Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2020

Open Access 01-12-2020 | Arterial Occlusive Disease | Review

Unveiling ncRNA regulatory axes in atherosclerosis progression

Authors: Estanislao Navarro, Adrian Mallén, Josep M. Cruzado, Joan Torras, Miguel Hueso

Published in: Clinical and Translational Medicine | Issue 1/2020

Login to get access

Abstract

Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3′UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Literature
1.
go back to reference Hueso M et al (2018) ALUminating the path of atherosclerosis progression: chaos theory suggests a role for Alu repeats in the development of atherosclerotic vascular disease. Int J Mol Sci 19(6):1734PubMedCentralCrossRef Hueso M et al (2018) ALUminating the path of atherosclerosis progression: chaos theory suggests a role for Alu repeats in the development of atherosclerotic vascular disease. Int J Mol Sci 19(6):1734PubMedCentralCrossRef
6.
go back to reference Koenig W (2013) High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy. Int J Cardiol 168(6):5126–5134PubMedCrossRef Koenig W (2013) High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy. Int J Cardiol 168(6):5126–5134PubMedCrossRef
7.
go back to reference Vitali C, Khetarpal SA, Rader DJ (2017) HDL cholesterol metabolism and the risk of CHD: new insights from human genetics. Curr Cardiol Rep 19(12):132PubMedCrossRef Vitali C, Khetarpal SA, Rader DJ (2017) HDL cholesterol metabolism and the risk of CHD: new insights from human genetics. Curr Cardiol Rep 19(12):132PubMedCrossRef
9.
go back to reference Dron JS, Ho R, Hegele RA (2017) Recent advances in the genetics of atherothrombotic disease and its determinants. Arterioscler Thromb Vasc Biol 37(10):e158–e166PubMedCrossRef Dron JS, Ho R, Hegele RA (2017) Recent advances in the genetics of atherothrombotic disease and its determinants. Arterioscler Thromb Vasc Biol 37(10):e158–e166PubMedCrossRef
10.
go back to reference Tabaei S, Tabaee SS (2019) DNA methylation abnormalities in atherosclerosis. Artif Cells Nanomed Biotechnol 47(1):2031–2041PubMedCrossRef Tabaei S, Tabaee SS (2019) DNA methylation abnormalities in atherosclerosis. Artif Cells Nanomed Biotechnol 47(1):2031–2041PubMedCrossRef
11.
go back to reference Aavik E, Babu M, Yla-Herttuala S (2019) DNA methylation processes in atheosclerotic plaque. Atherosclerosis 281:168–179PubMedCrossRef Aavik E, Babu M, Yla-Herttuala S (2019) DNA methylation processes in atheosclerotic plaque. Atherosclerosis 281:168–179PubMedCrossRef
12.
go back to reference Chen HH, Stewart AF (2016) Transcriptomic signature of atherosclerosis in the peripheral blood: fact or fiction? Curr Atheroscler Rep 18(12):77PubMedCrossRef Chen HH, Stewart AF (2016) Transcriptomic signature of atherosclerosis in the peripheral blood: fact or fiction? Curr Atheroscler Rep 18(12):77PubMedCrossRef
13.
go back to reference Fan J et al (2018) Genomic and transcriptomic analysis of hypercholesterolemic rabbits: progress and perspectives. Int J Mol Sci 19(11):3512PubMedCentralCrossRef Fan J et al (2018) Genomic and transcriptomic analysis of hypercholesterolemic rabbits: progress and perspectives. Int J Mol Sci 19(11):3512PubMedCentralCrossRef
14.
go back to reference Consortium, E.P. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRef Consortium, E.P. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRef
18.
go back to reference Litman T, Stein WD (2019) Obtaining estimates for the ages of all the protein-coding genes and most of the ontology-identified noncoding genes of the human genome, assigned to 19 phylostrata. Semin Oncol 46(1):3–9PubMedCrossRef Litman T, Stein WD (2019) Obtaining estimates for the ages of all the protein-coding genes and most of the ontology-identified noncoding genes of the human genome, assigned to 19 phylostrata. Semin Oncol 46(1):3–9PubMedCrossRef
19.
go back to reference Pertea M et al (2018) CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol 19(1):208PubMedPubMedCentralCrossRef Pertea M et al (2018) CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol 19(1):208PubMedPubMedCentralCrossRef
22.
go back to reference Johnson JM et al (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21(2):93–102PubMedCrossRef Johnson JM et al (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21(2):93–102PubMedCrossRef
23.
25.
go back to reference Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):925–933PubMedCrossRef Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):925–933PubMedCrossRef
26.
go back to reference Siomi MC et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258PubMedCrossRef Siomi MC et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258PubMedCrossRef
27.
go back to reference Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17PubMedCrossRef Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17PubMedCrossRef
30.
go back to reference Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5(4):e944014PubMedPubMedCentralCrossRef Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5(4):e944014PubMedPubMedCentralCrossRef
31.
go back to reference Prasanth KV, Spector DL (2007) Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev 21(1):11–42PubMedCrossRef Prasanth KV, Spector DL (2007) Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev 21(1):11–42PubMedCrossRef
32.
go back to reference Waller P, Blann AD (2019) Non-coding RNAs—a primer for the laboratory scientist. Br J Biomed Sci 76:157–165PubMedCrossRef Waller P, Blann AD (2019) Non-coding RNAs—a primer for the laboratory scientist. Br J Biomed Sci 76:157–165PubMedCrossRef
33.
go back to reference Consortium, E.P. et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816CrossRef Consortium, E.P. et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816CrossRef
34.
go back to reference Carninci P, Yasuda J, Hayashizaki Y (2008) Multifaceted mammalian transcriptome. Curr Opin Cell Biol 20(3):274–280PubMedCrossRef Carninci P, Yasuda J, Hayashizaki Y (2008) Multifaceted mammalian transcriptome. Curr Opin Cell Biol 20(3):274–280PubMedCrossRef
37.
38.
go back to reference Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163PubMed Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163PubMed
39.
go back to reference Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–581PubMedCrossRef Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–581PubMedCrossRef
40.
go back to reference Burke AC, Huff MW (2018) Regression of atherosclerosis: lessons learned from genetically modified mouse models. Curr Opin Lipidol 29(2):87–94PubMedCrossRef Burke AC, Huff MW (2018) Regression of atherosclerosis: lessons learned from genetically modified mouse models. Curr Opin Lipidol 29(2):87–94PubMedCrossRef
43.
go back to reference Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRef Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRef
45.
go back to reference Tang F et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382PubMedCrossRef Tang F et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382PubMedCrossRef
46.
go back to reference Karsch-Mizrachi I et al (2018) The international nucleotide sequence database collaboration. Nucleic Acids Res 46(D1):D48–D51PubMedCrossRef Karsch-Mizrachi I et al (2018) The international nucleotide sequence database collaboration. Nucleic Acids Res 46(D1):D48–D51PubMedCrossRef
47.
go back to reference O’Leary NA et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745CrossRefPubMed O’Leary NA et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745CrossRefPubMed
48.
go back to reference Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13(5):329–342PubMedCrossRef Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13(5):329–342PubMedCrossRef
50.
go back to reference Sayers EW et al (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 47(D1):D23–D28PubMedCrossRef Sayers EW et al (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 47(D1):D23–D28PubMedCrossRef
51.
go back to reference Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448PubMedCrossRef Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448PubMedCrossRef
52.
go back to reference Sanger F, Coulson AR (1978) The use of thin acrylamide gels for DNA sequencing. FEBS Lett 87(1):107–110PubMedCrossRef Sanger F, Coulson AR (1978) The use of thin acrylamide gels for DNA sequencing. FEBS Lett 87(1):107–110PubMedCrossRef
53.
go back to reference Prober JM et al (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238(4825):336–341PubMedCrossRef Prober JM et al (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238(4825):336–341PubMedCrossRef
54.
go back to reference Ciora T, Denefle P, Mayaux JF (1991) Rapid one-step automated sequencing reactions for 16 DNA samples using Taq polymerase and fluorescent primers. Nucleic Acids Res 19(1):188PubMedPubMedCentralCrossRef Ciora T, Denefle P, Mayaux JF (1991) Rapid one-step automated sequencing reactions for 16 DNA samples using Taq polymerase and fluorescent primers. Nucleic Acids Res 19(1):188PubMedPubMedCentralCrossRef
55.
go back to reference Rosenthal A, Charnock-Jones DS (1993) Linear amplification sequencing with dye terminators. Methods Mol Biol 23:281–296PubMed Rosenthal A, Charnock-Jones DS (1993) Linear amplification sequencing with dye terminators. Methods Mol Biol 23:281–296PubMed
57.
go back to reference Kono N, Arakawa K (2019) Nanopore sequencing: review of potential applications in functional genomics. Dev Growth Differ 61(5):316–326PubMedCrossRef Kono N, Arakawa K (2019) Nanopore sequencing: review of potential applications in functional genomics. Dev Growth Differ 61(5):316–326PubMedCrossRef
58.
go back to reference Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941PubMedCrossRef Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842(10):1932–1941PubMedCrossRef
60.
go back to reference Souquere S et al (2010) Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell 21(22):4020–4027PubMedPubMedCentralCrossRef Souquere S et al (2010) Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell 21(22):4020–4027PubMedPubMedCentralCrossRef
61.
go back to reference Adams MD et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656PubMedCrossRef Adams MD et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656PubMedCrossRef
62.
go back to reference Adams MD et al (1992) Sequence identification of 2,375 human brain genes. Nature 355(6361):632–634PubMedCrossRef Adams MD et al (1992) Sequence identification of 2,375 human brain genes. Nature 355(6361):632–634PubMedCrossRef
63.
go back to reference Okubo K et al (1992) Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet 2(3):173–179PubMedCrossRef Okubo K et al (1992) Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet 2(3):173–179PubMedCrossRef
64.
go back to reference Takahashi N, Ko MS (1993) The short 3′-end region of complementary DNAs as PCR-based polymorphic markers for an expression map of the mouse genome. Genomics 16(1):161–168PubMedCrossRef Takahashi N, Ko MS (1993) The short 3′-end region of complementary DNAs as PCR-based polymorphic markers for an expression map of the mouse genome. Genomics 16(1):161–168PubMedCrossRef
65.
go back to reference Kotake Y et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962CrossRefPubMed Kotake Y et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962CrossRefPubMed
66.
go back to reference Burd CE et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedPubMedCentralCrossRef Burd CE et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedPubMedCentralCrossRef
67.
go back to reference Sarkar D et al (2017) Multiple isoforms of ANRIL in melanoma cells: structural complexity suggests variations in processing. Int J Mol Sci 18(7):1378PubMedCentralCrossRef Sarkar D et al (2017) Multiple isoforms of ANRIL in melanoma cells: structural complexity suggests variations in processing. Int J Mol Sci 18(7):1378PubMedCentralCrossRef
68.
go back to reference Holdt LM, Teupser D (2018) Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis. Front Cardiovasc Med 5:145PubMedPubMedCentralCrossRef Holdt LM, Teupser D (2018) Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis. Front Cardiovasc Med 5:145PubMedPubMedCentralCrossRef
69.
73.
76.
77.
go back to reference Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRef Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRef
78.
go back to reference Vidigal JA, Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25(3):137–147PubMedCrossRef Vidigal JA, Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25(3):137–147PubMedCrossRef
79.
go back to reference Grassi E et al (2018) Choice of alternative polyadenylation sites, mediated by the RNA-binding protein Elavl3, plays a role in differentiation of inhibitory neuronal progenitors. Front Cell Neurosci 12:518PubMedCrossRef Grassi E et al (2018) Choice of alternative polyadenylation sites, mediated by the RNA-binding protein Elavl3, plays a role in differentiation of inhibitory neuronal progenitors. Front Cell Neurosci 12:518PubMedCrossRef
80.
go back to reference Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41(9):761–772PubMedCrossRef Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41(9):761–772PubMedCrossRef
81.
go back to reference Liaw HH et al (2013) Differential microRNA regulation correlates with alternative polyadenylation pattern between breast cancer and normal cells. PLoS ONE 8(2):e56958PubMedPubMedCentralCrossRef Liaw HH et al (2013) Differential microRNA regulation correlates with alternative polyadenylation pattern between breast cancer and normal cells. PLoS ONE 8(2):e56958PubMedPubMedCentralCrossRef
82.
go back to reference Ogorodnikov A, Kargapolova Y, Danckwardt S (2016) Processing and transcriptome expansion at the mRNA 3′ end in health and disease: finding the right end. Pflugers Arch 468(6):993–1012PubMedPubMedCentralCrossRef Ogorodnikov A, Kargapolova Y, Danckwardt S (2016) Processing and transcriptome expansion at the mRNA 3′ end in health and disease: finding the right end. Pflugers Arch 468(6):993–1012PubMedPubMedCentralCrossRef
83.
go back to reference Wanke KA, Devanna P, Vernes SC (2018) Understanding neurodevelopmental disorders: the promise of regulatory variation in the 3′UTRome. Biol Psychiatry 83(7):548–557PubMedCrossRef Wanke KA, Devanna P, Vernes SC (2018) Understanding neurodevelopmental disorders: the promise of regulatory variation in the 3′UTRome. Biol Psychiatry 83(7):548–557PubMedCrossRef
84.
go back to reference Xiao R et al (2019) Adipogenesis associated Mth938 domain containing (AAMDC) protein expression is regulated by alternative polyadenylation and microRNAs. FEBS Lett 593(14):1724–1734PubMedCrossRef Xiao R et al (2019) Adipogenesis associated Mth938 domain containing (AAMDC) protein expression is regulated by alternative polyadenylation and microRNAs. FEBS Lett 593(14):1724–1734PubMedCrossRef
85.
go back to reference Bruhn O et al (2016) Length variants of the ABCB1 3′-UTR and loss of miRNA binding sites: possible consequences in regulation and pharmacotherapy resistance. Pharmacogenomics 17(4):327–340PubMedCrossRef Bruhn O et al (2016) Length variants of the ABCB1 3′-UTR and loss of miRNA binding sites: possible consequences in regulation and pharmacotherapy resistance. Pharmacogenomics 17(4):327–340PubMedCrossRef
87.
go back to reference Hueso M et al (2019) An exonic switch regulates differential accession of microRNAs to the Cd34 transcript in atherosclerosis progression. Genes (Basel) 10(1):70CrossRef Hueso M et al (2019) An exonic switch regulates differential accession of microRNAs to the Cd34 transcript in atherosclerosis progression. Genes (Basel) 10(1):70CrossRef
89.
go back to reference Thomas MR, Lip GY (2017) Novel risk markers and risk assessments for cardiovascular disease. Circ Res 120(1):133–149PubMedCrossRef Thomas MR, Lip GY (2017) Novel risk markers and risk assessments for cardiovascular disease. Circ Res 120(1):133–149PubMedCrossRef
92.
go back to reference Papadopoulos T et al (2015) miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 15(3):361–374PubMedCrossRef Papadopoulos T et al (2015) miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 15(3):361–374PubMedCrossRef
93.
go back to reference Chevillet JR et al (2015) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111(41):14888–14893CrossRef Chevillet JR et al (2015) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111(41):14888–14893CrossRef
94.
go back to reference Johnson JL (2019) Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vasc Pharmacol 114:31–48CrossRef Johnson JL (2019) Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vasc Pharmacol 114:31–48CrossRef
95.
go back to reference Yao Y et al (2019) Platelet-derived exosomal MicroRNA-25-3p inhibits coronary vascular endothelial cell inflammation through Adam10 via the NF-kappaB signaling pathway in ApoE(-/-) mice. Front Immunol 10:2205PubMedPubMedCentralCrossRef Yao Y et al (2019) Platelet-derived exosomal MicroRNA-25-3p inhibits coronary vascular endothelial cell inflammation through Adam10 via the NF-kappaB signaling pathway in ApoE(-/-) mice. Front Immunol 10:2205PubMedPubMedCentralCrossRef
96.
go back to reference Yu DR et al (2020) MicroRNA-9 overexpression suppresses vulnerable atherosclerotic plaque and enhances vascular remodeling through negative regulation of the p38MAPK pathway via OLR1 in acute coronary syndrome. J Cell Biochem 121:49–62PubMedCrossRef Yu DR et al (2020) MicroRNA-9 overexpression suppresses vulnerable atherosclerotic plaque and enhances vascular remodeling through negative regulation of the p38MAPK pathway via OLR1 in acute coronary syndrome. J Cell Biochem 121:49–62PubMedCrossRef
97.
go back to reference Xu CX et al. (2019) MiR-647 promotes proliferation and migration of ox-LDL-treated vascular smooth muscle cells through regulating PTEN/PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 23(16):7110–7119PubMed Xu CX et al. (2019) MiR-647 promotes proliferation and migration of ox-LDL-treated vascular smooth muscle cells through regulating PTEN/PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 23(16):7110–7119PubMed
99.
go back to reference Wu W et al (2019) Overexpression of miR-223 inhibits foam cell formation by inducing autophagy in vascular smooth muscle cells. Am J Transl Res 11(7):4326–4336PubMedPubMedCentral Wu W et al (2019) Overexpression of miR-223 inhibits foam cell formation by inducing autophagy in vascular smooth muscle cells. Am J Transl Res 11(7):4326–4336PubMedPubMedCentral
100.
go back to reference Zhou Z et al (2019) MicroRNA-30-3p suppresses inflammatory factor-induced endothelial cell injury by targeting TCF21. Mediators Inflamm 2019:1342190PubMedPubMedCentral Zhou Z et al (2019) MicroRNA-30-3p suppresses inflammatory factor-induced endothelial cell injury by targeting TCF21. Mediators Inflamm 2019:1342190PubMedPubMedCentral
101.
go back to reference Han Z et al (2019) MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 232:116664PubMedCrossRef Han Z et al (2019) MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 232:116664PubMedCrossRef
102.
go back to reference Jiang L et al (2020) Inhibition of microRNA-103 attenuates inflammation and endoplasmic reticulum stress in atherosclerosis through disrupting the PTEN-mediated MAPK signaling. J Cell Physiol 235(1):380–393PubMedCrossRef Jiang L et al (2020) Inhibition of microRNA-103 attenuates inflammation and endoplasmic reticulum stress in atherosclerosis through disrupting the PTEN-mediated MAPK signaling. J Cell Physiol 235(1):380–393PubMedCrossRef
103.
go back to reference Zhang W et al (2019) MicroRNA-451 inhibits vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via Ywhaz/p38 MAPK pathway. Exp Cell Res 379(2):214–224PubMedCrossRef Zhang W et al (2019) MicroRNA-451 inhibits vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via Ywhaz/p38 MAPK pathway. Exp Cell Res 379(2):214–224PubMedCrossRef
104.
go back to reference Yang L, Gao C (2019) MiR-590 inhibits endothelial cell apoptosis by inactivating the TLR4/NF-kappaB pathway in atherosclerosis. Yonsei Med J 60(3):298–307PubMedPubMedCentralCrossRef Yang L, Gao C (2019) MiR-590 inhibits endothelial cell apoptosis by inactivating the TLR4/NF-kappaB pathway in atherosclerosis. Yonsei Med J 60(3):298–307PubMedPubMedCentralCrossRef
105.
go back to reference Shi X, Chen X (2019) Effect of microRNA-370 on coronary atherosclerosis and its underlying mechanism. Exp Ther Med 17(1):115–122PubMed Shi X, Chen X (2019) Effect of microRNA-370 on coronary atherosclerosis and its underlying mechanism. Exp Ther Med 17(1):115–122PubMed
106.
go back to reference Yin J, Hou X, Yang S (2019) microRNA-338-3p promotes ox-LDL-induced endothelial cell injury through targeting BAMBI and activating TGF-beta/Smad pathway. J Cell Physiol 234(7):11577–11586PubMedCrossRef Yin J, Hou X, Yang S (2019) microRNA-338-3p promotes ox-LDL-induced endothelial cell injury through targeting BAMBI and activating TGF-beta/Smad pathway. J Cell Physiol 234(7):11577–11586PubMedCrossRef
107.
go back to reference Iaconetti C et al (2015) Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res 107(4):522–533PubMedCrossRef Iaconetti C et al (2015) Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res 107(4):522–533PubMedCrossRef
108.
go back to reference Qu Y, Zhang N (2018) miR-365b-3p inhibits the cell proliferation and migration of human coronary artery smooth muscle cells by directly targeting ADAMTS1 in coronary atherosclerosis. Exp Ther Med 16(5):4239–4245PubMedPubMedCentral Qu Y, Zhang N (2018) miR-365b-3p inhibits the cell proliferation and migration of human coronary artery smooth muscle cells by directly targeting ADAMTS1 in coronary atherosclerosis. Exp Ther Med 16(5):4239–4245PubMedPubMedCentral
109.
go back to reference Yang S et al (2018) MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages. J Mol Cell Cardiol 123:139–149PubMedCrossRef Yang S et al (2018) MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages. J Mol Cell Cardiol 123:139–149PubMedCrossRef
110.
go back to reference Qin B et al (2018) MicroRNA-142-3p induces atherosclerosis-associated endothelial cell apoptosis by directly targeting rictor. Cell Physiol Biochem 47(4):1589–1603PubMedCrossRef Qin B et al (2018) MicroRNA-142-3p induces atherosclerosis-associated endothelial cell apoptosis by directly targeting rictor. Cell Physiol Biochem 47(4):1589–1603PubMedCrossRef
111.
go back to reference Su G et al (2018) Downregulation of miR-34a promotes endothelial cell growth and suppresses apoptosis in atherosclerosis by regulating Bcl-2. Heart Vessels 33(10):1185–1194PubMedCrossRef Su G et al (2018) Downregulation of miR-34a promotes endothelial cell growth and suppresses apoptosis in atherosclerosis by regulating Bcl-2. Heart Vessels 33(10):1185–1194PubMedCrossRef
112.
113.
go back to reference Yin D et al (2018) Pro-angiogenic role of LncRNA HULC in microvascular endothelial cells via sequestrating miR-124. Cell Physiol Biochem 50(6):2188–2202PubMedCrossRef Yin D et al (2018) Pro-angiogenic role of LncRNA HULC in microvascular endothelial cells via sequestrating miR-124. Cell Physiol Biochem 50(6):2188–2202PubMedCrossRef
114.
go back to reference Tian D et al (2018) MiR-370 inhibits vascular inflammation and oxidative stress triggered by oxidized low-density lipoprotein through targeting TLR4. J Cell Biochem 119(7):6231–6237PubMedCrossRef Tian D et al (2018) MiR-370 inhibits vascular inflammation and oxidative stress triggered by oxidized low-density lipoprotein through targeting TLR4. J Cell Biochem 119(7):6231–6237PubMedCrossRef
115.
go back to reference Ahmadzada T, Reid G, McKenzie DR (2018) Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10(1):69–86PubMedPubMedCentralCrossRef Ahmadzada T, Reid G, McKenzie DR (2018) Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10(1):69–86PubMedPubMedCentralCrossRef
118.
go back to reference Bernardo BC et al (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7(13):1771–1792PubMedCrossRef Bernardo BC et al (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7(13):1771–1792PubMedCrossRef
119.
go back to reference Pradhan-Nabzdyk L et al (2014) Current siRNA targets in atherosclerosis and aortic aneurysm. Discov Med 17(95):233–246PubMedPubMedCentral Pradhan-Nabzdyk L et al (2014) Current siRNA targets in atherosclerosis and aortic aneurysm. Discov Med 17(95):233–246PubMedPubMedCentral
120.
go back to reference Zhou LY et al (2019) Current RNA-based therapeutics in clinical trials. Curr Gene Ther 19(3):172–196PubMedCrossRef Zhou LY et al (2019) Current RNA-based therapeutics in clinical trials. Curr Gene Ther 19(3):172–196PubMedCrossRef
122.
go back to reference Gallant-Behm CL et al (2018) A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen 26(4):311–323PubMedCrossRef Gallant-Behm CL et al (2018) A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen 26(4):311–323PubMedCrossRef
123.
go back to reference Gallant-Behm CL et al (2019) A MicroRNA-29 Mimic (Remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J Invest Dermatol 139(5):1073–1081PubMedCrossRef Gallant-Behm CL et al (2019) A MicroRNA-29 Mimic (Remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J Invest Dermatol 139(5):1073–1081PubMedCrossRef
124.
go back to reference Gomez IG et al (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125(1):141–156PubMedCrossRef Gomez IG et al (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125(1):141–156PubMedCrossRef
125.
go back to reference Loyer X et al (2015) MicroRNAs as therapeutic targets in atherosclerosis. Expert Opin Ther Targets 19(4):489–496PubMedCrossRef Loyer X et al (2015) MicroRNAs as therapeutic targets in atherosclerosis. Expert Opin Ther Targets 19(4):489–496PubMedCrossRef
126.
go back to reference Jiang L et al (2019) miR-449a induces EndMT, promotes the development of atherosclerosis by targeting the interaction between AdipoR2 and E-cadherin in Lipid Rafts. Biomed Pharmacother 109:2293–2304PubMedCrossRef Jiang L et al (2019) miR-449a induces EndMT, promotes the development of atherosclerosis by targeting the interaction between AdipoR2 and E-cadherin in Lipid Rafts. Biomed Pharmacother 109:2293–2304PubMedCrossRef
127.
go back to reference Guo J et al (2018) The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells. EBioMedicine 35:204–221PubMedPubMedCentralCrossRef Guo J et al (2018) The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells. EBioMedicine 35:204–221PubMedPubMedCentralCrossRef
128.
129.
go back to reference Ickenstein LM, Garidel P (2019) Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 16(11):1205–1226PubMedCrossRef Ickenstein LM, Garidel P (2019) Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 16(11):1205–1226PubMedCrossRef
130.
132.
go back to reference Islas JF, Moreno-Cuevas JE (2018) A MicroRNA perspective on cardiovascular development and diseases: an update. Int J Mol Sci 19(7):2075PubMedCentralCrossRef Islas JF, Moreno-Cuevas JE (2018) A MicroRNA perspective on cardiovascular development and diseases: an update. Int J Mol Sci 19(7):2075PubMedCentralCrossRef
133.
go back to reference Chen Y, Gao DY, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141PubMedCrossRef Chen Y, Gao DY, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141PubMedCrossRef
135.
go back to reference Wang Z et al (2019) Anti-GPC3 antibody tagged cationic switchable lipid-based nanoparticles for the Co-delivery of anti-miRNA27a and sorafenib in liver cancers. Pharm Res 36(10):145PubMedCrossRef Wang Z et al (2019) Anti-GPC3 antibody tagged cationic switchable lipid-based nanoparticles for the Co-delivery of anti-miRNA27a and sorafenib in liver cancers. Pharm Res 36(10):145PubMedCrossRef
136.
go back to reference Reid G et al (2016) Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8(8):1079–1085PubMedCrossRef Reid G et al (2016) Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8(8):1079–1085PubMedCrossRef
137.
go back to reference Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9(1):57–67PubMedCrossRef Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9(1):57–67PubMedCrossRef
138.
go back to reference van Zandwijk N et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18(10):1386–1396PubMedCrossRef van Zandwijk N et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18(10):1386–1396PubMedCrossRef
140.
go back to reference Grote P, Herrmann BG (2015) Long noncoding RNAs in organogenesis: making the difference. Trends Genet 31(6):329–335PubMedCrossRef Grote P, Herrmann BG (2015) Long noncoding RNAs in organogenesis: making the difference. Trends Genet 31(6):329–335PubMedCrossRef
141.
143.
144.
go back to reference Xie C et al (2014) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 42(Database issue):D98–D103PubMedCrossRef Xie C et al (2014) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 42(Database issue):D98–D103PubMedCrossRef
145.
go back to reference Fok ET et al (2017) The emerging molecular biology toolbox for the study of long noncoding RNA biology. Epigenomics 9(10):1317–1327PubMedCrossRef Fok ET et al (2017) The emerging molecular biology toolbox for the study of long noncoding RNA biology. Epigenomics 9(10):1317–1327PubMedCrossRef
146.
go back to reference Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283PubMedCrossRef Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283PubMedCrossRef
148.
go back to reference de Lara JC, Arzate-Mejia RG, Recillas-Targa F (2019) Enhancer RNAs: insights Into Their Biological Role. Epigenet Insights 12:2516865719846093PubMedPubMedCentral de Lara JC, Arzate-Mejia RG, Recillas-Targa F (2019) Enhancer RNAs: insights Into Their Biological Role. Epigenet Insights 12:2516865719846093PubMedPubMedCentral
149.
go back to reference Terracciano D et al (2017) The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochim Biophys Acta Rev Cancer 1868(2):449–455PubMedCrossRef Terracciano D et al (2017) The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochim Biophys Acta Rev Cancer 1868(2):449–455PubMedCrossRef
150.
go back to reference Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46PubMedCrossRef Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46PubMedCrossRef
153.
go back to reference Bak RO, Mikkelsen JG (2014) miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip Rev RNA 5(3):317–333PubMedCrossRef Bak RO, Mikkelsen JG (2014) miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip Rev RNA 5(3):317–333PubMedCrossRef
154.
go back to reference Meseure D et al (2016) Expression of ANRIL-polycomb complexes-CDKN2A/B/ARF genes in breast tumors: identification of a two-gene (EZH2/CBX7) signature with independent prognostic value. Mol Cancer Res 14(7):623–633PubMedCrossRef Meseure D et al (2016) Expression of ANRIL-polycomb complexes-CDKN2A/B/ARF genes in breast tumors: identification of a two-gene (EZH2/CBX7) signature with independent prognostic value. Mol Cancer Res 14(7):623–633PubMedCrossRef
155.
go back to reference Zhou X et al (2016) Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-kappaB pathway. RNA Biol 13(1):98–108PubMedCrossRef Zhou X et al (2016) Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-kappaB pathway. RNA Biol 13(1):98–108PubMedCrossRef
156.
go back to reference Motterle A et al (2012) Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet 21(18):4021–4029PubMedPubMedCentralCrossRef Motterle A et al (2012) Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet 21(18):4021–4029PubMedPubMedCentralCrossRef
157.
go back to reference Holdt LM et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9(7):e1003588PubMedPubMedCentralCrossRef Holdt LM et al (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9(7):e1003588PubMedPubMedCentralCrossRef
158.
go back to reference Xu ST et al (2017) Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed Pharmacother 96:14–21PubMedCrossRef Xu ST et al (2017) Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed Pharmacother 96:14–21PubMedCrossRef
159.
160.
go back to reference Zhang H, Wang X, Chen X (2017) Potential role of long non-coding RNA ANRIL in pediatric medulloblastoma through promotion on proliferation and migration by targeting miR-323. J Cell Biochem 118(12):4735–4744PubMedCrossRef Zhang H, Wang X, Chen X (2017) Potential role of long non-coding RNA ANRIL in pediatric medulloblastoma through promotion on proliferation and migration by targeting miR-323. J Cell Biochem 118(12):4735–4744PubMedCrossRef
161.
go back to reference Xiao X et al (2017) LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 243:404–412PubMedCrossRef Xiao X et al (2017) LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 243:404–412PubMedCrossRef
162.
go back to reference Sun JY et al (2017) Knockdown of MALAT1 expression inhibits HUVEC proliferation by upregulation of miR-320a and downregulation of FOXM1 expression. Oncotarget 8(37):61499–61509PubMedPubMedCentralCrossRef Sun JY et al (2017) Knockdown of MALAT1 expression inhibits HUVEC proliferation by upregulation of miR-320a and downregulation of FOXM1 expression. Oncotarget 8(37):61499–61509PubMedPubMedCentralCrossRef
163.
go back to reference Zhong X et al (2018) MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed Pharmacother 97:1078–1085PubMedCrossRef Zhong X et al (2018) MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed Pharmacother 97:1078–1085PubMedCrossRef
164.
go back to reference Ye ZM et al (2019) LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 10(2):138PubMedPubMedCentralCrossRef Ye ZM et al (2019) LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 10(2):138PubMedPubMedCentralCrossRef
165.
go back to reference Bai Y et al (2019) Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 axis. Int Heart J 60(2):444–450PubMedCrossRef Bai Y et al (2019) Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 axis. Int Heart J 60(2):444–450PubMedCrossRef
166.
go back to reference Zhang Y et al (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 64(2):e12449CrossRef Zhang Y et al (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 64(2):e12449CrossRef
167.
go back to reference Miao C et al (2018) LncRNA DIGIT accelerates tube formation of vascular endothelial cells by sponging miR-134. Int Heart J 59(5):1086–1095PubMedCrossRef Miao C et al (2018) LncRNA DIGIT accelerates tube formation of vascular endothelial cells by sponging miR-134. Int Heart J 59(5):1086–1095PubMedCrossRef
168.
go back to reference Ye J et al (2018) LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp Cell Res 369(2):348–355PubMedCrossRef Ye J et al (2018) LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp Cell Res 369(2):348–355PubMedCrossRef
169.
go back to reference Bao MH et al (2018) Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis. Mol Pharmacol 93(4):368–375PubMedCrossRef Bao MH et al (2018) Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis. Mol Pharmacol 93(4):368–375PubMedCrossRef
170.
go back to reference Yu C et al (2018) LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 114(1):168–179PubMedCrossRef Yu C et al (2018) LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 114(1):168–179PubMedCrossRef
171.
go back to reference Liu Y et al (2019) Linc00299/miR-490-3p/AURKA axis regulates cell growth and migration in atherosclerosis. Heart Vessels 34(8):1370–1380PubMedCrossRef Liu Y et al (2019) Linc00299/miR-490-3p/AURKA axis regulates cell growth and migration in atherosclerosis. Heart Vessels 34(8):1370–1380PubMedCrossRef
172.
go back to reference Tian S et al (2018) LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells. Gene 673:159–166PubMedCrossRef Tian S et al (2018) LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells. Gene 673:159–166PubMedCrossRef
173.
go back to reference Zhang BY, Jin Z, Zhao Z (2017) Long intergenic noncoding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomed Pharmacother 94:238–243PubMedCrossRef Zhang BY, Jin Z, Zhao Z (2017) Long intergenic noncoding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomed Pharmacother 94:238–243PubMedCrossRef
175.
go back to reference Zhang L et al (2018) H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/beta-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci 25(1):11PubMedPubMedCentralCrossRef Zhang L et al (2018) H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/beta-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci 25(1):11PubMedPubMedCentralCrossRef
179.
go back to reference Afify AY et al (2019) Competing endogenous RNAs in hepatocellular carcinoma-the Pinnacle of Rivalry. Semin Liver Dis 39:463–475PubMedCrossRef Afify AY et al (2019) Competing endogenous RNAs in hepatocellular carcinoma-the Pinnacle of Rivalry. Semin Liver Dis 39:463–475PubMedCrossRef
180.
go back to reference Cai Y, Wan J (2018) Competing endogenous RNA regulations in neurodegenerative disorders: current challenges and emerging insights. Front Mol Neurosci 11:370PubMedPubMedCentralCrossRef Cai Y, Wan J (2018) Competing endogenous RNA regulations in neurodegenerative disorders: current challenges and emerging insights. Front Mol Neurosci 11:370PubMedPubMedCentralCrossRef
181.
go back to reference Ebbesen KK, Hansen TB, Kjems J (2017) Insights into circular RNA biology. RNA Biol 14(8):1035–1045PubMedCrossRef Ebbesen KK, Hansen TB, Kjems J (2017) Insights into circular RNA biology. RNA Biol 14(8):1035–1045PubMedCrossRef
182.
go back to reference Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859(1):163–168PubMedCrossRef Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859(1):163–168PubMedCrossRef
183.
184.
go back to reference Zhou MY, Yang JM, Xiong XD (2018) The emerging landscape of circular RNA in cardiovascular diseases. J Mol Cell Cardiol 122:134–139PubMedCrossRef Zhou MY, Yang JM, Xiong XD (2018) The emerging landscape of circular RNA in cardiovascular diseases. J Mol Cell Cardiol 122:134–139PubMedCrossRef
185.
go back to reference Li M et al (2019) Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci 233:116440PubMedCrossRef Li M et al (2019) Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci 233:116440PubMedCrossRef
186.
187.
go back to reference Feng J et al (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20(11):1470–1484PubMedPubMedCentralCrossRef Feng J et al (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20(11):1470–1484PubMedPubMedCentralCrossRef
188.
go back to reference Lujambio A et al (2010) CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29(48):6390–6401PubMedPubMedCentralCrossRef Lujambio A et al (2010) CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29(48):6390–6401PubMedPubMedCentralCrossRef
189.
190.
go back to reference Braconi C et al (2011) Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA 108(2):786–791PubMedCrossRef Braconi C et al (2011) Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA 108(2):786–791PubMedCrossRef
191.
go back to reference Wang C et al (2017) TUC.338 promotes invasion and metastasis in colorectal cancer. Int J Cancer 140(6):1457–1464PubMedCrossRef Wang C et al (2017) TUC.338 promotes invasion and metastasis in colorectal cancer. Int J Cancer 140(6):1457–1464PubMedCrossRef
192.
go back to reference Marini A et al (2017) Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget 8(22):35669–35680PubMedCrossRef Marini A et al (2017) Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget 8(22):35669–35680PubMedCrossRef
193.
go back to reference Liz J et al (2014) Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol Cell 55(1):138–147PubMedCrossRef Liz J et al (2014) Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol Cell 55(1):138–147PubMedCrossRef
194.
go back to reference Xiao L et al (2018) Long noncoding RNA uc.173 promotes renewal of the intestinal mucosa by inducing degradation of microRNA 195. Gastroenterology 154(3):599–611PubMedCrossRef Xiao L et al (2018) Long noncoding RNA uc.173 promotes renewal of the intestinal mucosa by inducing degradation of microRNA 195. Gastroenterology 154(3):599–611PubMedCrossRef
195.
go back to reference Wang JY et al (2018) Regulation of intestinal epithelial barrier function by long noncoding RNA uc173 through interaction with MicroRNA 29b. Mol Cell Biol 38(13):e00010-18PubMedPubMedCentralCrossRef Wang JY et al (2018) Regulation of intestinal epithelial barrier function by long noncoding RNA uc173 through interaction with MicroRNA 29b. Mol Cell Biol 38(13):e00010-18PubMedPubMedCentralCrossRef
196.
go back to reference Nishizawa M et al. (2015) Post-transcriptional inducible gene regulation by natural antisense RNA. Front Biosci (Landmark Ed) 20:1–36CrossRef Nishizawa M et al. (2015) Post-transcriptional inducible gene regulation by natural antisense RNA. Front Biosci (Landmark Ed) 20:1–36CrossRef
197.
go back to reference Gao YF et al (2020) LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma. CNS Neurosci Ther 26:66–75PubMedCrossRef Gao YF et al (2020) LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma. CNS Neurosci Ther 26:66–75PubMedCrossRef
198.
199.
go back to reference Wang J et al (2017) TSPAN31 is a critical regulator on transduction of survival and apoptotic signals in hepatocellular carcinoma cells. FEBS Lett 591(18):2905–2918PubMedCrossRef Wang J et al (2017) TSPAN31 is a critical regulator on transduction of survival and apoptotic signals in hepatocellular carcinoma cells. FEBS Lett 591(18):2905–2918PubMedCrossRef
200.
go back to reference Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24(4):363–367PubMedCrossRef Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24(4):363–367PubMedCrossRef
201.
go back to reference Kovalenko TF, Patrushev LI (2018) Pseudogenes as functionally significant elements of the genome. Biochemistry (Mosc) 83(11):1332–1349CrossRef Kovalenko TF, Patrushev LI (2018) Pseudogenes as functionally significant elements of the genome. Biochemistry (Mosc) 83(11):1332–1349CrossRef
202.
go back to reference Hu X, Yang L, Mo YY (2018) Role of pseudogenes in tumorigenesis. Cancers (Basel) 10(8):256CrossRef Hu X, Yang L, Mo YY (2018) Role of pseudogenes in tumorigenesis. Cancers (Basel) 10(8):256CrossRef
204.
205.
go back to reference Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12(10):1466–1482PubMedPubMedCentralCrossRef Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12(10):1466–1482PubMedPubMedCentralCrossRef
206.
go back to reference Li X et al (2019) LncRNA PMS2L2 protects ATDC5 chondrocytes against lipopolysaccharide-induced inflammatory injury by sponging miR-203. Life Sci 217:283–292PubMedCrossRef Li X et al (2019) LncRNA PMS2L2 protects ATDC5 chondrocytes against lipopolysaccharide-induced inflammatory injury by sponging miR-203. Life Sci 217:283–292PubMedCrossRef
207.
go back to reference Wang R et al (2018) Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J Cell Mol Med 22(9):4068–4075PubMedPubMedCentralCrossRef Wang R et al (2018) Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J Cell Mol Med 22(9):4068–4075PubMedPubMedCentralCrossRef
208.
go back to reference Zhang CZ (2017) Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene 607:47–55PubMedCrossRef Zhang CZ (2017) Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene 607:47–55PubMedCrossRef
209.
go back to reference Wang L et al (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 34(8):1773–1781PubMedCrossRef Wang L et al (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 34(8):1773–1781PubMedCrossRef
210.
go back to reference Gao L et al (2017) PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol Carcinog 56(4):1322–1334PubMedCrossRef Gao L et al (2017) PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol Carcinog 56(4):1322–1334PubMedCrossRef
211.
go back to reference Zhang R et al (2017) Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer. Oncotarget 8(16):26079–26089PubMedPubMedCentral Zhang R et al (2017) Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer. Oncotarget 8(16):26079–26089PubMedPubMedCentral
214.
216.
go back to reference Chen LL, Yang L (2017) ALUternative regulation for gene expression. Trends Cell Biol 27(7):480–490PubMedCrossRef Chen LL, Yang L (2017) ALUternative regulation for gene expression. Trends Cell Biol 27(7):480–490PubMedCrossRef
217.
go back to reference Navarro E et al (1999) Expressed sequence tag (EST) phenotyping of HT-29 cells: cloning of ser/thr protein kinase EMK1, kinesin KIF3B, and of transcripts that include Alu repeated elements. Biochim Biophys Acta 1450(3):254–264PubMedCrossRef Navarro E et al (1999) Expressed sequence tag (EST) phenotyping of HT-29 cells: cloning of ser/thr protein kinase EMK1, kinesin KIF3B, and of transcripts that include Alu repeated elements. Biochim Biophys Acta 1450(3):254–264PubMedCrossRef
218.
go back to reference Daniel C, Behm M, Ohman M (2015) The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci 72(21):4063–4076PubMedCrossRef Daniel C, Behm M, Ohman M (2015) The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci 72(21):4063–4076PubMedCrossRef
219.
go back to reference Pandey R, Mukerji M (2011) From ‘JUNK’ to just unexplored noncoding knowledge: the case of transcribed Alus. Brief Funct Genomics 10(5):294–311PubMedCrossRef Pandey R, Mukerji M (2011) From ‘JUNK’ to just unexplored noncoding knowledge: the case of transcribed Alus. Brief Funct Genomics 10(5):294–311PubMedCrossRef
220.
go back to reference Daskalova E et al (2007) 3′UTR-located ALU elements: donors of potential miRNA target sites and mediators of network miRNA-based regulatory interactions. Evol Bioinform Online 2:103–120PubMedPubMedCentral Daskalova E et al (2007) 3′UTR-located ALU elements: donors of potential miRNA target sites and mediators of network miRNA-based regulatory interactions. Evol Bioinform Online 2:103–120PubMedPubMedCentral
221.
go back to reference Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22(10):532–536PubMedCrossRef Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22(10):532–536PubMedCrossRef
222.
go back to reference Pandey R et al (2016) Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection. Sci Rep 6:32348PubMedPubMedCentralCrossRef Pandey R et al (2016) Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection. Sci Rep 6:32348PubMedPubMedCentralCrossRef
223.
go back to reference Hoffman Y et al (2014) miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ 21(2):302–309PubMedCrossRef Hoffman Y et al (2014) miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ 21(2):302–309PubMedCrossRef
224.
go back to reference Di Ruocco F et al (2018) Alu RNA accumulation induces epithelial-to-mesenchymal transition by modulating miR-566 and is associated with cancer progression. Oncogene 37(5):627–637PubMedCrossRef Di Ruocco F et al (2018) Alu RNA accumulation induces epithelial-to-mesenchymal transition by modulating miR-566 and is associated with cancer progression. Oncogene 37(5):627–637PubMedCrossRef
225.
go back to reference Zhao J et al (2015) High-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation (HITS-CLIP) reveals Argonaute-associated microRNAs and targets in Schistosoma japonicum. Parasit Vectors 8:589PubMedPubMedCentralCrossRef Zhao J et al (2015) High-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation (HITS-CLIP) reveals Argonaute-associated microRNAs and targets in Schistosoma japonicum. Parasit Vectors 8:589PubMedPubMedCentralCrossRef
226.
go back to reference Imig J et al (2015) miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol 11(2):107–114PubMedCrossRef Imig J et al (2015) miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol 11(2):107–114PubMedCrossRef
227.
go back to reference Petri R, Jakobsson J (2018) Identifying miRNA targets using AGO-RIPseq. Methods Mol Biol 1720:131–140PubMedCrossRef Petri R, Jakobsson J (2018) Identifying miRNA targets using AGO-RIPseq. Methods Mol Biol 1720:131–140PubMedCrossRef
228.
229.
go back to reference Tan SM, Lieberman J (2016) Capture and identification of miRNA targets by biotin pulldown and RNA-seq. Methods Mol Biol 1358:211–228PubMedCrossRef Tan SM, Lieberman J (2016) Capture and identification of miRNA targets by biotin pulldown and RNA-seq. Methods Mol Biol 1358:211–228PubMedCrossRef
230.
go back to reference Hannigan MM, Zagore LL, Licatalosi DD (2018) Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs. Quant Biol 6(3):228–238PubMedPubMedCentralCrossRef Hannigan MM, Zagore LL, Licatalosi DD (2018) Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs. Quant Biol 6(3):228–238PubMedPubMedCentralCrossRef
231.
go back to reference Clement T, Salone V, Rederstorff M (2015) Dual luciferase gene reporter assays to study miRNA function. Methods Mol Biol 1296:187–198PubMedCrossRef Clement T, Salone V, Rederstorff M (2015) Dual luciferase gene reporter assays to study miRNA function. Methods Mol Biol 1296:187–198PubMedCrossRef
232.
go back to reference Monga I, Kumar M (2019) Computational resources for prediction and analysis of functional miRNA and their targetome. Methods Mol Biol 1912:215–250PubMedCrossRef Monga I, Kumar M (2019) Computational resources for prediction and analysis of functional miRNA and their targetome. Methods Mol Biol 1912:215–250PubMedCrossRef
233.
go back to reference Riffo-Campos AL, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17(12):1987PubMedCentralCrossRef Riffo-Campos AL, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17(12):1987PubMedCentralCrossRef
235.
go back to reference Roberts JT, Borchert GM (2017) Computational prediction of MicroRNA target genes, target prediction databases, and web resources. Methods Mol Biol 1617:109–122PubMedCrossRef Roberts JT, Borchert GM (2017) Computational prediction of MicroRNA target genes, target prediction databases, and web resources. Methods Mol Biol 1617:109–122PubMedCrossRef
236.
go back to reference Fridrich A, Hazan Y, Moran Y (2019) Too many false targets for MicroRNAs: challenges and pitfalls in prediction of miRNA targets and their gene ontology in model and non-model organisms. BioEssays 41(4):e1800169PubMedPubMedCentralCrossRef Fridrich A, Hazan Y, Moran Y (2019) Too many false targets for MicroRNAs: challenges and pitfalls in prediction of miRNA targets and their gene ontology in model and non-model organisms. BioEssays 41(4):e1800169PubMedPubMedCentralCrossRef
237.
go back to reference Wagner M et al (2014) MicroRNA target prediction: theory and practice. Mol Genet Genomics 289(6):1085–1101PubMedCrossRef Wagner M et al (2014) MicroRNA target prediction: theory and practice. Mol Genet Genomics 289(6):1085–1101PubMedCrossRef
238.
239.
go back to reference Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697PubMedCrossRef Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697PubMedCrossRef
241.
go back to reference Andres-Leon E, Rojas AM (2019) miARma-Seq, a comprehensive pipeline for the simultaneous study and integration of miRNA and mRNA expression data. Methods 152:31–40PubMedCrossRef Andres-Leon E, Rojas AM (2019) miARma-Seq, a comprehensive pipeline for the simultaneous study and integration of miRNA and mRNA expression data. Methods 152:31–40PubMedCrossRef
242.
go back to reference Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210PubMedPubMedCentralCrossRef Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210PubMedPubMedCentralCrossRef
243.
go back to reference Zhang Y et al (2018) Effects of icariin on atherosclerosis and predicted function regulatory network in apoe deficient mice. Biomed Res Int 2018:9424186PubMedPubMedCentral Zhang Y et al (2018) Effects of icariin on atherosclerosis and predicted function regulatory network in apoe deficient mice. Biomed Res Int 2018:9424186PubMedPubMedCentral
244.
go back to reference Gene Ontology, C (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43(Database issue):D1049–D1056CrossRef Gene Ontology, C (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43(Database issue):D1049–D1056CrossRef
245.
go back to reference Khyzha N et al (2017) Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends Mol Med 23(4):332–347PubMedCrossRef Khyzha N et al (2017) Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends Mol Med 23(4):332–347PubMedCrossRef
246.
go back to reference Parikh N, Frishman WH (2010) Liver x receptors: a potential therapeutic target for modulating the atherosclerotic process. Cardiol Rev 18(6):269–274PubMedCrossRef Parikh N, Frishman WH (2010) Liver x receptors: a potential therapeutic target for modulating the atherosclerotic process. Cardiol Rev 18(6):269–274PubMedCrossRef
247.
go back to reference Wang HX, Zhao YX (2016) Prediction of genetic risk factors of atherosclerosis using various bioinformatic tools. Genet Mol Res 15(2):gmr7347 Wang HX, Zhao YX (2016) Prediction of genetic risk factors of atherosclerosis using various bioinformatic tools. Genet Mol Res 15(2):gmr7347
249.
go back to reference He L et al (2018) Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA-miRNA-mRNA axes. Epigenomics 10(5):661–671PubMedCrossRef He L et al (2018) Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA-miRNA-mRNA axes. Epigenomics 10(5):661–671PubMedCrossRef
250.
go back to reference Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162PubMedCrossRef Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162PubMedCrossRef
251.
go back to reference Chou CH et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302PubMedCrossRef Chou CH et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302PubMedCrossRef
252.
go back to reference Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12(2):192–197PubMedPubMedCentralCrossRef Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12(2):192–197PubMedPubMedCentralCrossRef
253.
go back to reference Paraskevopoulou MD et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173PubMedPubMedCentralCrossRef Paraskevopoulou MD et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173PubMedPubMedCentralCrossRef
254.
go back to reference Blin K et al (2015) DoRiNA 2.0–upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 43(Database issue):D160–D167PubMedCrossRef Blin K et al (2015) DoRiNA 2.0–upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 43(Database issue):D160–D167PubMedCrossRef
256.
go back to reference Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38(1):140–153PubMedPubMedCentralCrossRef Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38(1):140–153PubMedPubMedCentralCrossRef
257.
go back to reference Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152PubMedCrossRef Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152PubMedCrossRef
258.
259.
go back to reference Hsu SD et al (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36(Database issue):D165–D169PubMed Hsu SD et al (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36(Database issue):D165–D169PubMed
260.
261.
go back to reference Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284PubMedCrossRef Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284PubMedCrossRef
262.
go back to reference Chang TH et al (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinform 14(Suppl 2):S4CrossRef Chang TH et al (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinform 14(Suppl 2):S4CrossRef
263.
go back to reference Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217PubMedCrossRef Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217PubMedCrossRef
266.
go back to reference Nam S et al (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37(Web Server issue):W356–W362PubMedPubMedCentralCrossRef Nam S et al (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37(Web Server issue):W356–W362PubMedPubMedCentralCrossRef
267.
go back to reference Paraskevopoulou MD et al (2013) DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 41(Database issue):D239–D245PubMedCrossRef Paraskevopoulou MD et al (2013) DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 41(Database issue):D239–D245PubMedCrossRef
269.
go back to reference Eraslan G et al (2019) Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 20(7):389–403PubMedCrossRef Eraslan G et al (2019) Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 20(7):389–403PubMedCrossRef
271.
go back to reference Jaganathan K et al (2019) Predicting splicing from primary sequence with deep learning. Cell 176(3):535–548.e24PubMedCrossRef Jaganathan K et al (2019) Predicting splicing from primary sequence with deep learning. Cell 176(3):535–548.e24PubMedCrossRef
Metadata
Title
Unveiling ncRNA regulatory axes in atherosclerosis progression
Authors
Estanislao Navarro
Adrian Mallén
Josep M. Cruzado
Joan Torras
Miguel Hueso
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2020
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-020-0256-3

Other articles of this Issue 1/2020

Clinical and Translational Medicine 1/2020 Go to the issue