Skip to main content
Top
Published in: Neurological Research and Practice 1/2021

01-12-2021 | Liver Transplantation | Review

Are we creating a new phenotype? Physiological barriers and ethical considerations in the treatment of hereditary transthyretin-amyloidosis

Authors: Maike F. Dohrn, Jessica Medina, Karmele R. Olaciregui Dague, Ernst Hund

Published in: Neurological Research and Practice | Issue 1/2021

Login to get access

Abstract

Hereditary transthyretin (TTR) amyloidosis (ATTRv) is an autosomal dominant, systemic disease transmitted by amyloidogenic mutations in the TTR gene. To prevent the otherwise fatal disease course, TTR stabilizers and mRNA silencing antisense drugs are currently approved treatment options. With 90% of the amyloidogenic protein produced by the liver, disease progression including polyneuropathy and cardiomyopathy, the two most prominent manifestations, can successfully be halted by hepatic drug targeting or—formerly—liver transplantation. Certain TTR variants, however, favor disease manifestations in the central nervous system (CNS) or eyes, which is mostly associated with TTR production in the choroid plexus and retina. These compartments cannot be sufficiently reached by any of the approved medications. From liver-transplanted patients, we have learned that with longer lifespans, such CNS manifestations become more relevant over time, even if the underlying TTR mutation is not primarily associated with such. Are we therefore creating a new phenotype? Prolonging life will most likely lead to a shift in the phenotypic spectrum, enabling manifestations like blindness, dementia, and cerebral hemorrhage to come out of the disease background. To overcome the first therapeutic limitation, the blood–brain barrier, we might be able to learn from other antisense drugs currently being used in research or even being approved for primary neurodegenerative CNS diseases like spinal muscular atrophy or Alzheimer’s disease. But what effects will unselective CNS TTR knock-down have considering its role in neuroprotection? A potential approach to overcome this second limitiation might be allele-specific targeting, which is, however, still far from clinical trials. Ethical standpoints underline the need for seamless data collection to enable more evidence-based decisions and for thoughtful consenting in research and clinical practice. We conclude that the current advances in treating ATTRv amyloidosis have become a meaningful example for mechanism-based treatment. With its great success in improving patient life spans, we will still have to face new challenges including shifts in the phenotype spectrum and the ongoing need for improved treatment precision. Further investigation is needed to address these closed barriers and open questions.
Literature
1.
go back to reference Planté-Bordeneuve, V., & Said, G. (2011). Familial amyloid polyneuropathy. Lancet Neurology, 10(12), 1086–1097.PubMedCrossRef Planté-Bordeneuve, V., & Said, G. (2011). Familial amyloid polyneuropathy. Lancet Neurology, 10(12), 1086–1097.PubMedCrossRef
2.
go back to reference Westermark, P., et al. (1990). Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 87(7), 2843–2845.PubMedPubMedCentralCrossRef Westermark, P., et al. (1990). Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 87(7), 2843–2845.PubMedPubMedCentralCrossRef
3.
go back to reference Maia, L., et al. (2015). CNS involvement in V30M transthyretin amyloidosis: Clinical, neuropathological and biochemical findings. Journal of Neurology, Neurosurgery and Psychiatry, 86(2), 159.PubMedCrossRef Maia, L., et al. (2015). CNS involvement in V30M transthyretin amyloidosis: Clinical, neuropathological and biochemical findings. Journal of Neurology, Neurosurgery and Psychiatry, 86(2), 159.PubMedCrossRef
4.
go back to reference Beirao, J. M., et al. (2015). Ophthalmological manifestations in hereditary transthyretin (ATTR V30M) carriers: A review of 513 cases. Amyloid, 22(2), 117–122.PubMedPubMedCentralCrossRef Beirao, J. M., et al. (2015). Ophthalmological manifestations in hereditary transthyretin (ATTR V30M) carriers: A review of 513 cases. Amyloid, 22(2), 117–122.PubMedPubMedCentralCrossRef
5.
go back to reference Soares, M. L., et al. (2005). Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: Complexity in a single-gene disease. Human Molecular Genetics, 14(4), 543–553.PubMedCrossRef Soares, M. L., et al. (2005). Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: Complexity in a single-gene disease. Human Molecular Genetics, 14(4), 543–553.PubMedCrossRef
6.
go back to reference Dohrn, M. F., et al. (2021). Targeting transthyretin-Mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. Journal of Neurochemistry, 156(6), 802–818.PubMedCrossRef Dohrn, M. F., et al. (2021). Targeting transthyretin-Mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. Journal of Neurochemistry, 156(6), 802–818.PubMedCrossRef
7.
go back to reference Santos, D., et al. (2016). Variants in RBP4 and AR genes modulate age at onset in familial amyloid polyneuropathy (FAP ATTRV30M). European Journal of Human Genetics, 24(5), 756–760.PubMedCrossRef Santos, D., et al. (2016). Variants in RBP4 and AR genes modulate age at onset in familial amyloid polyneuropathy (FAP ATTRV30M). European Journal of Human Genetics, 24(5), 756–760.PubMedCrossRef
8.
go back to reference Santos, D., et al. (2019). Large normal alleles of ATXN2 decrease age at onset in transthyretin familial amyloid polyneuropathy Val30Met patients. Annals of Neurology, 85(2), 251.PubMedCrossRef Santos, D., et al. (2019). Large normal alleles of ATXN2 decrease age at onset in transthyretin familial amyloid polyneuropathy Val30Met patients. Annals of Neurology, 85(2), 251.PubMedCrossRef
9.
go back to reference Liz, M. A., et al. (2010). Aboard transthyretin: From transport to cleavage. IUBMB Life, 62(6), 429–435.PubMed Liz, M. A., et al. (2010). Aboard transthyretin: From transport to cleavage. IUBMB Life, 62(6), 429–435.PubMed
10.
go back to reference Woeber, K. A., & Ingbar, S. H. (1968). The contribution of thyroxine-binding prealbumin to the binding of thyroxine in human serum, as assessed by immunoadsorption. The Journal of Clinical Investigation, 47(7), 1710–1721.PubMedPubMedCentralCrossRef Woeber, K. A., & Ingbar, S. H. (1968). The contribution of thyroxine-binding prealbumin to the binding of thyroxine in human serum, as assessed by immunoadsorption. The Journal of Clinical Investigation, 47(7), 1710–1721.PubMedPubMedCentralCrossRef
11.
go back to reference Smith, F. R., Raz, A., & Goodman, D. S. (1970). Radioimmunoassay of human plasma retinol-binding protein. The Journal of Clinical Investigation, 49(9), 1754–1761.PubMedPubMedCentralCrossRef Smith, F. R., Raz, A., & Goodman, D. S. (1970). Radioimmunoassay of human plasma retinol-binding protein. The Journal of Clinical Investigation, 49(9), 1754–1761.PubMedPubMedCentralCrossRef
12.
go back to reference Herbert, J., et al. (1986). Transthyretin: A choroid plexus-specific transport protein in human brain. The 1986 S. Weir Mitchell award. Neurology, 36(7), 900–911.PubMedCrossRef Herbert, J., et al. (1986). Transthyretin: A choroid plexus-specific transport protein in human brain. The 1986 S. Weir Mitchell award. Neurology, 36(7), 900–911.PubMedCrossRef
13.
go back to reference Li, X., et al. (2011). Neuronal production of transthyretin in human and murine Alzheimer’s disease: Is it protective? Journal of Neuroscience, 31(35), 12483.PubMedCrossRef Li, X., et al. (2011). Neuronal production of transthyretin in human and murine Alzheimer’s disease: Is it protective? Journal of Neuroscience, 31(35), 12483.PubMedCrossRef
14.
go back to reference Li, X., & Buxbaum, J. N. (2011). Transthyretin and the brain re-visited: Is neuronal synthesis of transthyretin protective in Alzheimer’s disease? Molecular Neurodegeneration, 6, 79.PubMedPubMedCentralCrossRef Li, X., & Buxbaum, J. N. (2011). Transthyretin and the brain re-visited: Is neuronal synthesis of transthyretin protective in Alzheimer’s disease? Molecular Neurodegeneration, 6, 79.PubMedPubMedCentralCrossRef
15.
go back to reference Holmgren, G., et al. (1991). Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clinical Genetics, 40(3), 242–246.PubMedCrossRef Holmgren, G., et al. (1991). Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clinical Genetics, 40(3), 242–246.PubMedCrossRef
16.
go back to reference Holmgren, G., et al. (1993). Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet, 341(8853), 1113–1116.PubMedCrossRef Holmgren, G., et al. (1993). Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet, 341(8853), 1113–1116.PubMedCrossRef
17.
go back to reference Ericzon, B.-G., et al. (2015). Liver transplantation for hereditary transthyretin amyloidosis: After 20 years still the best therapeutic alternative? Transplantation, 99(9), 1847–1854.PubMedCrossRef Ericzon, B.-G., et al. (2015). Liver transplantation for hereditary transthyretin amyloidosis: After 20 years still the best therapeutic alternative? Transplantation, 99(9), 1847–1854.PubMedCrossRef
18.
go back to reference Adams, D., et al. (2018). Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine, 379(1), 11–21.PubMedCrossRef Adams, D., et al. (2018). Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine, 379(1), 11–21.PubMedCrossRef
19.
go back to reference Benson, M. D., et al. (2018). Inotersen treatment for patients with hereditary transthyretin amyloidosis. New England Journal of Medicine, 379(1), 22–31.CrossRefPubMed Benson, M. D., et al. (2018). Inotersen treatment for patients with hereditary transthyretin amyloidosis. New England Journal of Medicine, 379(1), 22–31.CrossRefPubMed
20.
21.
go back to reference Maurer, M. S., et al. (2018). Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. New England Journal of Medicine, 379(11), 1007–1016.CrossRefPubMed Maurer, M. S., et al. (2018). Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. New England Journal of Medicine, 379(11), 1007–1016.CrossRefPubMed
22.
go back to reference Monteiro, C., et al. (2018). Cerebrospinal fluid and vitreous body exposure to orally administered tafamidis in hereditary ATTRV30M (p. TTRV50M) amyloidosis patients. Amyloid, 25(2), 120–128.PubMedPubMedCentralCrossRef Monteiro, C., et al. (2018). Cerebrospinal fluid and vitreous body exposure to orally administered tafamidis in hereditary ATTRV30M (p. TTRV50M) amyloidosis patients. Amyloid, 25(2), 120–128.PubMedPubMedCentralCrossRef
23.
go back to reference Gião, T., et al. (2020). Undiscovered roles for transthyretin: from a transporter protein to a new therapeutic target for Alzheimer’s disease. International Journal of Molecular Sciences, 21(6), 2075.PubMedCentralCrossRef Gião, T., et al. (2020). Undiscovered roles for transthyretin: from a transporter protein to a new therapeutic target for Alzheimer’s disease. International Journal of Molecular Sciences, 21(6), 2075.PubMedCentralCrossRef
24.
go back to reference Dammacco, R., et al. (2020). Amyloidosis and ocular involvement: An overview. In Seminars in ophthalmology. Dammacco, R., et al. (2020). Amyloidosis and ocular involvement: An overview. In Seminars in ophthalmology.
25.
go back to reference Ando, E., et al. (1997). Ocular manifestations of familial amyloidotic polyneuropathy type I: Long term follow up. British Journal of Ophthalmology, 81(4), 295–298.CrossRefPubMedPubMedCentral Ando, E., et al. (1997). Ocular manifestations of familial amyloidotic polyneuropathy type I: Long term follow up. British Journal of Ophthalmology, 81(4), 295–298.CrossRefPubMedPubMedCentral
26.
go back to reference Ushiyama, M., Ikeda, S., & Yanagisawa, N. (1991). Transthyretin-type cerebral amyloid angiopathy in type I familial amyloid polyneuropathy. Acta Neuropathologica, 81(5), 524.PubMedCrossRef Ushiyama, M., Ikeda, S., & Yanagisawa, N. (1991). Transthyretin-type cerebral amyloid angiopathy in type I familial amyloid polyneuropathy. Acta Neuropathologica, 81(5), 524.PubMedCrossRef
27.
go back to reference Herrick, M., et al. (1996). Massive leptomeningeal amyloidosis associated with a Val30Met transthyretin gene. Neurology, 47(4), 988.PubMedCrossRef Herrick, M., et al. (1996). Massive leptomeningeal amyloidosis associated with a Val30Met transthyretin gene. Neurology, 47(4), 988.PubMedCrossRef
28.
go back to reference Sakashita, N., et al. (2001). Familial amyloidotic polyneuropathy (ATTR Val30Met) with widespread cerebral amyloid angiopathy and lethal cerebral hemorrhage. Pathology International, 51(6), 476.PubMedCrossRef Sakashita, N., et al. (2001). Familial amyloidotic polyneuropathy (ATTR Val30Met) with widespread cerebral amyloid angiopathy and lethal cerebral hemorrhage. Pathology International, 51(6), 476.PubMedCrossRef
29.
go back to reference Vollmar, J., et al. (2018). Progression of transthyretin (TTR) amyloidosis in donors and recipients after domino liver transplantation—A prospective single-center cohort study. Transplant International, 31(11), 1207–1215.PubMedCrossRef Vollmar, J., et al. (2018). Progression of transthyretin (TTR) amyloidosis in donors and recipients after domino liver transplantation—A prospective single-center cohort study. Transplant International, 31(11), 1207–1215.PubMedCrossRef
30.
go back to reference Lladó, L., et al. (2010). Risk of transmission of systemic transthyretin amyloidosis after domino liver transplantation. Liver Transplantation, 16(12), 1386.PubMedCrossRef Lladó, L., et al. (2010). Risk of transmission of systemic transthyretin amyloidosis after domino liver transplantation. Liver Transplantation, 16(12), 1386.PubMedCrossRef
31.
go back to reference Adams, D., et al. (2011). Symptomatic and proven de novo amyloid polyneuropathy in familial amyloid polyneuropathy domino liver recipients. Amyloid, 18(sup1), 174–177.PubMedCrossRef Adams, D., et al. (2011). Symptomatic and proven de novo amyloid polyneuropathy in familial amyloid polyneuropathy domino liver recipients. Amyloid, 18(sup1), 174–177.PubMedCrossRef
32.
go back to reference Stangou, A. J., Heaton, N. D., & Hawkins, P. N. (2005). Transmission of systemic transthyretin amyloidosis by means of domino liver transplantation. New England Journal of Medicine, 352(22), 2356.CrossRefPubMed Stangou, A. J., Heaton, N. D., & Hawkins, P. N. (2005). Transmission of systemic transthyretin amyloidosis by means of domino liver transplantation. New England Journal of Medicine, 352(22), 2356.CrossRefPubMed
34.
go back to reference Scoles, D. R., Minikel, E. V., & Pulst, S. M. (2019). Antisense oligonucleotides: A primer. Neurology Genetics, 5(2), 323.CrossRef Scoles, D. R., Minikel, E. V., & Pulst, S. M. (2019). Antisense oligonucleotides: A primer. Neurology Genetics, 5(2), 323.CrossRef
35.
go back to reference Kanasty, R., et al. (2013). Delivery materials for siRNA therapeutics. Nature Materials, 12(11), 967–977.PubMedCrossRef Kanasty, R., et al. (2013). Delivery materials for siRNA therapeutics. Nature Materials, 12(11), 967–977.PubMedCrossRef
36.
go back to reference Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: Advances in siRNA delivery. Nature Reviews. Drug Discovery, 8(2), 129–138.PubMedPubMedCentralCrossRef Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: Advances in siRNA delivery. Nature Reviews. Drug Discovery, 8(2), 129–138.PubMedPubMedCentralCrossRef
37.
go back to reference Scoles, D. R., & Pulst, S. M. (2018). Oligonucleotide therapeutics in neurodegenerative diseases. RNA Biology, 15(6), 707.PubMedPubMedCentral Scoles, D. R., & Pulst, S. M. (2018). Oligonucleotide therapeutics in neurodegenerative diseases. RNA Biology, 15(6), 707.PubMedPubMedCentral
38.
go back to reference Finkel, R. S., et al. (2017). Nusinersen versus sham control in infantile-onset spinal muscular atrophy. New England Journal of Medicine, 377, 1723–1732.CrossRefPubMed Finkel, R. S., et al. (2017). Nusinersen versus sham control in infantile-onset spinal muscular atrophy. New England Journal of Medicine, 377, 1723–1732.CrossRefPubMed
39.
go back to reference Mercuri, E., et al. (2018). Nusinersen versus sham control in later-onset spinal muscular atrophy. New England Journal of Medicine, 378(7), 625–635.CrossRefPubMed Mercuri, E., et al. (2018). Nusinersen versus sham control in later-onset spinal muscular atrophy. New England Journal of Medicine, 378(7), 625–635.CrossRefPubMed
40.
go back to reference Sant’Anna, R., et al. (2016). Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nature Communications, 7(1), 1–13.CrossRef Sant’Anna, R., et al. (2016). Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nature Communications, 7(1), 1–13.CrossRef
41.
go back to reference Russ, H., et al. (1999). Detection of tolcapone in the cerebrospinal fluid of parkinsonian subjects. Naunyn-Schmiedeberg’s Archives of Pharmacology, 360(6), 719–720.PubMedCrossRef Russ, H., et al. (1999). Detection of tolcapone in the cerebrospinal fluid of parkinsonian subjects. Naunyn-Schmiedeberg’s Archives of Pharmacology, 360(6), 719–720.PubMedCrossRef
42.
go back to reference Pinheiro, F., et al. (2020). Tolcapone, a potent aggregation inhibitor for the treatment of familial leptomeningeal amyloidosis. The FEBS Journal, 288, 310–324.PubMedCrossRef Pinheiro, F., et al. (2020). Tolcapone, a potent aggregation inhibitor for the treatment of familial leptomeningeal amyloidosis. The FEBS Journal, 288, 310–324.PubMedCrossRef
43.
go back to reference Kristen, A., et al. (2019). Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegenerative Disease Management, 9(1), 5.PubMedCrossRef Kristen, A., et al. (2019). Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegenerative Disease Management, 9(1), 5.PubMedCrossRef
44.
go back to reference Mathew, V., & Wang, A. K. (2019). Inotersen: New promise for the treatment of hereditary transthyretin amyloidosis. Drug Design, Development and Therapy, 13, 1515.PubMedPubMedCentralCrossRef Mathew, V., & Wang, A. K. (2019). Inotersen: New promise for the treatment of hereditary transthyretin amyloidosis. Drug Design, Development and Therapy, 13, 1515.PubMedPubMedCentralCrossRef
45.
go back to reference González-Duarte, A., et al. (2020). Analysis of autonomic outcomes in APOLLO, a phase III trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. Journal of Neurology, 267(3), 703–712.PubMedCrossRef González-Duarte, A., et al. (2020). Analysis of autonomic outcomes in APOLLO, a phase III trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. Journal of Neurology, 267(3), 703–712.PubMedCrossRef
46.
go back to reference Solomon, S. D., et al. (2019). Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis: Analysis of the APOLLO study. Circulation, 139(4), 431–443.PubMedCrossRef Solomon, S. D., et al. (2019). Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis: Analysis of the APOLLO study. Circulation, 139(4), 431–443.PubMedCrossRef
47.
go back to reference Bennett, C. F., et al. (2017). Pharmacology of antisense drugs. Annual Review of Pharmacology and Toxicology, 57, 81–105.PubMedCrossRef Bennett, C. F., et al. (2017). Pharmacology of antisense drugs. Annual Review of Pharmacology and Toxicology, 57, 81–105.PubMedCrossRef
48.
go back to reference Weisner, B., & Roethig, H.-J. (1983). The concentration of prealbumin in cerebrospinal fluid (CSF), indicator of CSF circulation disorders. European Neurology, 22(2), 96–105.PubMedCrossRef Weisner, B., & Roethig, H.-J. (1983). The concentration of prealbumin in cerebrospinal fluid (CSF), indicator of CSF circulation disorders. European Neurology, 22(2), 96–105.PubMedCrossRef
49.
go back to reference Fleming, C. E., Saraiva, M. J., & Sousa, M. M. (2007). Transthyretin enhances nerve regeneration. Journal of Neurochemistry, 103(2), 831–839.PubMedCrossRef Fleming, C. E., Saraiva, M. J., & Sousa, M. M. (2007). Transthyretin enhances nerve regeneration. Journal of Neurochemistry, 103(2), 831–839.PubMedCrossRef
50.
go back to reference Santos, S. D., et al. (2010). CSF transthyretin neuroprotection in a mouse model of brain ischemia. Journal of Neurochemistry, 115(6), 1434–1444.PubMedCrossRef Santos, S. D., et al. (2010). CSF transthyretin neuroprotection in a mouse model of brain ischemia. Journal of Neurochemistry, 115(6), 1434–1444.PubMedCrossRef
51.
go back to reference Gao, C., et al. (2011). Serum prealbumin (transthyretin) predict good outcome in young patients with cerebral infarction. Clinical and Experimental Medicine, 11(1), 49–54.PubMedCrossRef Gao, C., et al. (2011). Serum prealbumin (transthyretin) predict good outcome in young patients with cerebral infarction. Clinical and Experimental Medicine, 11(1), 49–54.PubMedCrossRef
52.
go back to reference Riisøen, H. (1988). Reduced prealbumin (transthyretin) in CSF of severely demented patients with Alzheimer’s disease. Acta Neurologica Scandinavica, 78(6), 455.PubMedCrossRef Riisøen, H. (1988). Reduced prealbumin (transthyretin) in CSF of severely demented patients with Alzheimer’s disease. Acta Neurologica Scandinavica, 78(6), 455.PubMedCrossRef
53.
go back to reference Serot, J., et al. (1997). Cerebrospinal fluid transthyretin: Aging and late onset Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 63(4), 506.PubMedPubMedCentralCrossRef Serot, J., et al. (1997). Cerebrospinal fluid transthyretin: Aging and late onset Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 63(4), 506.PubMedPubMedCentralCrossRef
54.
go back to reference Ranganathan, S., et al. (2005). Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. Journal of Neurochemistry, 95(5), 1461.PubMedPubMedCentralCrossRef Ranganathan, S., et al. (2005). Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. Journal of Neurochemistry, 95(5), 1461.PubMedPubMedCentralCrossRef
55.
go back to reference Schultz, K., et al. (2010). Transthyretin as a potential CSF biomarker for Alzheimer’s disease and dementia with Lewy bodies: Effects of treatment with cholinesterase inhibitors. European Journal of Neurology, 17(3), 456.PubMedCrossRef Schultz, K., et al. (2010). Transthyretin as a potential CSF biomarker for Alzheimer’s disease and dementia with Lewy bodies: Effects of treatment with cholinesterase inhibitors. European Journal of Neurology, 17(3), 456.PubMedCrossRef
56.
go back to reference Silva, C., et al. (2017). Transthyretin neuroprotection in Alzheimer’s disease is dependent on proteolysis. Neurobiology of Aging, 59, 10.PubMedCrossRef Silva, C., et al. (2017). Transthyretin neuroprotection in Alzheimer’s disease is dependent on proteolysis. Neurobiology of Aging, 59, 10.PubMedCrossRef
57.
go back to reference Buxbaum, J. N., et al. (2008). Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Aβ toxicity. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2681–2686.PubMedPubMedCentralCrossRef Buxbaum, J. N., et al. (2008). Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Aβ toxicity. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2681–2686.PubMedPubMedCentralCrossRef
58.
go back to reference Brouillette, J., & Quirion, R. (2008). Transthyretin: A key gene involved in the maintenance of memory capacities during aging. Neurobiology of Aging, 29(11), 1721–1732.PubMedCrossRef Brouillette, J., & Quirion, R. (2008). Transthyretin: A key gene involved in the maintenance of memory capacities during aging. Neurobiology of Aging, 29(11), 1721–1732.PubMedCrossRef
59.
go back to reference Habtemariam, B. A., et al. Single dose pharmacokinetics and pharmacodynamics of transthyretin targeting GalNAc-siRNA conjugate, vutrisiran, in healthy subjects. Clinical Pharmacology & Therapeutics. Habtemariam, B. A., et al. Single dose pharmacokinetics and pharmacodynamics of transthyretin targeting GalNAc-siRNA conjugate, vutrisiran, in healthy subjects. Clinical Pharmacology & Therapeutics.
60.
go back to reference Khella, S., et al. (2020). Rationale and design of NEURO-TTRansform, a phase 3 study to evaluate the efficacy and safety of AKCEA-TTR-LRx (ION-682884) in Patients with hereditary transthyretin-mediated amyloid polyneuropathy (2240). AAN Enterprises. Khella, S., et al. (2020). Rationale and design of NEURO-TTRansform, a phase 3 study to evaluate the efficacy and safety of AKCEA-TTR-LRx (ION-682884) in Patients with hereditary transthyretin-mediated amyloid polyneuropathy (2240). AAN Enterprises.
61.
go back to reference Esrick, E. B., et al., Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. New England Journal of Medicine. Esrick, E. B., et al., Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. New England Journal of Medicine.
62.
go back to reference Frangoul, H., et al. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384(3), 252–260.CrossRefPubMed Frangoul, H., et al. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384(3), 252–260.CrossRefPubMed
63.
go back to reference Gillmore, J. D., et al. (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. New England Journal of Medicine, 385(6), 493–502.CrossRefPubMed Gillmore, J. D., et al. (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. New England Journal of Medicine, 385(6), 493–502.CrossRefPubMed
64.
go back to reference Chapman, J. R. (2011). The consequences of successful transplantation. Lancet, 378(9800), 1357–1359.PubMedCrossRef Chapman, J. R. (2011). The consequences of successful transplantation. Lancet, 378(9800), 1357–1359.PubMedCrossRef
65.
go back to reference Gilbert, F., & Lancelot, M. Incoming ethical issues for deep brain stimulation: when long-term treatment leads to a'new form of the disease'. Journal of Medical Ethics, p. medethics-2019-106052. Gilbert, F., & Lancelot, M. Incoming ethical issues for deep brain stimulation: when long-term treatment leads to a'new form of the disease'. Journal of Medical Ethics, p. medethics-2019-106052.
66.
go back to reference Schorling, D. C., Pechmann, A., & Kirschner, J. (2020). Advances in treatment of spinal muscular atrophy-new phenotypes, new challenges, new implications for care. Journal of Neuromuscular Disease, 7(1), 1.CrossRef Schorling, D. C., Pechmann, A., & Kirschner, J. (2020). Advances in treatment of spinal muscular atrophy-new phenotypes, new challenges, new implications for care. Journal of Neuromuscular Disease, 7(1), 1.CrossRef
67.
go back to reference Weaver, F. M., et al. (2017). Survival in patients with Parkinson’s disease after deep brain stimulation or medical management. Movement Disorders, 32(12), 1756–1763.PubMedCrossRef Weaver, F. M., et al. (2017). Survival in patients with Parkinson’s disease after deep brain stimulation or medical management. Movement Disorders, 32(12), 1756–1763.PubMedCrossRef
68.
go back to reference Coelho, T., et al. (2013). THAOS-The transthyretin amyloidosis outcomes survey: Initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Current Medical Research and Opinion, 29(1), 63–76.PubMedCrossRef Coelho, T., et al. (2013). THAOS-The transthyretin amyloidosis outcomes survey: Initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Current Medical Research and Opinion, 29(1), 63–76.PubMedCrossRef
Metadata
Title
Are we creating a new phenotype? Physiological barriers and ethical considerations in the treatment of hereditary transthyretin-amyloidosis
Authors
Maike F. Dohrn
Jessica Medina
Karmele R. Olaciregui Dague
Ernst Hund
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Neurological Research and Practice / Issue 1/2021
Electronic ISSN: 2524-3489
DOI
https://doi.org/10.1186/s42466-021-00155-8

Other articles of this Issue 1/2021

Neurological Research and Practice 1/2021 Go to the issue