machen TE: Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol Cell Physiol 2006, 291:C218–230.PubMedCrossRef Machen TE: Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol Cell Physiol 2006, 291:C218–230.PubMedCrossRef
41.
go back to reference Saadane A, Soltys J, Berger M: Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. J Allergy Clin Immunol 2006, 117:1163–1169.PubMedCrossRef Saadane A, Soltys J, Berger M: Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. J Allergy Clin Immunol 2006, 117:1163–1169.PubMedCrossRef
42.
go back to reference Andersson C, Zaman MM, Jones AB, Freedman SD: Alterations in immune response and PPAR/LXR regulation in cystic fibrosis macrophages. J Cyst Fibros 2008, 7:68–78.PubMedCrossRef Andersson C, Zaman MM, Jones AB, Freedman SD: Alterations in immune response and PPAR/LXR regulation in cystic fibrosis macrophages. J Cyst Fibros 2008, 7:68–78.PubMedCrossRef
43.
go back to reference Bruscia EM, Zhang PX, Ferreira E, Caputo C, Emerson JW, Tuck D, Krause DS, Egan ME: Macrophages directly contribute to the exaggerated inflammatory response in CFTR-/- mice. Am J Respir Cell Mol Biol 2009, 40:295–304.PubMedCrossRef Bruscia EM, Zhang PX, Ferreira E, Caputo C, Emerson JW, Tuck D, Krause DS, Egan ME: Macrophages directly contribute to the exaggerated inflammatory response in CFTR-/- mice. Am J Respir Cell Mol Biol 2009, 40:295–304.PubMedCrossRef
44.
go back to reference Zaman MM, Gelrud A, Junaidi O, Regan MM, Warny M, Shea JC, Kelly C, O'Sullivan BP, Freedman SD: Interleukin 8 secretion from monocytes of subjects heterozygous for the deltaF508 cystic fibrosis transmembrane conductance regulator gene mutation is altered. Clin Diagn Lab Immunol 2004, 11:819–824.PubMedPubMedCentral Zaman MM, Gelrud A, Junaidi O, Regan MM, Warny M, Shea JC, Kelly C, O'Sullivan BP, Freedman SD: Interleukin 8 secretion from monocytes of subjects heterozygous for the deltaF508 cystic fibrosis transmembrane conductance regulator gene mutation is altered. Clin Diagn Lab Immunol 2004, 11:819–824.PubMedPubMedCentral
45.
go back to reference Maiuri L, Raia V, De Marco G, Coletta S, de Ritis G, Londei M, Auricchio S: DNA fragmentation is a feature of cystic fibrosis epithelial cells: a disease with inappropriate apoptosis? FEBS Lett 1997, 408:225–231.PubMedCrossRef Maiuri L, Raia V, De Marco G, Coletta S, de Ritis G, Londei M, Auricchio S: DNA fragmentation is a feature of cystic fibrosis epithelial cells: a disease with inappropriate apoptosis? FEBS Lett 1997, 408:225–231.PubMedCrossRef
46.
go back to reference Cannon CL, Kowalski MP, Stopak KS, Pier GB: Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol 2003, 29:188–197.PubMedCrossRef Cannon CL, Kowalski MP, Stopak KS, Pier GB: Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol 2003, 29:188–197.PubMedCrossRef
47.
go back to reference McKeon DJ, Condliffe AM, Cowburn AS, Cadwallader KC, Farahi N, Bilton D, Chilvers ER: Prolonged survival of neutrophils from patients with Delta F508 CFTR mutations. Thorax 2008, 63:660–661.PubMedCrossRef McKeon DJ, Condliffe AM, Cowburn AS, Cadwallader KC, Farahi N, Bilton D, Chilvers ER: Prolonged survival of neutrophils from patients with Delta F508 CFTR mutations. Thorax 2008, 63:660–661.PubMedCrossRef
48.
go back to reference Vilela RM, Lands LC, Meehan B, Kubow S: Inhibition of IL-8 release from CFTR-deficient lung epithelial cells following pre-treatment with fenretinide. Int Immunopharmacol 2006, 6:1651–1664.PubMedCrossRef Vilela RM, Lands LC, Meehan B, Kubow S: Inhibition of IL-8 release from CFTR-deficient lung epithelial cells following pre-treatment with fenretinide. Int Immunopharmacol 2006, 6:1651–1664.PubMedCrossRef
49.
go back to reference Pfeffer KD, Huecksteadt TP, Hoidal JR: Expression and regulation of tumor necrosis factor in macrophages from cystic fibrosis patients. Am J Respir Cell Mol Biol 1993, 9:511–519.PubMedCrossRef Pfeffer KD, Huecksteadt TP, Hoidal JR: Expression and regulation of tumor necrosis factor in macrophages from cystic fibrosis patients. Am J Respir Cell Mol Biol 1993, 9:511–519.PubMedCrossRef
50.
go back to reference Durieu I, Amsellem C, Paulin C, Chambe MT, Bienvenu J, Bellon G, Pacheco Y: Fas and Fas ligand expression in cystic fibrosis airway epithelium. Thorax 1999, 54:1093–1098.PubMedPubMedCentralCrossRef Durieu I, Amsellem C, Paulin C, Chambe MT, Bienvenu J, Bellon G, Pacheco Y: Fas and Fas ligand expression in cystic fibrosis airway epithelium. Thorax 1999, 54:1093–1098.PubMedPubMedCentralCrossRef
51.
go back to reference Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM: Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 2002, 109:661–670.PubMedPubMedCentralCrossRef Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM: Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 2002, 109:661–670.PubMedPubMedCentralCrossRef
52.
go back to reference Hoyer-Hansen M, Jaattela M: Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 2007, 14:1576–1582.PubMedCrossRef Hoyer-Hansen M, Jaattela M: Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 2007, 14:1576–1582.PubMedCrossRef
54.
go back to reference Malhotra JD, Kaufman RJ: Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 2007, 9:2277–2293.PubMedCrossRef Malhotra JD, Kaufman RJ: Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 2007, 9:2277–2293.PubMedCrossRef
55.
go back to reference Rao RV, Ellerby HM, Bredesen DE: Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 2004, 11:372–380.PubMedCrossRef Rao RV, Ellerby HM, Bredesen DE: Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 2004, 11:372–380.PubMedCrossRef
56.
go back to reference Gilbert A, Jadot M, Leontieva E, Wattiaux-De Coninck S, Wattiaux R: Delta F508 CFTR localizes in the endoplasmic reticulum-Golgi intermediate compartment in cystic fibrosis cells. Exp Cell Res 1998, 242:144–152.PubMedCrossRef Gilbert A, Jadot M, Leontieva E, Wattiaux-De Coninck S, Wattiaux R: Delta F508 CFTR localizes in the endoplasmic reticulum-Golgi intermediate compartment in cystic fibrosis cells. Exp Cell Res 1998, 242:144–152.PubMedCrossRef
57.
go back to reference Antigny F, Norez C, Becq F, Vandebrouck C: Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR. Cell Calcium 2008, 43:175–183.PubMedCrossRef Antigny F, Norez C, Becq F, Vandebrouck C: Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR. Cell Calcium 2008, 43:175–183.PubMedCrossRef
58.
go back to reference Rab A, Bartoszewski R, Jurkuvenaite A, Wakefield J, Collawn JF, Bebok Z: Endoplasmic reticulum stress and the unfolded protein response regulate genomic cystic fibrosis transmembrane conductance regulator expression. Am J Physiol Cell Physiol 2007, 292:C756–766.PubMedCrossRef Rab A, Bartoszewski R, Jurkuvenaite A, Wakefield J, Collawn JF, Bebok Z: Endoplasmic reticulum stress and the unfolded protein response regulate genomic cystic fibrosis transmembrane conductance regulator expression. Am J Physiol Cell Physiol 2007, 292:C756–766.PubMedCrossRef
59.
go back to reference Lai E, Teodoro T, Volchuk A: Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 2007, 22:193–201.CrossRef Lai E, Teodoro T, Volchuk A: Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 2007, 22:193–201.CrossRef
60.
go back to reference Kerbiriou M, Le Drevo MA, Ferec C, Trouve P: Coupling cystic fibrosis to endoplasmic reticulum stress: Differential role of Grp78 and ATF6. Biochim Biophys Acta 2007, 1772:1236–1249.PubMedCrossRef Kerbiriou M, Le Drevo MA, Ferec C, Trouve P: Coupling cystic fibrosis to endoplasmic reticulum stress: Differential role of Grp78 and ATF6. Biochim Biophys Acta 2007, 1772:1236–1249.PubMedCrossRef
61.
go back to reference Bartoszewski R, Rab A, Jurkuvenaite A, Mazur M, Wakefield J, Collawn JF, Bebok Z: Activation of the Unfolded Protein Response by {Delta}F508 CFTR. Am J Respir Cell Mol Biol 2008, 39:448–457.PubMedPubMedCentralCrossRef Bartoszewski R, Rab A, Jurkuvenaite A, Mazur M, Wakefield J, Collawn JF, Bebok Z: Activation of the Unfolded Protein Response by {Delta}F508 CFTR. Am J Respir Cell Mol Biol 2008, 39:448–457.PubMedPubMedCentralCrossRef
62.
go back to reference Bartoszewski R, Rab A, Twitty G, Stevenson L, Fortenberry J, Piotrowski A, Dumanski JP, Bebok Z: The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem 2008, 283:12154–12165.PubMedCrossRef Bartoszewski R, Rab A, Twitty G, Stevenson L, Fortenberry J, Piotrowski A, Dumanski JP, Bebok Z: The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem 2008, 283:12154–12165.PubMedCrossRef
63.
go back to reference Meusser B, Hirsch C, Jarosch E, Sommer T: ERAD: the long road to destruction. Nat Cell Biol 2005, 7:766–772.PubMedCrossRef Meusser B, Hirsch C, Jarosch E, Sommer T: ERAD: the long road to destruction. Nat Cell Biol 2005, 7:766–772.PubMedCrossRef
65.
go back to reference Vij N, Fang S, Zeitlin PL: Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem 2006, 281:17369–17378.PubMedCrossRef Vij N, Fang S, Zeitlin PL: Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem 2006, 281:17369–17378.PubMedCrossRef
66.
go back to reference Pahl HL, Baeuerle PA: A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J 1995, 14:2580–2588.PubMedPubMedCentral Pahl HL, Baeuerle PA: A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J 1995, 14:2580–2588.PubMedPubMedCentral
67.
go back to reference Pahl HL, Baeuerle PA: The ER-overload response: activation of NF-kappa B. Trends Biochem Sci 1997, 22:63–67.PubMedCrossRef Pahl HL, Baeuerle PA: The ER-overload response: activation of NF-kappa B. Trends Biochem Sci 1997, 22:63–67.PubMedCrossRef
68.
go back to reference Knorre A, Wagner M, Schaefer HE, Colledge WH, Pahl HL: DeltaF508-CFTR causes constitutive NF-kappaB activation through an ER-overload response in cystic fibrosis lungs. Biol Chem 2002, 383:271–282.PubMedCrossRef Knorre A, Wagner M, Schaefer HE, Colledge WH, Pahl HL: DeltaF508-CFTR causes constitutive NF-kappaB activation through an ER-overload response in cystic fibrosis lungs. Biol Chem 2002, 383:271–282.PubMedCrossRef
69.
go back to reference Loo TW, Bartlett MC, Clarke DM: Correctors promote folding of the CFTR in the endoplasmic reticulum. Biochem J 2008, 413:29–36.PubMedCrossRef Loo TW, Bartlett MC, Clarke DM: Correctors promote folding of the CFTR in the endoplasmic reticulum. Biochem J 2008, 413:29–36.PubMedCrossRef
70.
go back to reference Singh OV, Pollard HB, Zeitlin PL: Chemical rescue of deltaF508-CFTR mimics genetic repair in cystic fibrosis bronchial epithelial cells. Mol Cell Proteomics 2008, 7:1099–1110.PubMedPubMedCentralCrossRef Singh OV, Pollard HB, Zeitlin PL: Chemical rescue of deltaF508-CFTR mimics genetic repair in cystic fibrosis bronchial epithelial cells. Mol Cell Proteomics 2008, 7:1099–1110.PubMedPubMedCentralCrossRef
71.
go back to reference Varga K, Goldstein RF, Jurkuvenaite A, Chen L, Matalon S, Sorscher EJ, Bebok Z, Collawn JF: Enhanced cell-surface stability of rescued DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones. Biochem J 2008, 410:555–564.PubMedPubMedCentralCrossRef Varga K, Goldstein RF, Jurkuvenaite A, Chen L, Matalon S, Sorscher EJ, Bebok Z, Collawn JF: Enhanced cell-surface stability of rescued DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones. Biochem J 2008, 410:555–564.PubMedPubMedCentralCrossRef
72.
go back to reference Ribeiro CM, Paradiso AM, Carew MA, Shears SB, Boucher RC: Cystic fibrosis airway epithelial Ca2+ i signaling: the mechanism for the larger agonist-mediated Ca2+ i signals in human cystic fibrosis airway epithelia. J Biol Chem 2005, 280:10202–10209.PubMedCrossRef Ribeiro CM, Paradiso AM, Carew MA, Shears SB, Boucher RC: Cystic fibrosis airway epithelial Ca2+ i signaling: the mechanism for the larger agonist-mediated Ca2+ i signals in human cystic fibrosis airway epithelia. J Biol Chem 2005, 280:10202–10209.PubMedCrossRef
73.
go back to reference Ribeiro CM, Paradiso AM, Schwab U, Perez-Vilar J, Jones L, O'Neal W, Boucher RC: Chronic airway infection/inflammation induces a Ca2+i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 2005,280(18):17798–17806.PubMedCrossRef Ribeiro CM, Paradiso AM, Schwab U, Perez-Vilar J, Jones L, O'Neal W, Boucher RC: Chronic airway infection/inflammation induces a Ca2+i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 2005,280(18):17798–17806.PubMedCrossRef
74.
go back to reference Tabary O, Boncoeur E, de Martin R, Pepperkok R, Clement A, Schultz C, Jacquot J: Calcium-dependent regulation of NF-(kappa)B activation in cystic fibrosis airway epithelial cells. Cell Signal 2006, 18:652–660.PubMedCrossRef Tabary O, Boncoeur E, de Martin R, Pepperkok R, Clement A, Schultz C, Jacquot J: Calcium-dependent regulation of NF-(kappa)B activation in cystic fibrosis airway epithelial cells. Cell Signal 2006, 18:652–660.PubMedCrossRef
75.
go back to reference Ratner AJ, Bryan R, Weber A, Nguyen S, Barnes D, Pitt A, Gelber S, Cheung A, Prince A: Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001, 276:19267–19275.PubMedCrossRef Ratner AJ, Bryan R, Weber A, Nguyen S, Barnes D, Pitt A, Gelber S, Cheung A, Prince A: Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 2001, 276:19267–19275.PubMedCrossRef
76.
go back to reference Egan ME, Glockner-Pagel J, Ambrose C, Cahill PA, Pappoe L, Balamuth N, Cho E, Canny S, Wagner CA, Geibel J, et al.: Calcium-pump inhibitors induce functional surface expression of Delta F508-CFTR protein in cystic fibrosis epithelial cells. Nat Med 2002, 8:485–492.PubMedCrossRef Egan ME, Glockner-Pagel J, Ambrose C, Cahill PA, Pappoe L, Balamuth N, Cho E, Canny S, Wagner CA, Geibel J, et al.: Calcium-pump inhibitors induce functional surface expression of Delta F508-CFTR protein in cystic fibrosis epithelial cells. Nat Med 2002, 8:485–492.PubMedCrossRef
77.
go back to reference Norez C, Pasetto M, Dechecchi MC, Barison E, Anselmi C, Tamanini A, Quiri F, Cattel L, Rizzotti P, Dosio F, Cabrini G, Colombatti M: Chemical conjugation of DeltaF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl- channel functions. Am J Physiol Lung Cell Mol Physiol 2008, 295:L336–347.PubMedCrossRef Norez C, Pasetto M, Dechecchi MC, Barison E, Anselmi C, Tamanini A, Quiri F, Cattel L, Rizzotti P, Dosio F, Cabrini G, Colombatti M: Chemical conjugation of DeltaF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl- channel functions. Am J Physiol Lung Cell Mol Physiol 2008, 295:L336–347.PubMedCrossRef
78.
go back to reference Waller RL, Brattin WJ, Dearborn DG: Cytosolic free calcium concentration and intracellular calcium distribution in lymphocytes from cystic fibrosis patients. Life Sci 1984, 35:775–781.PubMedCrossRef Waller RL, Brattin WJ, Dearborn DG: Cytosolic free calcium concentration and intracellular calcium distribution in lymphocytes from cystic fibrosis patients. Life Sci 1984, 35:775–781.PubMedCrossRef
79.
go back to reference von Ruecker AA, Bertele R, Harms HK: Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane. Pediatr Res 1984, 18:594–599.PubMedCrossRef von Ruecker AA, Bertele R, Harms HK: Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane. Pediatr Res 1984, 18:594–599.PubMedCrossRef
80.
go back to reference Bartling TR, Drumm ML: Oxidative stress causes IL8 promoter hyperacetylation in cystic fibrosis airway cell models. Am J Respir Cell Mol Biol 2009, 40:58–65.PubMedCrossRef Bartling TR, Drumm ML: Oxidative stress causes IL8 promoter hyperacetylation in cystic fibrosis airway cell models. Am J Respir Cell Mol Biol 2009, 40:58–65.PubMedCrossRef
81.
go back to reference Folkerts G, Kloek J, Muijsers RB, Nijkamp FP: Reactive nitrogen and oxygen species in airway inflammation. Eur J Pharmacol 2001, 429:251–262.PubMedCrossRef Folkerts G, Kloek J, Muijsers RB, Nijkamp FP: Reactive nitrogen and oxygen species in airway inflammation. Eur J Pharmacol 2001, 429:251–262.PubMedCrossRef
82.
go back to reference Martinez MC, Andriantsitohaina R: Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 2009, 11:669–702.PubMedCrossRef Martinez MC, Andriantsitohaina R: Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 2009, 11:669–702.PubMedCrossRef
83.
go back to reference Genestra M: Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007, 19:1807–1819.PubMedCrossRef Genestra M: Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007, 19:1807–1819.PubMedCrossRef
84.
go back to reference Gao L, Kim KJ, Yankaskas JR, Forman HJ: Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 1999, 277:L113–118.PubMed Gao L, Kim KJ, Yankaskas JR, Forman HJ: Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 1999, 277:L113–118.PubMed
85.
go back to reference Linsdell P, Evagelidis A, Hanrahan JW: Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 2000, 78:2973–2982.PubMedPubMedCentralCrossRef Linsdell P, Evagelidis A, Hanrahan JW: Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 2000, 78:2973–2982.PubMedPubMedCentralCrossRef
86.
go back to reference Hudson VM: New insights into the pathogenesis of cystic fibrosis: pivotal role of glutathione system dysfunction and implications for therapy. Treat Respir Med 2004, 3:353–363.PubMedCrossRef Hudson VM: New insights into the pathogenesis of cystic fibrosis: pivotal role of glutathione system dysfunction and implications for therapy. Treat Respir Med 2004, 3:353–363.PubMedCrossRef
87.
go back to reference Bishop C, Hudson VM, Hilton SC, Wilde C: A pilot study of the effect of inhaled buffered reduced glutathione on the clinical status of patients with cystic fibrosis. Chest 2005, 127:308–317.PubMedCrossRef Bishop C, Hudson VM, Hilton SC, Wilde C: A pilot study of the effect of inhaled buffered reduced glutathione on the clinical status of patients with cystic fibrosis. Chest 2005, 127:308–317.PubMedCrossRef
88.
go back to reference Visca A, Bishop CT, Hilton SC, Hudson VM: Improvement in clinical markers in CF patients using a reduced glutathione regimen: An uncontrolled, observational study. J Cyst Fibros 2008, 7:433–436.PubMedCrossRef Visca A, Bishop CT, Hilton SC, Hudson VM: Improvement in clinical markers in CF patients using a reduced glutathione regimen: An uncontrolled, observational study. J Cyst Fibros 2008, 7:433–436.PubMedCrossRef
89.
go back to reference Velsor LW, van Heeckeren A, Day BJ: Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Physiol Lung Cell Mol Physiol 2001, 281:L31–38.PubMed Velsor LW, van Heeckeren A, Day BJ: Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Physiol Lung Cell Mol Physiol 2001, 281:L31–38.PubMed
90.
go back to reference Haddad JJ: Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun 2002, 296:847–856.PubMedCrossRef Haddad JJ: Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun 2002, 296:847–856.PubMedCrossRef
92.
go back to reference Jungas T, Motta I, Duffieux F, Fanen P, Stoven V, Ojcius DM: Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. J Biol Chem 2002, 277:27912–27918.PubMedCrossRef Jungas T, Motta I, Duffieux F, Fanen P, Stoven V, Ojcius DM: Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. J Biol Chem 2002, 277:27912–27918.PubMedCrossRef
93.
go back to reference Day BJ, van Heeckeren AM, Min E, Velsor LW: Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection. Infect Immun 2004, 72:2045–2051.PubMedPubMedCentralCrossRef Day BJ, van Heeckeren AM, Min E, Velsor LW: Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection. Infect Immun 2004, 72:2045–2051.PubMedPubMedCentralCrossRef
94.
go back to reference Brown RK, Wyatt H, Price JF, Kelly FJ: Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 1996, 9:334–339.PubMedCrossRef Brown RK, Wyatt H, Price JF, Kelly FJ: Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 1996, 9:334–339.PubMedCrossRef
95.
go back to reference Collins CE, Quaggiotto P, Wood L, O'Loughlin EV, Henry RL, Garg ML: Elevated plasma levels of F2 alpha isoprostane in cystic fibrosis. Lipids 1999, 34:551–556.PubMedCrossRef Collins CE, Quaggiotto P, Wood L, O'Loughlin EV, Henry RL, Garg ML: Elevated plasma levels of F2 alpha isoprostane in cystic fibrosis. Lipids 1999, 34:551–556.PubMedCrossRef
96.
go back to reference Brown RK, McBurney A, Lunec J, Kelly FJ: Oxidative damage to DNA in patients with cystic fibrosis. Free Radic Biol Med 1995, 18:801–806.PubMedCrossRef Brown RK, McBurney A, Lunec J, Kelly FJ: Oxidative damage to DNA in patients with cystic fibrosis. Free Radic Biol Med 1995, 18:801–806.PubMedCrossRef
97.
go back to reference Velsor LW, Kariya C, Kachadourian R, Day BJ: Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Respir Cell Mol Biol 2006, 35:579–586.PubMedPubMedCentralCrossRef Velsor LW, Kariya C, Kachadourian R, Day BJ: Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Respir Cell Mol Biol 2006, 35:579–586.PubMedPubMedCentralCrossRef
98.
go back to reference Ozben T: Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 2007, 96:2181–2196.PubMedCrossRef Ozben T: Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 2007, 96:2181–2196.PubMedCrossRef
99.
go back to reference Bowler RP, Crapo JD: Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 2002, 166:S38–43.PubMedCrossRef Bowler RP, Crapo JD: Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 2002, 166:S38–43.PubMedCrossRef
100.
go back to reference Bowler RP, Nicks M, Tran K, Tanner G, Chang LY, Young SK, Worthen GS: Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am J Respir Cell Mol Biol 2004, 31:432–439.PubMedCrossRef Bowler RP, Nicks M, Tran K, Tanner G, Chang LY, Young SK, Worthen GS: Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am J Respir Cell Mol Biol 2004, 31:432–439.PubMedCrossRef
101.
go back to reference Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362:59–62.PubMedCrossRef Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362:59–62.PubMedCrossRef
102.
go back to reference Robinson BH: The role of manganese superoxide dismutase in health and disease. J Inherit Metab Dis 1998, 21:598–603.PubMedCrossRef Robinson BH: The role of manganese superoxide dismutase in health and disease. J Inherit Metab Dis 1998, 21:598–603.PubMedCrossRef
103.
go back to reference Smith LJ, Shamsuddin M, Sporn PH, Denenberg M, Anderson J: Reduced superoxide dismutase in lung cells of patients with asthma. Free Radic Biol Med 1997, 22:1301–1307.PubMedCrossRef Smith LJ, Shamsuddin M, Sporn PH, Denenberg M, Anderson J: Reduced superoxide dismutase in lung cells of patients with asthma. Free Radic Biol Med 1997, 22:1301–1307.PubMedCrossRef
104.
go back to reference Bowler RP, Arcaroli J, Abraham E, Patel M, Chang LY, Crapo JD: Evidence for extracellular superoxide dismutase as a mediator of hemorrhage-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2003, 284:L680–687.PubMedCrossRef Bowler RP, Arcaroli J, Abraham E, Patel M, Chang LY, Crapo JD: Evidence for extracellular superoxide dismutase as a mediator of hemorrhage-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2003, 284:L680–687.PubMedCrossRef
105.
go back to reference Marklund SL: Regulation by cytokines of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts. J Biol Chem 1992, 267:6696–6701.PubMed Marklund SL: Regulation by cytokines of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts. J Biol Chem 1992, 267:6696–6701.PubMed
106.
go back to reference Gotoh T, Mori M: Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol 2006, 26:1439–1446.PubMedCrossRef Gotoh T, Mori M: Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol 2006, 26:1439–1446.PubMedCrossRef
107.
go back to reference Darling KE, Evans TJ: Effects of nitric oxide on Pseudomonas aeruginosa infection of epithelial cells from a human respiratory cell line derived from a patient with cystic fibrosis. Infect Immun 2003, 71:2341–2349.PubMedPubMedCentralCrossRef Darling KE, Evans TJ: Effects of nitric oxide on Pseudomonas aeruginosa infection of epithelial cells from a human respiratory cell line derived from a patient with cystic fibrosis. Infect Immun 2003, 71:2341–2349.PubMedPubMedCentralCrossRef
108.
go back to reference Dotsch J, Demirakca S, Terbrack HG, Huls G, Rascher W, Kuhl PG: Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Eur Respir J 1996, 9:2537–2540.PubMedCrossRef Dotsch J, Demirakca S, Terbrack HG, Huls G, Rascher W, Kuhl PG: Airway nitric oxide in asthmatic children and patients with cystic fibrosis. Eur Respir J 1996, 9:2537–2540.PubMedCrossRef
109.
go back to reference Dotsch J, Puls J, Klimek T, Rascher W: Reduction of neuronal and inducible nitric oxide synthase gene expression in patients with cystic fibrosis. Eur Arch Otorhinolaryngol 2002, 259:222–226.PubMedCrossRef Dotsch J, Puls J, Klimek T, Rascher W: Reduction of neuronal and inducible nitric oxide synthase gene expression in patients with cystic fibrosis. Eur Arch Otorhinolaryngol 2002, 259:222–226.PubMedCrossRef
110.
go back to reference Grasemann H, Ratjen F: Cystic fibrosis lung disease: the role of nitric oxide. Pediatr Pulmonol 1999, 28:442–448.PubMedCrossRef Grasemann H, Ratjen F: Cystic fibrosis lung disease: the role of nitric oxide. Pediatr Pulmonol 1999, 28:442–448.PubMedCrossRef
111.
go back to reference Keen C, Olin AC, Edentoft A, Gronowitz E, Strandvik B: Airway nitric oxide in patients with cystic fibrosis is associated with pancreatic function, Pseudomonas infection, and polyunsaturated fatty acids. Chest 2007, 131:1857–1864.PubMedCrossRef Keen C, Olin AC, Edentoft A, Gronowitz E, Strandvik B: Airway nitric oxide in patients with cystic fibrosis is associated with pancreatic function, Pseudomonas infection, and polyunsaturated fatty acids. Chest 2007, 131:1857–1864.PubMedCrossRef
112.
go back to reference Mhanna MJ, Ferkol T, Martin RJ, Dreshaj IA, van Heeckeren AM, Kelley TJ, Haxhiu MA: Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice. Am J Respir Cell Mol Biol 2001, 24:621–626.PubMedCrossRef Mhanna MJ, Ferkol T, Martin RJ, Dreshaj IA, van Heeckeren AM, Kelley TJ, Haxhiu MA: Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice. Am J Respir Cell Mol Biol 2001, 24:621–626.PubMedCrossRef
113.
go back to reference Texereau J, Fajac I, Hubert D, Coste J, Dusser DJ, Bienvenu T, Dall'Ava-Santucci J, Dinh-Xuan AT: Reduced exhaled NO is related to impaired nasal potential difference in patients with cystic fibrosis. Vascul Pharmacol 2005, 43:385–389.PubMedCrossRef Texereau J, Fajac I, Hubert D, Coste J, Dusser DJ, Bienvenu T, Dall'Ava-Santucci J, Dinh-Xuan AT: Reduced exhaled NO is related to impaired nasal potential difference in patients with cystic fibrosis. Vascul Pharmacol 2005, 43:385–389.PubMedCrossRef
114.
go back to reference Vliet A, Cross CE: Phagocyte oxidants and nitric oxide in cystic fibrosis: new therapeutic targets? Curr Opin Pulm Med 2000, 6:533–539.PubMedCrossRef Vliet A, Cross CE: Phagocyte oxidants and nitric oxide in cystic fibrosis: new therapeutic targets? Curr Opin Pulm Med 2000, 6:533–539.PubMedCrossRef
115.
go back to reference Jones KL, Bryan TW, Jinkins PA, Simpson KL, Grisham MB, Owens MW, Milligan SA, Markewitz BA, Robbins RA: Superoxide released from neutrophils causes a reduction in nitric oxide gas. Am J Physiol 1998, 275:L1120–1126.PubMed Jones KL, Bryan TW, Jinkins PA, Simpson KL, Grisham MB, Owens MW, Milligan SA, Markewitz BA, Robbins RA: Superoxide released from neutrophils causes a reduction in nitric oxide gas. Am J Physiol 1998, 275:L1120–1126.PubMed
116.
go back to reference Elphick HE, Demoncheaux EA, Ritson S, Higenbottam TW, Everard ML: Exhaled nitric oxide is reduced in infants with cystic fibrosis. Thorax 2001, 56:151–152.PubMedPubMedCentralCrossRef Elphick HE, Demoncheaux EA, Ritson S, Higenbottam TW, Everard ML: Exhaled nitric oxide is reduced in infants with cystic fibrosis. Thorax 2001, 56:151–152.PubMedPubMedCentralCrossRef
117.
go back to reference Grasemann H, Michler E, Wallot M, Ratjen F: Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 1997, 24:173–177.PubMedCrossRef Grasemann H, Michler E, Wallot M, Ratjen F: Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 1997, 24:173–177.PubMedCrossRef
118.
go back to reference Wood SR, Firoved AM, Ornatowski W, Mai T, Deretic V, Timmins GS: Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic Res 2007, 41:208–215.PubMedCrossRef Wood SR, Firoved AM, Ornatowski W, Mai T, Deretic V, Timmins GS: Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic Res 2007, 41:208–215.PubMedCrossRef
119.
go back to reference Grasemann H, Ratjen F: [Pulmonary metabolism of nitric oxide (NO) in patients with cystic fibrosis]. Pneumologie 2002, 56:376–381.PubMedCrossRef Grasemann H, Ratjen F: [Pulmonary metabolism of nitric oxide (NO) in patients with cystic fibrosis]. Pneumologie 2002, 56:376–381.PubMedCrossRef
120.
go back to reference Chen L, Patel RP, Teng X, Bosworth CA, Lancaster JR Jr, Matalon S: Mechanisms of cystic fibrosis transmembrane conductance regulator activation by S-nitrosoglutathione. J Biol Chem 2006, 281:9190–9199.PubMedCrossRef Chen L, Patel RP, Teng X, Bosworth CA, Lancaster JR Jr, Matalon S: Mechanisms of cystic fibrosis transmembrane conductance regulator activation by S-nitrosoglutathione. J Biol Chem 2006, 281:9190–9199.PubMedCrossRef
121.
go back to reference Grassme H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E: Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 2003, 9:322–330.PubMedCrossRef Grassme H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E: Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 2003, 9:322–330.PubMedCrossRef
122.
go back to reference Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kurthy G, Schmid KW, Weller M, Tümmler B, Lang J, Grassme H, Döring G, Gulbins E: Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008, 14:382–391.PubMedCrossRef Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kurthy G, Schmid KW, Weller M, Tümmler B, Lang J, Grassme H, Döring G, Gulbins E: Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008, 14:382–391.PubMedCrossRef
123.
go back to reference Norez C, Antigny F, Becq F, Vandebrouck C: Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Traffic 2006, 7:562–573.PubMedCrossRef Norez C, Antigny F, Becq F, Vandebrouck C: Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Traffic 2006, 7:562–573.PubMedCrossRef
125.
go back to reference Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D'Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M, Cexus ON, Londei M, Quarantino S: Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 2008, 180:7697–7705.PubMedCrossRef Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D'Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M, Cexus ON, Londei M, Quarantino S: Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 2008, 180:7697–7705.PubMedCrossRef
126.
go back to reference Perez A, van Heeckeren AM, Nichols D, Gupta S, Eastman JF, Davis PB: Peroxisome proliferator-activated receptor-gamma in cystic fibrosis lung epithelium. Am J Physiol Lung Cell Mol Physiol 2008, 295:L303–313.PubMedPubMedCentralCrossRef Perez A, van Heeckeren AM, Nichols D, Gupta S, Eastman JF, Davis PB: Peroxisome proliferator-activated receptor-gamma in cystic fibrosis lung epithelium. Am J Physiol Lung Cell Mol Physiol 2008, 295:L303–313.PubMedPubMedCentralCrossRef
127.
go back to reference Nicolis E, Lampronti I, Dechecchi MC, Borgatti M, Tamanini A, Bianchi N, Bezzerri V, Mancini I, Grazia Giri M, Rizzotti P, Gambari R, Cabrini G: Pyrogallol, an active compound from the medicinal plant Emblica officinalis, regulates expression of pro-inflammatory genes in bronchial epithelial cells. Int Immunopharmacol 2008, 8:1672–1680.PubMedCrossRef Nicolis E, Lampronti I, Dechecchi MC, Borgatti M, Tamanini A, Bianchi N, Bezzerri V, Mancini I, Grazia Giri M, Rizzotti P, Gambari R, Cabrini G: Pyrogallol, an active compound from the medicinal plant Emblica officinalis, regulates expression of pro-inflammatory genes in bronchial epithelial cells. Int Immunopharmacol 2008, 8:1672–1680.PubMedCrossRef
128.
go back to reference Sousa M, Ousingsawat J, Seitz R, Puntheeranurak S, Regalado A, Schmidt A, Grego T, Jansakul C, Amaral MD, Schreiber R, Kunzelmann K: An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis. Mol Pharmacol 2007, 71:366–376.PubMedCrossRef Sousa M, Ousingsawat J, Seitz R, Puntheeranurak S, Regalado A, Schmidt A, Grego T, Jansakul C, Amaral MD, Schreiber R, Kunzelmann K: An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis. Mol Pharmacol 2007, 71:366–376.PubMedCrossRef
129.
go back to reference Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, Canny S, Du K, Lukacs GL, Caplan MJ: Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004, 304:600–602.PubMedCrossRef Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, Canny S, Du K, Lukacs GL, Caplan MJ: Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004, 304:600–602.PubMedCrossRef
Metadata
Title
Mechanisms of the noxious inflammatory cycle in cystic fibrosis
Authors
Mathilde Rottner
Jean-Marie Freyssinet
M Carmen Martínez
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2009
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-10-23

Other articles of this Issue 1/2009

Respiratory Research 1/2009 Go to the issue