Skip to main content
Top
Published in: Respiratory Research 1/2009

Open Access 01-12-2009 | Research

Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis

Authors: Annika Andersson-Sjöland, Jonas S Erjefält, Leif Bjermer, Leif Eriksson, Gunilla Westergren-Thorsson

Published in: Respiratory Research | Issue 1/2009

Login to get access

Abstract

Background

The aim of the present study was to explore the occurrence of fibrocytes in tissue and to investigate whether the appearance of fibrocytes may be linked to structural changes of the parenchyme and vasculature in the lungs of patients with obliterative bronchiolitis (OB) following lung or bone marrow transplantation.

Methods

Identification of parenchyme, vasculature, and fibrocytes was done by histological methods in lung tissue from bone marrow or lung-transplanted patients with obliterative bronchiolitis, and from controls.

Results

The transplanted patients had significantly higher amounts of tissue in the alveolar parenchyme (46.5 ± 17.6%) than the controls (21.7 ± 7.6%) (p < 0.05). The patients also had significantly increased numbers of fibrocytes identified by CXCR4/prolyl4-hydroxylase, CD45R0/prolyl4-hydroxylase, and CD34/prolyl4-hydroxylase compared to the controls (p < 0.01). There was a correlation between the number of fibrocytes and the area of alveolar parenchyma; CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.05) and CD34/prolyl 4-hydroxylase (p < 0.05). In the pulmonary vessels, there was an increase in the endothelial layer in patients (0.31 ± 0.13%) relative to the controls (0.037 ± 0.02%) (p < 0.01). There was a significant correlation between the number of fibrocytes and the total area of the endothelial layer CXCR4/prolyl 4-hydroxylase (p < 0.001), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01). The percent areas of the lumen of the vessels were significant (p < 0.001) enlarged in the patient with OB compared to the controls. There was also a correlation between total area of the lumen and number of fibrocytes, CXCR4/prolyl 4-hydroxylase (p < 0.01), CD45R0/prolyl 4-hydroxylase (p < 0.001) and CD34/prolyl 4-hydroxylase (p < 0.01).

Conclusion

Our results indicate that fibrocytes are associated with pathological remodelling processes in patients with OB and that tissue fibrocytes might be a useful biomarker in these processes.
Literature
1.
go back to reference Trulock EP, Christie JD, Edwards LB, Boucek MM, Aurora P, Taylor DO, et al.: Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report-2007. J Heart Lung Transplant 2007, 26:782–795.CrossRefPubMed Trulock EP, Christie JD, Edwards LB, Boucek MM, Aurora P, Taylor DO, et al.: Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report-2007. J Heart Lung Transplant 2007, 26:782–795.CrossRefPubMed
2.
go back to reference Dudek AZ, Mahaseth H, DeFor TE, Weisdorf DJ: Bronchiolitis obliterans in chronic graft-versus-host disease: analysis of risk factors and treatment outcomes. Biol Blood Marrow Transplant 2003, 9:657–666.CrossRefPubMed Dudek AZ, Mahaseth H, DeFor TE, Weisdorf DJ: Bronchiolitis obliterans in chronic graft-versus-host disease: analysis of risk factors and treatment outcomes. Biol Blood Marrow Transplant 2003, 9:657–666.CrossRefPubMed
3.
go back to reference Holland HK, Wingard JR, Beschorner WE, Saral R, Santos GW: Bronchiolitis obliterans in bone marrow transplantation and its relationship to chronic graft-v-host disease and low serum IgG. Blood 1988, 72:621–627.PubMed Holland HK, Wingard JR, Beschorner WE, Saral R, Santos GW: Bronchiolitis obliterans in bone marrow transplantation and its relationship to chronic graft-v-host disease and low serum IgG. Blood 1988, 72:621–627.PubMed
4.
go back to reference Crawford SW, Clark JG: Bronchiolitis associated with bone marrow transplantation. Clin Chest Med 1993, 14:741–749.PubMed Crawford SW, Clark JG: Bronchiolitis associated with bone marrow transplantation. Clin Chest Med 1993, 14:741–749.PubMed
5.
go back to reference Husain AN, Siddiqui MT, Holmes EW, Chandrasekhar AJ, McCabe M, Radvany R, et al.: Analysis of risk factors for the development of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 1999, 159:829–833.CrossRefPubMed Husain AN, Siddiqui MT, Holmes EW, Chandrasekhar AJ, McCabe M, Radvany R, et al.: Analysis of risk factors for the development of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 1999, 159:829–833.CrossRefPubMed
6.
go back to reference Darby I, Skalli O, Gabbiani G: Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990, 63:21–29.PubMed Darby I, Skalli O, Gabbiani G: Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990, 63:21–29.PubMed
7.
go back to reference Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002, 110:341–350.CrossRefPubMedPubMedCentral Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002, 110:341–350.CrossRefPubMedPubMedCentral
8.
go back to reference Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, et al.: Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 2009, 180:657–665.CrossRefPubMedPubMedCentral Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, et al.: Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 2009, 180:657–665.CrossRefPubMedPubMedCentral
9.
go back to reference Ward C, Forrest IA, Murphy DM, Johnson GE, Robertson H, Cawston TE, et al.: Phenotype of airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically stable lung transplant recipients. Thorax 2005, 60:865–871.CrossRefPubMedPubMedCentral Ward C, Forrest IA, Murphy DM, Johnson GE, Robertson H, Cawston TE, et al.: Phenotype of airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically stable lung transplant recipients. Thorax 2005, 60:865–871.CrossRefPubMedPubMedCentral
10.
go back to reference Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R: Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004, 36:598–606.CrossRefPubMed Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R: Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004, 36:598–606.CrossRefPubMed
12.
go back to reference Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A: Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994, 1:71–81.PubMedPubMedCentral Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A: Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994, 1:71–81.PubMedPubMedCentral
13.
go back to reference Nihlberg K, Larsen K, Hultgardh-Nilsson A, Malmstrom A, Bjermer L, Westergren-Thorsson G: Tissue fibrocytes in patients with mild asthma: a possible link to thickness of reticular basement membrane? Respir Res 2006, 7:50.CrossRefPubMedPubMedCentral Nihlberg K, Larsen K, Hultgardh-Nilsson A, Malmstrom A, Bjermer L, Westergren-Thorsson G: Tissue fibrocytes in patients with mild asthma: a possible link to thickness of reticular basement membrane? Respir Res 2006, 7:50.CrossRefPubMedPubMedCentral
14.
go back to reference Andersson-Sjoland A, de Alba CG, Nihlberg K, Becerril C, Ramirez R, Pardo A, et al.: Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 2008, 40:2129–2140.CrossRefPubMed Andersson-Sjoland A, de Alba CG, Nihlberg K, Becerril C, Ramirez R, Pardo A, et al.: Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 2008, 40:2129–2140.CrossRefPubMed
15.
go back to reference Brocker V, Langer F, Fellous TG, Mengel M, Brittan M, Bredt M, et al.: Fibroblasts of recipient origin contribute to bronchiolitis obliterans in human lung transplants. Am J Respir Crit Care Med 2006, 173:1276–1282.CrossRefPubMed Brocker V, Langer F, Fellous TG, Mengel M, Brittan M, Bredt M, et al.: Fibroblasts of recipient origin contribute to bronchiolitis obliterans in human lung transplants. Am J Respir Crit Care Med 2006, 173:1276–1282.CrossRefPubMed
16.
go back to reference Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S: Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005, 304:81–90.CrossRefPubMed Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S: Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005, 304:81–90.CrossRefPubMed
17.
go back to reference Luckraz H, Goddard M, McNeil K, Atkinson C, Sharples LD, Wallwork J: Is obliterative bronchiolitis in lung transplantation associated with microvascular damage to small airways? Ann Thorac Surg 2006, 82:1212–1218.CrossRefPubMed Luckraz H, Goddard M, McNeil K, Atkinson C, Sharples LD, Wallwork J: Is obliterative bronchiolitis in lung transplantation associated with microvascular damage to small airways? Ann Thorac Surg 2006, 82:1212–1218.CrossRefPubMed
18.
go back to reference Zheng L, Orsida BE, Ward C, Wilson JW, Williams TJ, Walters EH, et al.: Airway vascular changes in lung allograft recipients. J Heart Lung Transplant 1999, 18:231–238.CrossRefPubMed Zheng L, Orsida BE, Ward C, Wilson JW, Williams TJ, Walters EH, et al.: Airway vascular changes in lung allograft recipients. J Heart Lung Transplant 1999, 18:231–238.CrossRefPubMed
19.
go back to reference Baraldo S, Turato G, Badin C, Bazzan E, Beghe B, Zuin R, et al.: Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 2004, 59:308–312.CrossRefPubMedPubMedCentral Baraldo S, Turato G, Badin C, Bazzan E, Beghe B, Zuin R, et al.: Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 2004, 59:308–312.CrossRefPubMedPubMedCentral
20.
go back to reference Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, et al.: Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009, 179:588–594.CrossRefPubMed Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, et al.: Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009, 179:588–594.CrossRefPubMed
21.
go back to reference Saunders R, Siddiqui S, Kaur D, Doe C, Sutcliffe A, Hollins F, et al.: Fibrocyte localization to the airway smooth muscle is a feature of asthma. J Allergy Clin Immunol 2009, 123:376–384.CrossRefPubMed Saunders R, Siddiqui S, Kaur D, Doe C, Sutcliffe A, Hollins F, et al.: Fibrocyte localization to the airway smooth muscle is a feature of asthma. J Allergy Clin Immunol 2009, 123:376–384.CrossRefPubMed
22.
go back to reference Wang CH, Huang CD, Lin HC, Lee KY, Lin SM, Liu CY, et al.: Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am J Respir Crit Care Med 2008, 178:583–591.CrossRefPubMed Wang CH, Huang CD, Lin HC, Lee KY, Lin SM, Liu CY, et al.: Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am J Respir Crit Care Med 2008, 178:583–591.CrossRefPubMed
23.
go back to reference Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, et al.: Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 2001, 15:2215–2224.CrossRefPubMed Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, et al.: Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 2001, 15:2215–2224.CrossRefPubMed
24.
go back to reference Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S: Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003, 171:380–389.CrossRefPubMed Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S: Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003, 171:380–389.CrossRefPubMed
25.
go back to reference Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002, 3:349–363.CrossRefPubMed Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002, 3:349–363.CrossRefPubMed
26.
go back to reference Hoshino M, Takahashi M, Aoike N: Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol 2001, 107:295–301.CrossRefPubMed Hoshino M, Takahashi M, Aoike N: Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol 2001, 107:295–301.CrossRefPubMed
27.
go back to reference Ebina M, Shimizukawa M, Shibata N, Kimura Y, Suzuki T, Endo M, et al.: Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004, 169:1203–1208.CrossRefPubMed Ebina M, Shimizukawa M, Shibata N, Kimura Y, Suzuki T, Endo M, et al.: Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004, 169:1203–1208.CrossRefPubMed
28.
go back to reference Mora AL, Rojas M: Aging and lung injury repair: a role for bone marrow derived mesenchymal stem cells. J Cell Biochem 2008, 105:641–647.CrossRefPubMed Mora AL, Rojas M: Aging and lung injury repair: a role for bone marrow derived mesenchymal stem cells. J Cell Biochem 2008, 105:641–647.CrossRefPubMed
29.
go back to reference Elssner A, Jaumann F, Dobmann S, Behr J, Schwaiblmair M, Reichenspurner H, et al.: Elevated levels of interleukin-8 and transforming growth factor-beta in bronchoalveolar lavage fluid from patients with bronchiolitis obliterans syndrome: proinflammatory role of bronchial epithelial cells. Munich Lung Transplant Group. Transplantation 2000, 70:362–367.CrossRefPubMed Elssner A, Jaumann F, Dobmann S, Behr J, Schwaiblmair M, Reichenspurner H, et al.: Elevated levels of interleukin-8 and transforming growth factor-beta in bronchoalveolar lavage fluid from patients with bronchiolitis obliterans syndrome: proinflammatory role of bronchial epithelial cells. Munich Lung Transplant Group. Transplantation 2000, 70:362–367.CrossRefPubMed
30.
go back to reference Ramirez AM, Shen Z, Ritzenthaler JD, Roman J: Myofibroblast transdifferentiation in obliterative bronchiolitis: tgf-beta signaling through smad3-dependent and -independent pathways. Am J Transplant 2006, 6:2080–2088.CrossRefPubMed Ramirez AM, Shen Z, Ritzenthaler JD, Roman J: Myofibroblast transdifferentiation in obliterative bronchiolitis: tgf-beta signaling through smad3-dependent and -independent pathways. Am J Transplant 2006, 6:2080–2088.CrossRefPubMed
31.
go back to reference Gauldie J, Bonniaud P, Sime P, Ask K, Kolb M: TGF-beta, Smad3 and the process of progressive fibrosis. Biochem Soc Trans 2007, 35:661–664.CrossRefPubMed Gauldie J, Bonniaud P, Sime P, Ask K, Kolb M: TGF-beta, Smad3 and the process of progressive fibrosis. Biochem Soc Trans 2007, 35:661–664.CrossRefPubMed
32.
go back to reference Lee KS, Park SJ, Kim SR, Min KH, Lee KY, Choe YH, et al.: Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J 2008, 31:523–531.CrossRefPubMed Lee KS, Park SJ, Kim SR, Min KH, Lee KY, Choe YH, et al.: Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J 2008, 31:523–531.CrossRefPubMed
33.
go back to reference Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL: Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 1998, 275:L818-L826.PubMed Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL: Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 1998, 275:L818-L826.PubMed
34.
go back to reference Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H: Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 2002, 46:2587–2597.CrossRefPubMed Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H: Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 2002, 46:2587–2597.CrossRefPubMed
35.
go back to reference Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W: Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003, 425:307–311.CrossRefPubMed Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W: Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003, 425:307–311.CrossRefPubMed
36.
go back to reference Hofbauer KH, Gess B, Lohaus C, Meyer HE, Katschinski D, Kurtz A: Oxygen tension regulates the expression of a group of procollagen hydroxylases. Eur J Biochem 2003, 270:4515–4522.CrossRefPubMed Hofbauer KH, Gess B, Lohaus C, Meyer HE, Katschinski D, Kurtz A: Oxygen tension regulates the expression of a group of procollagen hydroxylases. Eur J Biochem 2003, 270:4515–4522.CrossRefPubMed
37.
go back to reference Mbemba E, Gluckman JC, Gattegno L: Glycan and glycosaminoglycan binding properties of stromal cell-derived factor (SDF)-1alpha. Glycobiology 2000, 10:21–29.CrossRefPubMed Mbemba E, Gluckman JC, Gattegno L: Glycan and glycosaminoglycan binding properties of stromal cell-derived factor (SDF)-1alpha. Glycobiology 2000, 10:21–29.CrossRefPubMed
Metadata
Title
Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis
Authors
Annika Andersson-Sjöland
Jonas S Erjefält
Leif Bjermer
Leif Eriksson
Gunilla Westergren-Thorsson
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2009
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-10-103

Other articles of this Issue 1/2009

Respiratory Research 1/2009 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.