Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2016

Open Access 01-12-2016 | Research

Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes

Authors: Luisa Möhle, Nicole Israel, Kristin Paarmann, Markus Krohn, Sabine Pietkiewicz, Andreas Müller, Inna N. Lavrik, Jeffrey S. Buguliskis, Björn H. Schott, Dirk Schlüter, Eckart D. Gundelfinger, Dirk Montag, Ulrike Seifert, Jens Pahnke, Ildiko Rita Dunay

Published in: Acta Neuropathologica Communications | Issue 1/2016

Login to get access

Abstract

Introduction

Alzheimer’s disease (AD) is associated with the accumulation of β-amyloid (Aβ) as senile plaques in the brain, thus leading to neurodegeneration and cognitive impairment. Plaque formation depends not merely on the amount of generated Aβ peptides, but more importantly on their effective removal. Chronic infections with neurotropic pathogens, most prominently the parasite Toxoplasma (T.) gondii, are frequent in the elderly, and it has been suggested that the resulting neuroinflammation may influence the course of AD. In the present study, we investigated how chronic T. gondii infection and resulting neuroinflammation affect plaque deposition and removal in a mouse model of AD.

Results

Chronic infection with T. gondii was associated with reduced Aβ and plaque load in 5xFAD mice. Upon infection, myeloid-derived CCR2hi Ly6Chi monocytes, CCR2+ Ly6Cint, and CCR2+ Ly6Clow mononuclear cells were recruited to the brain of mice. Compared to microglia, these recruited mononuclear cells showed highly increased phagocytic capacity of Aβ ex vivo. The F4/80+ Ly6Clow macrophages expressed high levels of Triggering Receptor Expressed on Myeloid cells 2 (TREM2), CD36, and Scavenger Receptor A1 (SCARA1), indicating phagocytic activity. Importantly, selective ablation of CCR2+ Ly6Chi monocytes resulted in an increased amount of Aβ in infected mice. Elevated insulin-degrading enzyme (IDE), matrix metalloproteinase 9 (MMP9), as well as immunoproteasome subunits β1i/LMP2, β2i/MECL-1, and β5i/LMP7 mRNA levels in the infected brains indicated increased proteolytic Aβ degradation. Particularly, LMP7 was highly expressed by the recruited mononuclear cells in the brain, suggesting a novel mechanism of Aβ clearance.

Conclusions

Our results indicate that chronic Toxoplasma infection ameliorates β-amyloidosis in a murine model of AD by activation of the immune system, specifically by recruitment of Ly6Chi monocytes and by enhancement of phagocytosis and degradation of soluble Aβ. Our findings provide evidence for a modulatory role of inflammation-induced Aβ phagocytosis and degradation by newly recruited peripheral immune cells in the pathophysiology of AD.
Appendix
Available only for authorised users
Literature
3.
go back to reference Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.PubMed Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.PubMed
13.
go back to reference Fröhlich C, Paarmann K, Steffen J, et al. Genomic background-related activation of microglia and reduced β-amyloidosis in a mouse model of Alzheimer’s disease. Eur J Microbiol Immunol (Bp). 2013;3:21–7. doi:10.1556/EuJMI.3.2013.1.3.CrossRef Fröhlich C, Paarmann K, Steffen J, et al. Genomic background-related activation of microglia and reduced β-amyloidosis in a mouse model of Alzheimer’s disease. Eur J Microbiol Immunol (Bp). 2013;3:21–7. doi:10.​1556/​EuJMI.​3.​2013.​1.​3.CrossRef
17.
20.
go back to reference Ajami B, Bennett JL, Krieger C, et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14:1142–9. doi:10.1038/nn.2887.PubMedCrossRef Ajami B, Bennett JL, Krieger C, et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14:1142–9. doi:10.​1038/​nn.​2887.PubMedCrossRef
25.
go back to reference Kunis G, Baruch K, Miller O, Schwartz M. Immunization with a Myelin-Derived Antigen Activates the Brain’s Choroid Plexus for Recruitment of Immunoregulatory Cells to the CNS and Attenuates Disease Progression in a Mouse Model of ALS. J Neurosci. 2015;35:6381–93. doi:10.1523/JNEUROSCI.3644-14.2015.PubMedCrossRef Kunis G, Baruch K, Miller O, Schwartz M. Immunization with a Myelin-Derived Antigen Activates the Brain’s Choroid Plexus for Recruitment of Immunoregulatory Cells to the CNS and Attenuates Disease Progression in a Mouse Model of ALS. J Neurosci. 2015;35:6381–93. doi:10.​1523/​JNEUROSCI.​3644-14.​2015.PubMedCrossRef
30.
36.
37.
go back to reference Carter C. Alzheimer’s Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System. Int J Alzheimers Dis. 2011;2011:501862. doi:10.4061/2011/501862.PubMedPubMedCentralCrossRef Carter C. Alzheimer’s Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System. Int J Alzheimers Dis. 2011;2011:501862. doi:10.​4061/​2011/​501862.PubMedPubMedCentralCrossRef
43.
go back to reference Jones JL, Kruszon-Moran D, Wilson M, et al. Toxoplasma gondii infection in the United States: seroprevalence and risk factors. Am J Epidemiol. 2001;154:357–65.PubMedCrossRef Jones JL, Kruszon-Moran D, Wilson M, et al. Toxoplasma gondii infection in the United States: seroprevalence and risk factors. Am J Epidemiol. 2001;154:357–65.PubMedCrossRef
44.
go back to reference Hermes G, Ajioka JW, Kelly KA, et al. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation. 2008;5:48. doi:10.1186/1742-2094-5-48.PubMedPubMedCentralCrossRef Hermes G, Ajioka JW, Kelly KA, et al. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation. 2008;5:48. doi:10.​1186/​1742-2094-5-48.PubMedPubMedCentralCrossRef
49.
go back to reference Blanchard N, Dunay IR, Schlüter D. Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system. Parasite Immunol. 2015;37:150–8. doi:10.1111/pim.12173.PubMedCrossRef Blanchard N, Dunay IR, Schlüter D. Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system. Parasite Immunol. 2015;37:150–8. doi:10.​1111/​pim.​12173.PubMedCrossRef
55.
go back to reference Perry CE, Gale SD, Erickson L, et al. Seroprevalence and Serointensity of Latent Toxoplasma gondii in a Sample of Elderly Adults With and Without Alzheimer Disease. Alzheimer Dis Assoc Disord. 2015;00:1–4. doi:10.1097/WAD.0000000000000108.CrossRef Perry CE, Gale SD, Erickson L, et al. Seroprevalence and Serointensity of Latent Toxoplasma gondii in a Sample of Elderly Adults With and Without Alzheimer Disease. Alzheimer Dis Assoc Disord. 2015;00:1–4. doi:10.​1097/​WAD.​0000000000000108​.CrossRef
57.
go back to reference Rozenfeld C, Martinez R, Seabra S, et al. Toxoplasma gondii Prevents Neuron Degeneration by Interferon-γ-Activated Microglia in a Mechanism Involving Inhibition of Inducible Nitric Oxide Synthase and Transforming Growth Factor-β1 Production by Infected Microglia. Am J Pathol. 2005;167:1021–31. doi:10.1016/S0002-9440(10)61191-1.PubMedPubMedCentralCrossRef Rozenfeld C, Martinez R, Seabra S, et al. Toxoplasma gondii Prevents Neuron Degeneration by Interferon-γ-Activated Microglia in a Mechanism Involving Inhibition of Inducible Nitric Oxide Synthase and Transforming Growth Factor-β1 Production by Infected Microglia. Am J Pathol. 2005;167:1021–31. doi:10.​1016/​S0002-9440(10)61191-1.PubMedPubMedCentralCrossRef
59.
go back to reference Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–40. doi:10.1523/JNEUROSCI.1202-06.2006.PubMedCrossRef Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–40. doi:10.​1523/​JNEUROSCI.​1202-06.​2006.PubMedCrossRef
62.
go back to reference Hofrichter J, Krohn M, Schumacher T, et al. Reduced Alzheimer’s disease pathology by St. John's Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr Alzheimer Res. 2013;10:1057–69.PubMedPubMedCentralCrossRef Hofrichter J, Krohn M, Schumacher T, et al. Reduced Alzheimer’s disease pathology by St. John's Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr Alzheimer Res. 2013;10:1057–69.PubMedPubMedCentralCrossRef
65.
67.
go back to reference Scheffler K, Stenzel J, Krohn M, et al. Determination of spatial and temporal distribution of microglia by 230 nm-high-resolution, high-throughput automated analysis reveals different amyloid plaque populations in an APP/PS1 mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2011;8:781–8.PubMedPubMedCentralCrossRef Scheffler K, Stenzel J, Krohn M, et al. Determination of spatial and temporal distribution of microglia by 230 nm-high-resolution, high-throughput automated analysis reveals different amyloid plaque populations in an APP/PS1 mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2011;8:781–8.PubMedPubMedCentralCrossRef
73.
go back to reference Schlüter D, Hein A, Dörries R, Deckert-Schlüter M. Different subsets of T cells in conjunction with natural killer cells, macrophages, and activated microglia participate in the intracerebral immune response to Toxoplasma gondii in athymic nude and immunocompetent rats. Am J Pathol. 1995;146:999–1007.PubMedPubMedCentral Schlüter D, Hein A, Dörries R, Deckert-Schlüter M. Different subsets of T cells in conjunction with natural killer cells, macrophages, and activated microglia participate in the intracerebral immune response to Toxoplasma gondii in athymic nude and immunocompetent rats. Am J Pathol. 1995;146:999–1007.PubMedPubMedCentral
91.
go back to reference London JA, Biegel D, Pachter JS. Neurocytopathic effects of beta-amyloid-stimulated monocytes: a potential mechanism for central nervous system damage in Alzheimer disease. Proc Natl Acad Sci U S A. 1996;93:4147–52.PubMedPubMedCentralCrossRef London JA, Biegel D, Pachter JS. Neurocytopathic effects of beta-amyloid-stimulated monocytes: a potential mechanism for central nervous system damage in Alzheimer disease. Proc Natl Acad Sci U S A. 1996;93:4147–52.PubMedPubMedCentralCrossRef
94.
go back to reference Ziv Y, Ron N, Butovsky O, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9:268–75. doi:10.1038/nn1629.PubMedCrossRef Ziv Y, Ron N, Butovsky O, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9:268–75. doi:10.​1038/​nn1629.PubMedCrossRef
96.
go back to reference El Khoury J, Toft M, Hickman SE, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007;13:432–8. doi:10.1038/nm1555.PubMedCrossRef El Khoury J, Toft M, Hickman SE, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med. 2007;13:432–8. doi:10.​1038/​nm1555.PubMedCrossRef
99.
go back to reference Fiala M, Lin J, Ringman J, et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2005;7:221–32. discussion 255–62.PubMed Fiala M, Lin J, Ringman J, et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2005;7:221–32. discussion 255–62.PubMed
101.
go back to reference Varvel NH, Grathwohl SA, Degenhardt K, et al. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer’s disease. J Exp Med. 2015;212:1803–9. doi:10.1084/jem.20150478.PubMedCrossRef Varvel NH, Grathwohl SA, Degenhardt K, et al. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer’s disease. J Exp Med. 2015;212:1803–9. doi:10.​1084/​jem.​20150478.PubMedCrossRef
104.
go back to reference Baruch K, Deczkowska A, Rosenzweig N, et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med. 2016. 1–5. doi:10.1038/nm.4022 Baruch K, Deczkowska A, Rosenzweig N, et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med. 2016. 1–5. doi:10.​1038/​nm.​4022
115.
122.
go back to reference Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron. 2003;40:1087–93.PubMedCrossRef Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron. 2003;40:1087–93.PubMedCrossRef
125.
go back to reference Mukherjee A, Song E, Kihiko-Ehmann M, et al. Insulysin hydrolyzes amyloid beta peptides to products that are neither neurotoxic nor deposit on amyloid plaques. J Neurosci. 2000;20:8745–9.PubMed Mukherjee A, Song E, Kihiko-Ehmann M, et al. Insulysin hydrolyzes amyloid beta peptides to products that are neither neurotoxic nor deposit on amyloid plaques. J Neurosci. 2000;20:8745–9.PubMed
130.
go back to reference Kremer M, Henn A, Kolb C, et al. Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J Immunol. 2010;185:5549–60. doi:10.4049/jimmunol.1001517.PubMedCrossRef Kremer M, Henn A, Kolb C, et al. Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J Immunol. 2010;185:5549–60. doi:10.​4049/​jimmunol.​1001517.PubMedCrossRef
131.
go back to reference Mundt S, Engelhardt B, Kirk CJ, et al. Inhibition and deficiency of the immunoproteasome subunit LMP7 attenuates LCMV-induced meningitis. Eur J Immunol. 2015. n/a–n/a. doi:10.1002/eji.201545578 Mundt S, Engelhardt B, Kirk CJ, et al. Inhibition and deficiency of the immunoproteasome subunit LMP7 attenuates LCMV-induced meningitis. Eur J Immunol. 2015. n/a–n/a. doi:10.​1002/​eji.​201545578
Metadata
Title
Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes
Authors
Luisa Möhle
Nicole Israel
Kristin Paarmann
Markus Krohn
Sabine Pietkiewicz
Andreas Müller
Inna N. Lavrik
Jeffrey S. Buguliskis
Björn H. Schott
Dirk Schlüter
Eckart D. Gundelfinger
Dirk Montag
Ulrike Seifert
Jens Pahnke
Ildiko Rita Dunay
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2016
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-016-0293-8

Other articles of this Issue 1/2016

Acta Neuropathologica Communications 1/2016 Go to the issue