Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2023

Open Access 01-12-2023 | Spinal Muscular Atrophy | Review

Gene therapy-based strategies for spinal muscular atrophy—an Asia-Pacific perspective

Authors: Michelle A. Farrar, Loudella Calotes-Castillo, Ranil De Silva, Peter Barclay, Lani Attwood, Julie Cini, Monica Ferrie, Didu S. Kariyawasam

Published in: Molecular and Cellular Pediatrics | Issue 1/2023

Login to get access

Abstract

Onasemnogene abeparvovec has been life-changing for children with spinal muscular atrophy (SMA), signifying the potential and progress occurring in gene- and cell-based therapies for rare genetic diseases. Hence, it is important that clinicians gain knowledge and understanding in gene therapy-based treatment strategies for SMA. In this review, we describe the development and translation of onasemnogene abeparvovec from clinical trials to healthcare practice and share knowledge on the facilitators and barriers to implementation. Rapid and accurate SMA diagnosis, awareness, and education to safely deliver gene therapy to eligible patients and access to expertise in multidisciplinary management for neuromuscular disorders are crucial for health system readiness. Early engagement and intersectoral collaboration are required to surmount complex logistical processes and develop policy, governance, and accountability. The collection and utilisation of real-world evidence are also an important part of clinical stewardship, informing ongoing improvements to care delivery and access. Additionally, a research-enabled clinical ecosystem can expand scientific knowledge and discovery to optimise future therapies and magnify health impacts. Important ethical, equity, economic, and sustainability issues are evident, for which we must connect globally.
Literature
1.
go back to reference Lefebvre S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165PubMedCrossRef Lefebvre S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165PubMedCrossRef
2.
go back to reference Feldkotter M et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70(2):358–368PubMedCrossRef Feldkotter M et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70(2):358–368PubMedCrossRef
3.
go back to reference Farrar MA et al (2013) Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 162(1):155–159PubMedCrossRef Farrar MA et al (2013) Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 162(1):155–159PubMedCrossRef
4.
go back to reference Balaji L et al (2023) Decision-making and challenges within the evolving treatment algorithm in spinal muscular atrophy: a clinical perspective. Expert Rev Neurother 23(7):571–586PubMedCrossRef Balaji L et al (2023) Decision-making and challenges within the evolving treatment algorithm in spinal muscular atrophy: a clinical perspective. Expert Rev Neurother 23(7):571–586PubMedCrossRef
5.
go back to reference Kariyawasam DS et al (2023) Newborn screening for spinal muscular atrophy in Australia: a non-randomised cohort study. Lancet Child adolesc health 7(3):159–170PubMedCrossRef Kariyawasam DS et al (2023) Newborn screening for spinal muscular atrophy in Australia: a non-randomised cohort study. Lancet Child adolesc health 7(3):159–170PubMedCrossRef
6.
go back to reference Kariyawasam DST et al (2020) The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet Med 22(3):557–565PubMedCrossRef Kariyawasam DST et al (2020) The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet Med 22(3):557–565PubMedCrossRef
7.
go back to reference Dangouloff T et al (2021) Newborn screening programs for spinal muscular atrophy worldwide: where we stand and where to go. Neuromuscular disorders : NMD 31(6):574–582PubMedCrossRef Dangouloff T et al (2021) Newborn screening programs for spinal muscular atrophy worldwide: where we stand and where to go. Neuromuscular disorders : NMD 31(6):574–582PubMedCrossRef
8.
go back to reference Wijekoon N et al (2023) Gene therapy for selected neuromuscular and trinucleotide repeat disorders - an insight to subsume South Asia for multicenter clinical trials. IBRO neurosci rep 14:146–153PubMedPubMedCentralCrossRef Wijekoon N et al (2023) Gene therapy for selected neuromuscular and trinucleotide repeat disorders - an insight to subsume South Asia for multicenter clinical trials. IBRO neurosci rep 14:146–153PubMedPubMedCentralCrossRef
9.
go back to reference Bladen CL et al (2014) Mapping the differences in care for 5,000 spinal muscular atrophy patients, a survey of 24 national registries in North America. Austral Europe J Neurol 261(1):152–163 Bladen CL et al (2014) Mapping the differences in care for 5,000 spinal muscular atrophy patients, a survey of 24 national registries in North America. Austral Europe J Neurol 261(1):152–163
11.
go back to reference Kariyawasam D et al (2020) Great expectations: virus-mediated gene therapy in neurological disorders. J Neurol Neurosurg Psychiatry 91(8):849–860PubMedCrossRef Kariyawasam D et al (2020) Great expectations: virus-mediated gene therapy in neurological disorders. J Neurol Neurosurg Psychiatry 91(8):849–860PubMedCrossRef
12.
go back to reference Mendell JR et al (2021) Current clinical applications of in vivo gene therapy with AAVs. Mol Ther 29(2):464–488PubMedCrossRef Mendell JR et al (2021) Current clinical applications of in vivo gene therapy with AAVs. Mol Ther 29(2):464–488PubMedCrossRef
13.
go back to reference Bönnemann CG et al (2023) Dystrophin immunity after gene therapy for Duchenne’s muscular dystrophy. N Engl J Med 388(24):2294–2296PubMedCrossRef Bönnemann CG et al (2023) Dystrophin immunity after gene therapy for Duchenne’s muscular dystrophy. N Engl J Med 388(24):2294–2296PubMedCrossRef
14.
go back to reference Kichula EA et al (2021) Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy. Muscle Nerve 64(4):413–427PubMedPubMedCentralCrossRef Kichula EA et al (2021) Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy. Muscle Nerve 64(4):413–427PubMedPubMedCentralCrossRef
15.
go back to reference Chand D et al (2021) Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol 74(3):560–566PubMedCrossRef Chand D et al (2021) Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol 74(3):560–566PubMedCrossRef
17.
go back to reference Chand DH et al (2021) Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J Pediatr 231:265–268PubMedCrossRef Chand DH et al (2021) Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J Pediatr 231:265–268PubMedCrossRef
18.
go back to reference Shieh PB et al (2020) Re: “Moving forward after two deaths in a gene therapy trial of myotubular myopathy” by Wilson and Flotte. Hum Gene Ther 31(15-16):787PubMedPubMedCentralCrossRef Shieh PB et al (2020) Re: “Moving forward after two deaths in a gene therapy trial of myotubular myopathy” by Wilson and Flotte. Hum Gene Ther 31(15-16):787PubMedPubMedCentralCrossRef
19.
go back to reference Mendell JR et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722PubMedCrossRef Mendell JR et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722PubMedCrossRef
20.
go back to reference Day JW et al (2021) Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 20(4):284–293PubMedCrossRef Day JW et al (2021) Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 20(4):284–293PubMedCrossRef
21.
go back to reference Mercuri E et al (2021) Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 20(10):832–841PubMedCrossRef Mercuri E et al (2021) Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 20(10):832–841PubMedCrossRef
22.
go back to reference Strauss KA et al (2022) Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial. Nat Med 28(7):1381–1389PubMedPubMedCentralCrossRef Strauss KA et al (2022) Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial. Nat Med 28(7):1381–1389PubMedPubMedCentralCrossRef
23.
go back to reference Strauss KA et al (2022) Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the phase III SPR1NT trial. Nat Med 28(7):1390–1397PubMedPubMedCentralCrossRef Strauss KA et al (2022) Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the phase III SPR1NT trial. Nat Med 28(7):1390–1397PubMedPubMedCentralCrossRef
25.
go back to reference Farrar MA et al (2018) Nusinersen for SMA: expanded access programme. J Neurol Neurosurg Psychiatry 89(9):937–942PubMedCrossRef Farrar MA et al (2018) Nusinersen for SMA: expanded access programme. J Neurol Neurosurg Psychiatry 89(9):937–942PubMedCrossRef
26.
go back to reference Shih ST et al (2021) Newborn screening for spinal muscular atrophy with disease-modifying therapies: a cost-effectiveness analysis. J Neurol Neurosurg Psychiatry 92(12):1296–1304PubMedCrossRef Shih ST et al (2021) Newborn screening for spinal muscular atrophy with disease-modifying therapies: a cost-effectiveness analysis. J Neurol Neurosurg Psychiatry 92(12):1296–1304PubMedCrossRef
27.
go back to reference D'Silva AM et al (2022) Integrating newborn screening for spinal muscular atrophy into health care systems: an Australian pilot programme. Dev Med Child Neurol 64(5):625–632PubMedCrossRef D'Silva AM et al (2022) Integrating newborn screening for spinal muscular atrophy into health care systems: an Australian pilot programme. Dev Med Child Neurol 64(5):625–632PubMedCrossRef
28.
go back to reference Kariyawasam DST et al (2021) “We needed this”: perspectives of parents and healthcare professionals involved in a pilot newborn screening program for spinal muscular atrophy. E Clin Med 33:100742 Kariyawasam DST et al (2021) “We needed this”: perspectives of parents and healthcare professionals involved in a pilot newborn screening program for spinal muscular atrophy. E Clin Med 33:100742
29.
go back to reference Nguyen CQ et al (2022) ‘Advocacy groups are the connectors’: experiences and contributions of rare disease patient organization leaders in advanced neurotherapeutics. Health expect 25(6):3175–3191PubMedPubMedCentralCrossRef Nguyen CQ et al (2022) ‘Advocacy groups are the connectors’: experiences and contributions of rare disease patient organization leaders in advanced neurotherapeutics. Health expect 25(6):3175–3191PubMedPubMedCentralCrossRef
30.
go back to reference Newson AJ et al (2022) Ethical aspects of the changing landscape for spinal muscular atrophy management in Australia. Austral j general pract 51(3):131–135CrossRef Newson AJ et al (2022) Ethical aspects of the changing landscape for spinal muscular atrophy management in Australia. Austral j general pract 51(3):131–135CrossRef
31.
go back to reference Glascock J et al (2020) Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J neuromusc disease 7(2):97–100CrossRef Glascock J et al (2020) Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J neuromusc disease 7(2):97–100CrossRef
32.
go back to reference Deng S et al (2022) The 4-copy conundrum in the treatment of infants with spinal muscular atrophy. Ann Neurol 91(6):891PubMedCrossRef Deng S et al (2022) The 4-copy conundrum in the treatment of infants with spinal muscular atrophy. Ann Neurol 91(6):891PubMedCrossRef
33.
go back to reference Müller-Felber W et al (2020) Infants diagnosed with spinal muscular atrophy and 4 SMN2 copies through newborn screening - opportunity or burden? J neuromusc disease 7(2):109–117CrossRef Müller-Felber W et al (2020) Infants diagnosed with spinal muscular atrophy and 4 SMN2 copies through newborn screening - opportunity or burden? J neuromusc disease 7(2):109–117CrossRef
34.
go back to reference Ricci M et al (2023) Clinical phenotype of pediatric and adult patients with spinal muscular atrophy with four SMN2 copies: are they really all stable? Ann Neurol Ricci M et al (2023) Clinical phenotype of pediatric and adult patients with spinal muscular atrophy with four SMN2 copies: are they really all stable? Ann Neurol
35.
go back to reference Glanzman AM et al (2011) Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther 23(4):322–326PubMedCrossRef Glanzman AM et al (2011) Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther 23(4):322–326PubMedCrossRef
36.
go back to reference Finkel RS et al (2014) Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurol 83(9):810–817CrossRef Finkel RS et al (2014) Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurol 83(9):810–817CrossRef
37.
go back to reference D'Silva AM et al (2022) Onasemnogene abeparvovec in spinal muscular atrophy: an Australian experience of safety and efficacy. Ann clin translat neurol 9(3):339–350CrossRef D'Silva AM et al (2022) Onasemnogene abeparvovec in spinal muscular atrophy: an Australian experience of safety and efficacy. Ann clin translat neurol 9(3):339–350CrossRef
38.
go back to reference Pane M et al (2023) Onasemnogene abeparvovec in spinal muscular atrophy: predictors of efficacy and safety in naïve patients with spinal muscular atrophy and following switch from other therapies. E Clin Med 59:101997 Pane M et al (2023) Onasemnogene abeparvovec in spinal muscular atrophy: predictors of efficacy and safety in naïve patients with spinal muscular atrophy and following switch from other therapies. E Clin Med 59:101997
39.
go back to reference Carey KA et al (2022) Family, healthcare professional, and societal preferences for the treatment of infantile spinal muscular atrophy: a discrete choice experiment. Dev Med Child Neurol 64(6):753–761PubMedCrossRef Carey KA et al (2022) Family, healthcare professional, and societal preferences for the treatment of infantile spinal muscular atrophy: a discrete choice experiment. Dev Med Child Neurol 64(6):753–761PubMedCrossRef
40.
go back to reference Kariyawasam D et al (2020) Motor unit changes in children with symptomatic spinal muscular atrophy treated with nusinersen. J Neurol Neurosurg Psychiatry 92(1):78–85PubMedCrossRef Kariyawasam D et al (2020) Motor unit changes in children with symptomatic spinal muscular atrophy treated with nusinersen. J Neurol Neurosurg Psychiatry 92(1):78–85PubMedCrossRef
41.
go back to reference D'Silva AM et al (2023) Identification of novel CSF-derived miRNAs in treated paediatric onset spinal muscular atrophy: an exploratory study. Pharmaceutics 15(1) D'Silva AM et al (2023) Identification of novel CSF-derived miRNAs in treated paediatric onset spinal muscular atrophy: an exploratory study. Pharmaceutics 15(1)
42.
go back to reference Logan GJ et al (2023) Structural and functional characterization of capsid binding by anti-AAV9 monoclonal antibodies from infants after SMA gene therapy. Molecul ther 31(7):1979–1993CrossRef Logan GJ et al (2023) Structural and functional characterization of capsid binding by anti-AAV9 monoclonal antibodies from infants after SMA gene therapy. Molecul ther 31(7):1979–1993CrossRef
43.
go back to reference McMillan HJ et al (2022) Onasemnogene abeparvovec for the treatment of spinal muscular atrophy. Expert Opin Biol Ther 22(9):1075–1090PubMedCrossRef McMillan HJ et al (2022) Onasemnogene abeparvovec for the treatment of spinal muscular atrophy. Expert Opin Biol Ther 22(9):1075–1090PubMedCrossRef
44.
go back to reference Livingstone A et al (2023) The ethics of crowdfunding in paediatric neurology. Dev Med Child Neurol 65(4):450–455PubMedCrossRef Livingstone A et al (2023) The ethics of crowdfunding in paediatric neurology. Dev Med Child Neurol 65(4):450–455PubMedCrossRef
45.
46.
47.
go back to reference D'Silva AM et al (2023) Identification of novel CSF-derived miRNAs in treated paediatric onset spinal muscular atrophy: an exploratory study. Pharmaceutics 15(1) D'Silva AM et al (2023) Identification of novel CSF-derived miRNAs in treated paediatric onset spinal muscular atrophy: an exploratory study. Pharmaceutics 15(1)
48.
go back to reference Carvalho M et al (2021) Patient access to gene therapy medicinal products: a comprehensive review. BMJ Inn 7(1):123–134CrossRef Carvalho M et al (2021) Patient access to gene therapy medicinal products: a comprehensive review. BMJ Inn 7(1):123–134CrossRef
49.
go back to reference Farrar MA et al (2020) Spinal muscular atrophy - the dawning of a new era. Nat Rev Neurol 16(11):593–594PubMedCrossRef Farrar MA et al (2020) Spinal muscular atrophy - the dawning of a new era. Nat Rev Neurol 16(11):593–594PubMedCrossRef
50.
go back to reference Adair JE et al (2023) Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Gene Ther 30(3-4):216–221PubMedCrossRef Adair JE et al (2023) Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Gene Ther 30(3-4):216–221PubMedCrossRef
51.
go back to reference Jørgensen J et al (2017) Annuity payments can increase patient access to innovative cell and gene therapies under England’s net budget impact test. J market access health policy 5(1):1355203CrossRef Jørgensen J et al (2017) Annuity payments can increase patient access to innovative cell and gene therapies under England’s net budget impact test. J market access health policy 5(1):1355203CrossRef
53.
go back to reference Web Annex A (2023) World Health Organization Model List of Essential Medicines – 23rd List, 2023. In: The selection and use of essential medicines 2023: Executive summary of the report of the 24th WHO Expert Committee on the Selection and Use of Essential Medicines, 24 – 28 April 2023. World Health Organization, Geneva. (WHO/MHP/HPS/EML/2023.02). Licence: CC BY NC-SA 3.0 IGO Web Annex A (2023) World Health Organization Model List of Essential Medicines – 23rd List, 2023. In: The selection and use of essential medicines 2023: Executive summary of the report of the 24th WHO Expert Committee on the Selection and Use of Essential Medicines, 24 – 28 April 2023. World Health Organization, Geneva. (WHO/MHP/HPS/EML/2023.02). Licence: CC BY NC-SA 3.0 IGO
54.
go back to reference Gahl WA et al (2021) Essential list of medicinal products for rare diseases: recommendations from the IRDiRC Rare Disease Treatment Access Working Group. Orphanet J Rare Dis 16(1):308PubMedPubMedCentralCrossRef Gahl WA et al (2021) Essential list of medicinal products for rare diseases: recommendations from the IRDiRC Rare Disease Treatment Access Working Group. Orphanet J Rare Dis 16(1):308PubMedPubMedCentralCrossRef
55.
go back to reference Adair JE et al (2022) Place-of-care manufacturing of gene therapies. Lancet Haematol 9(11):e807–e808PubMedCrossRef Adair JE et al (2022) Place-of-care manufacturing of gene therapies. Lancet Haematol 9(11):e807–e808PubMedCrossRef
56.
go back to reference WHO Expert Committee on Specifications for Pharmaceutical Preparations: Fifty-fifth report. World Health Organization, Geneva. 2021. (WHO Technical Report Series, No. 1033). Licence: CC BY-NC-SA 3.0 IGO p. 269-304 WHO Expert Committee on Specifications for Pharmaceutical Preparations: Fifty-fifth report. World Health Organization, Geneva. 2021. (WHO Technical Report Series, No. 1033). Licence: CC BY-NC-SA 3.0 IGO p. 269-304
57.
go back to reference Tizzano EF et al (2022) Clinical trial readiness for spinal muscular atrophy: experience of an international educational-training initiative. J neuromusc disease 9(6):809–820CrossRef Tizzano EF et al (2022) Clinical trial readiness for spinal muscular atrophy: experience of an international educational-training initiative. J neuromusc disease 9(6):809–820CrossRef
58.
go back to reference Farrar MA et al (2020) “The whole game is changing and you've got hope”: Australian perspectives on treatment decision making in spinal muscular atrophy. Patient 13(4):389-400 Farrar MA et al (2020) “The whole game is changing and you've got hope”: Australian perspectives on treatment decision making in spinal muscular atrophy. Patient 13(4):389-400
59.
go back to reference Nguyen CQ et al (2022) The involvement of rare disease patient organisations in therapeutic innovation across rare paediatric neurological conditions: a narrative review. Orphanet J Rare Dis 17(1):167PubMedPubMedCentralCrossRef Nguyen CQ et al (2022) The involvement of rare disease patient organisations in therapeutic innovation across rare paediatric neurological conditions: a narrative review. Orphanet J Rare Dis 17(1):167PubMedPubMedCentralCrossRef
60.
go back to reference Finkel RS et al (2018) Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromusc disorders: NMD 28(3):197–207PubMedCrossRef Finkel RS et al (2018) Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromusc disorders: NMD 28(3):197–207PubMedCrossRef
61.
go back to reference Mercuri E et al (2018) Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromusc disorders: NMD 28(2):103–115PubMedCrossRef Mercuri E et al (2018) Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromusc disorders: NMD 28(2):103–115PubMedCrossRef
62.
go back to reference Mahungu AC et al (2022) A review of the genetic spectrum of hereditary spastic paraplegias, inherited neuropathies and spinal muscular atrophies in Africans. Orphanet j rare diseas 17(1):133CrossRef Mahungu AC et al (2022) A review of the genetic spectrum of hereditary spastic paraplegias, inherited neuropathies and spinal muscular atrophies in Africans. Orphanet j rare diseas 17(1):133CrossRef
63.
go back to reference Monnakgotla NR et al (2023) Analysis of structural variants previously associated with ALS in Europeans Highlights Genomic Architectural Differences in Africans. Neurol Genet 9(4):e200077PubMedPubMedCentralCrossRef Monnakgotla NR et al (2023) Analysis of structural variants previously associated with ALS in Europeans Highlights Genomic Architectural Differences in Africans. Neurol Genet 9(4):e200077PubMedPubMedCentralCrossRef
65.
go back to reference Lek A et al (2023) Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. New England J Med 389(13):1203–1210CrossRef Lek A et al (2023) Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. New England J Med 389(13):1203–1210CrossRef
Metadata
Title
Gene therapy-based strategies for spinal muscular atrophy—an Asia-Pacific perspective
Authors
Michelle A. Farrar
Loudella Calotes-Castillo
Ranil De Silva
Peter Barclay
Lani Attwood
Julie Cini
Monica Ferrie
Didu S. Kariyawasam
Publication date
01-12-2023
Publisher
Springer International Publishing
Published in
Molecular and Cellular Pediatrics / Issue 1/2023
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-023-00171-5

Other articles of this Issue 1/2023

Molecular and Cellular Pediatrics 1/2023 Go to the issue