Skip to main content
Top
Published in: European Journal of Medical Research 1/2024

Open Access 01-12-2024 | Cannabinoid | Review

The synthetic cannabinoids menace: a review of health risks and toxicity

Authors: Ayman Alzu’bi, Fatimah Almahasneh, Ramada Khasawneh, Ejlal Abu-El-Rub, Worood Bani Baker, Raed M. Al-Zoubi

Published in: European Journal of Medical Research | Issue 1/2024

Login to get access

Abstract

Synthetic cannabinoids (SCs) are chemically classified as psychoactive substances that target the endocannabinoid system in many body organs. SCs can initiate pathophysiological changes in many tissues which can be severe enough to damage the normal functionality of our body systems. The majority of SCs-related side effects are mediated by activating Cannabinoid Receptor 1 (CB1R) and Cannabinoid Receptor 2 (CB2R). The activation of these receptors can enkindle many downstream signalling pathways, including oxidative stress, inflammation, and apoptosis that ultimately can produce deleterious changes in many organs. Besides activating the cannabinoid receptors, SCs can act on non-cannabinoid targets, such as the orphan G protein receptors GPR55 and GPR18, the Peroxisome Proliferator-activated Receptors (PPARs), and the Transient receptor potential vanilloid 1 (TRPV1), which are broadly expressed in the brain and the heart and their activation mediates many pharmacological effects of SCs. In this review, we shed light on the multisystem complications found in SCs abusers, particularly discussing their neurologic, cardiovascular, renal, and hepatic effects, as well as highlighting the mechanisms that intermediate SCs-related pharmacological and toxicological consequences to provide comprehensive understanding of their short and long-term systemic effects.

Graphical Abstract

Literature
1.
go back to reference Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41.PubMedCrossRef Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41.PubMedCrossRef
3.
go back to reference Vardakou I, Pistos C, Spiliopoulou Ch. Spice drugs as a new trend: Mode of action, identification and legislation. Toxicol Lett. 2010;197:157–62.PubMedCrossRef Vardakou I, Pistos C, Spiliopoulou Ch. Spice drugs as a new trend: Mode of action, identification and legislation. Toxicol Lett. 2010;197:157–62.PubMedCrossRef
4.
go back to reference Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N. ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom. 2009;44:832–7.PubMedCrossRef Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N. ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom. 2009;44:832–7.PubMedCrossRef
5.
go back to reference Hess C, Schoeder CT, Pillaiyar T, Madea B, Müller CE. Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol. 2016;34:329–43.PubMedPubMedCentralCrossRef Hess C, Schoeder CT, Pillaiyar T, Madea B, Müller CE. Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol. 2016;34:329–43.PubMedPubMedCentralCrossRef
6.
go back to reference De Petrocellis L, Di Marzo V. Non-CB1, Non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels. J Neuroimmune Pharmacol. 2010;5:103–21.PubMedCrossRef De Petrocellis L, Di Marzo V. Non-CB1, Non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels. J Neuroimmune Pharmacol. 2010;5:103–21.PubMedCrossRef
9.
go back to reference Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, et al. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci. 2015;6:1546–59.PubMedCrossRef Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, et al. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci. 2015;6:1546–59.PubMedCrossRef
10.
go back to reference Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Criti Rev Toxicol. 2020;50:359–82.CrossRef Alves VL, Gonçalves JL, Aguiar J, Teixeira HM, Câmara JS. The synthetic cannabinoids phenomenon: from structure to toxicological properties. A review. Criti Rev Toxicol. 2020;50:359–82.CrossRef
11.
go back to reference Alipour A, Patel PB, Shabbir Z, Gabrielson S. Review of the many faces of synthetic cannabinoid toxicities. The Mental Health Clinician. 2019;9:93–9.PubMedPubMedCentralCrossRef Alipour A, Patel PB, Shabbir Z, Gabrielson S. Review of the many faces of synthetic cannabinoid toxicities. The Mental Health Clinician. 2019;9:93–9.PubMedPubMedCentralCrossRef
12.
go back to reference Armstrong F, McCurdy MT, Heavner MS. Synthetic cannabinoid-associated multiple organ failure: case series and literature review. Pharmacotherapy J Human Pharmacol Drug Therapy. 2019;39:508–13.CrossRef Armstrong F, McCurdy MT, Heavner MS. Synthetic cannabinoid-associated multiple organ failure: case series and literature review. Pharmacotherapy J Human Pharmacol Drug Therapy. 2019;39:508–13.CrossRef
13.
go back to reference Kasper AM, Ridpath AD, Gerona RR, Cox R, Galli R, Kyle PB, et al. Severe illness associated with reported use of synthetic cannabinoids: a public health investigation (Mississippi, 2015). Clin Toxicol. 2019;57:10–8.CrossRef Kasper AM, Ridpath AD, Gerona RR, Cox R, Galli R, Kyle PB, et al. Severe illness associated with reported use of synthetic cannabinoids: a public health investigation (Mississippi, 2015). Clin Toxicol. 2019;57:10–8.CrossRef
15.
go back to reference Adamowicz P. Fatal intoxication with synthetic cannabinoid MDMB-CHMICA. Forensic Sci Int. 2016;261:e5-10.PubMedCrossRef Adamowicz P. Fatal intoxication with synthetic cannabinoid MDMB-CHMICA. Forensic Sci Int. 2016;261:e5-10.PubMedCrossRef
16.
go back to reference Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161.PubMedCrossRef Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161.PubMedCrossRef
17.
go back to reference Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Marzo VD, Elphick MR, et al. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev. 2010;62:588–631.PubMedPubMedCentralCrossRef Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Marzo VD, Elphick MR, et al. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev. 2010;62:588–631.PubMedPubMedCentralCrossRef
18.
go back to reference Ashton JC, Friberg D, Darlington CL, Smith PF. Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett. 2006;396:113–6.PubMedCrossRef Ashton JC, Friberg D, Darlington CL, Smith PF. Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett. 2006;396:113–6.PubMedCrossRef
19.
go back to reference Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.PubMedCrossRef Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.PubMedCrossRef
20.
go back to reference Pertwee RG. Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs. 2000;9:1553–71.PubMedCrossRef Pertwee RG. Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs. 2000;9:1553–71.PubMedCrossRef
22.
go back to reference Turu G, Hunyady L. Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol. 2010;44:75–85.PubMedCrossRef Turu G, Hunyady L. Signal transduction of the CB1 cannabinoid receptor. J Mol Endocrinol. 2010;44:75–85.PubMedCrossRef
23.
go back to reference Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018;19:833.PubMedPubMedCentralCrossRef Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018;19:833.PubMedPubMedCentralCrossRef
24.
go back to reference Gallelli CA, Calcagnini S, Romano A, Koczwara JB, De Ceglia M, Dante D, et al. Modulation of the oxidative stress and lipid peroxidation by endocannabinoids and their lipid analogues. Antioxidants. 2018;7:93.PubMedPubMedCentralCrossRef Gallelli CA, Calcagnini S, Romano A, Koczwara JB, De Ceglia M, Dante D, et al. Modulation of the oxidative stress and lipid peroxidation by endocannabinoids and their lipid analogues. Antioxidants. 2018;7:93.PubMedPubMedCentralCrossRef
25.
go back to reference Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, et al. Synthetic cannabinoids: a pharmacological and toxicological overview. Annu Rev Pharmacol Toxicol. 2023;63:187–209.PubMedCrossRef Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, et al. Synthetic cannabinoids: a pharmacological and toxicological overview. Annu Rev Pharmacol Toxicol. 2023;63:187–209.PubMedCrossRef
26.
go back to reference Morales P, Jagerovic N. Advances towards the discovery of GPR55 ligands. Curr Med Chem. 2016;23:2087–100.PubMedCrossRef Morales P, Jagerovic N. Advances towards the discovery of GPR55 ligands. Curr Med Chem. 2016;23:2087–100.PubMedCrossRef
28.
go back to reference Di Marzo V, De Petrocellis L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem. 2010;17:1430–49.PubMedCrossRef Di Marzo V, De Petrocellis L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem. 2010;17:1430–49.PubMedCrossRef
29.
30.
go back to reference Lu H, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79:516–25.PubMedCrossRef Lu H, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79:516–25.PubMedCrossRef
31.
go back to reference Basavarajappa BS, Subbanna S. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus. 2014;24:178–88.PubMedPubMedCentralCrossRef Basavarajappa BS, Subbanna S. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus. 2014;24:178–88.PubMedPubMedCentralCrossRef
32.
go back to reference Zawilska JB, Wojcieszak J. Spice/K2 drugs–more than innocent substitutes for marijuana. Int J Neuropsychopharmacol. 2014;17(3):509–25.PubMedCrossRef Zawilska JB, Wojcieszak J. Spice/K2 drugs–more than innocent substitutes for marijuana. Int J Neuropsychopharmacol. 2014;17(3):509–25.PubMedCrossRef
35.
go back to reference Fattore L. Synthetic cannabinoids-further evidence supporting the relationship between cannabinoids and psychosis. Biol Psychiatry Biol Psychiatry. 2016;79:539–48.PubMedCrossRef Fattore L. Synthetic cannabinoids-further evidence supporting the relationship between cannabinoids and psychosis. Biol Psychiatry Biol Psychiatry. 2016;79:539–48.PubMedCrossRef
36.
37.
go back to reference Patel M, Manning JJ, Finlay DB, Javitch JA, Banister SD, Grimsey NL, et al. Signalling profiles of a structurally diverse panel of synthetic cannabinoid receptor agonists. Biochem Pharmacol. 2020;175: 113871.PubMedCrossRef Patel M, Manning JJ, Finlay DB, Javitch JA, Banister SD, Grimsey NL, et al. Signalling profiles of a structurally diverse panel of synthetic cannabinoid receptor agonists. Biochem Pharmacol. 2020;175: 113871.PubMedCrossRef
38.
go back to reference Tomiyama K, Funada M. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol Appl Pharmacol. 2014;274:17–23.PubMedCrossRef Tomiyama K, Funada M. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol Appl Pharmacol. 2014;274:17–23.PubMedCrossRef
39.
go back to reference Canazza I, Ossato A, Vincenzi F, Gregori A, Di Rosa F, Nigro F, et al. Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice In vitro and in vivo studies. Human Psychopharmacol Clin Exp. 2017;32:e2601.CrossRef Canazza I, Ossato A, Vincenzi F, Gregori A, Di Rosa F, Nigro F, et al. Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice In vitro and in vivo studies. Human Psychopharmacol Clin Exp. 2017;32:e2601.CrossRef
40.
go back to reference Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, et al. A cannabinoid link between mitochondria and memory. Nature. 2016;539:555–9.PubMedCrossRef Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, et al. A cannabinoid link between mitochondria and memory. Nature. 2016;539:555–9.PubMedCrossRef
42.
go back to reference Oztas E, Abudayyak M, Celiksoz M, Özhan G. Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol In Vitro. 2019;55:101–7.PubMedCrossRef Oztas E, Abudayyak M, Celiksoz M, Özhan G. Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol In Vitro. 2019;55:101–7.PubMedCrossRef
43.
go back to reference Sezer Y, Jannuzzi AT, Huestis MA, Alpertunga B. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res. 2020;9:734–40.CrossRef Sezer Y, Jannuzzi AT, Huestis MA, Alpertunga B. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res. 2020;9:734–40.CrossRef
44.
go back to reference Coccini T, De Simone U, Lonati D, Scaravaggi G, Marti M, Locatelli C. MAM-2201, one of the most potent—naphthoyl indole derivative—synthetic cannabinoids, exerts toxic effects on human cell-based models of neurons and astrocytes. Neurotox Res. 2021;39:1251–73.PubMedCrossRef Coccini T, De Simone U, Lonati D, Scaravaggi G, Marti M, Locatelli C. MAM-2201, one of the most potent—naphthoyl indole derivative—synthetic cannabinoids, exerts toxic effects on human cell-based models of neurons and astrocytes. Neurotox Res. 2021;39:1251–73.PubMedCrossRef
45.
46.
go back to reference Fantegrossi WE, Wilson CD, Berquist MD. Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug Metab Rev. 2018;50:65–73.PubMedPubMedCentralCrossRef Fantegrossi WE, Wilson CD, Berquist MD. Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug Metab Rev. 2018;50:65–73.PubMedPubMedCentralCrossRef
48.
go back to reference Gessa GL, Casu MA, Carta G, Mascia MS. Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. Eur J Pharmacol. 1998;355:119–24.PubMedCrossRef Gessa GL, Casu MA, Carta G, Mascia MS. Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. Eur J Pharmacol. 1998;355:119–24.PubMedCrossRef
49.
go back to reference Franklin JM, Carrasco GA. Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT2A and dopamine D2 receptors in rat prefrontal cortex. J Psychopharmacol. 2012;26:1333–47.PubMedPubMedCentralCrossRef Franklin JM, Carrasco GA. Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT2A and dopamine D2 receptors in rat prefrontal cortex. J Psychopharmacol. 2012;26:1333–47.PubMedPubMedCentralCrossRef
50.
go back to reference Franklin JM, Mathew M, Carrasco GA. Cannabinoid-induced upregulation of serotonin 2A receptors in the hypothalamic paraventricular nucleus and anxiety-like behaviors in rats. Neurosci Lett. 2013;548:165–9.PubMedPubMedCentralCrossRef Franklin JM, Mathew M, Carrasco GA. Cannabinoid-induced upregulation of serotonin 2A receptors in the hypothalamic paraventricular nucleus and anxiety-like behaviors in rats. Neurosci Lett. 2013;548:165–9.PubMedPubMedCentralCrossRef
51.
go back to reference Brown TM, Brotchie JM, Fitzjohn SM. Cannabinoids decrease corticostriatal synaptic transmission via an effect on glutamate uptake. J Neurosci. 2003;23:11073.PubMedPubMedCentralCrossRef Brown TM, Brotchie JM, Fitzjohn SM. Cannabinoids decrease corticostriatal synaptic transmission via an effect on glutamate uptake. J Neurosci. 2003;23:11073.PubMedPubMedCentralCrossRef
52.
go back to reference Liu Q, Bhat M, Bowen WD, Cheng J. Signaling Pathways from cannabinoid receptor-1 activation to inhibition of <em>N</em>-Methyl-<span class="sc">d</span>-aspartic acid mediated calcium influx and neurotoxicity in dorsal root ganglion neurons. J Pharmacol Exp Ther. 2009;331:1062.PubMedPubMedCentralCrossRef Liu Q, Bhat M, Bowen WD, Cheng J. Signaling Pathways from cannabinoid receptor-1 activation to inhibition of <em>N</em>-Methyl-<span class="sc">d</span>-aspartic acid mediated calcium influx and neurotoxicity in dorsal root ganglion neurons. J Pharmacol Exp Ther. 2009;331:1062.PubMedPubMedCentralCrossRef
53.
go back to reference Lauckner JE, Jensen JB, Chen H-Y, Lu H-C, Hille B, Mackie K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci. 2008;105:2699–704.PubMedPubMedCentralCrossRef Lauckner JE, Jensen JB, Chen H-Y, Lu H-C, Hille B, Mackie K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci. 2008;105:2699–704.PubMedPubMedCentralCrossRef
54.
go back to reference Leo LM, Familusi B, Hoang M, Smith R, Lindenau K, Sporici KT, et al. GPR55-mediated effects on brain microvascular endothelial cells and the blood–brain barrier. Neuroscience. 2019;414:88–98.PubMedCrossRef Leo LM, Familusi B, Hoang M, Smith R, Lindenau K, Sporici KT, et al. GPR55-mediated effects on brain microvascular endothelial cells and the blood–brain barrier. Neuroscience. 2019;414:88–98.PubMedCrossRef
55.
go back to reference Saliba SW, Jauch H, Gargouri B, Keil A, Hurrle T, Volz N, et al. Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells. J Neuroinflammation. 2018;15:322.PubMedPubMedCentralCrossRef Saliba SW, Jauch H, Gargouri B, Keil A, Hurrle T, Volz N, et al. Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells. J Neuroinflammation. 2018;15:322.PubMedPubMedCentralCrossRef
56.
go back to reference Li W-J, Shen J. Antagonism of G protein-coupled receptor 55 prevents lipopolysaccharide-induced damages in human dental pulp cells. Hum Exp Toxicol. 2022;41:09603271221099598.CrossRef Li W-J, Shen J. Antagonism of G protein-coupled receptor 55 prevents lipopolysaccharide-induced damages in human dental pulp cells. Hum Exp Toxicol. 2022;41:09603271221099598.CrossRef
57.
go back to reference Apweiler M, Saliba SW, Streyczek J, Hurrle T, Gräßle S, Bräse S, et al. Targeting oxidative stress: novel coumarin-based inverse agonists of GPR55. Int J Mol Sci. 2021;22:11665.PubMedPubMedCentralCrossRef Apweiler M, Saliba SW, Streyczek J, Hurrle T, Gräßle S, Bräse S, et al. Targeting oxidative stress: novel coumarin-based inverse agonists of GPR55. Int J Mol Sci. 2021;22:11665.PubMedPubMedCentralCrossRef
58.
go back to reference Reyes-Resina I, Navarro G, Aguinaga D, Canela EI, Schoeder CT, Załuski M, et al. Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochem Pharmacol. 2018;157:169–79.PubMedCrossRef Reyes-Resina I, Navarro G, Aguinaga D, Canela EI, Schoeder CT, Załuski M, et al. Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochem Pharmacol. 2018;157:169–79.PubMedCrossRef
60.
go back to reference Iannotti FA, Vitale RM. The endocannabinoid system and PPARs: focus on their signalling crosstalk, action and transcriptional regulation. Cells. 2021;10:586.PubMedPubMedCentralCrossRef Iannotti FA, Vitale RM. The endocannabinoid system and PPARs: focus on their signalling crosstalk, action and transcriptional regulation. Cells. 2021;10:586.PubMedPubMedCentralCrossRef
61.
go back to reference Andersen H, Walsh K. Molecular signaling of synthetic cannabinoids: comparison of CB1 receptor and TRPV1 channel activation. Eur J Pharmacol. 2021;21:6115. Andersen H, Walsh K. Molecular signaling of synthetic cannabinoids: comparison of CB1 receptor and TRPV1 channel activation. Eur J Pharmacol. 2021;21:6115.
62.
go back to reference Wood DM, Hill SL, Thomas SHL, Dargan PI. Using poisons information service data to assess the acute harms associated with novel psychoactive substances. Drug Test Anal. 2014;6:850–60.PubMedCrossRef Wood DM, Hill SL, Thomas SHL, Dargan PI. Using poisons information service data to assess the acute harms associated with novel psychoactive substances. Drug Test Anal. 2014;6:850–60.PubMedCrossRef
63.
go back to reference Atik SU, Dedeoglu R, Varol F, Çam H, Eroğlu AG, Saltık L. Cardiovascular side effects related with use of synthetic cannabinoids “bonzai” : two case reports. Turk pediatri arsivi. 2015;50(1):61–4.PubMedPubMedCentralCrossRef Atik SU, Dedeoglu R, Varol F, Çam H, Eroğlu AG, Saltık L. Cardiovascular side effects related with use of synthetic cannabinoids “bonzai” : two case reports. Turk pediatri arsivi. 2015;50(1):61–4.PubMedPubMedCentralCrossRef
64.
go back to reference Obafemi AI, Kleinschmidt K, Goto C, Fout D. Cluster of acute toxicity from ingestion of synthetic cannabinoid-laced brownies. J Med Toxicol. 2015;11:426–9.PubMedPubMedCentralCrossRef Obafemi AI, Kleinschmidt K, Goto C, Fout D. Cluster of acute toxicity from ingestion of synthetic cannabinoid-laced brownies. J Med Toxicol. 2015;11:426–9.PubMedPubMedCentralCrossRef
65.
go back to reference Lam RPK, Tang MHY, Leung SC, Chong YK, Tsui MSH, Mak TWL. Supraventricular tachycardia and acute confusion following ingestion of e-cigarette fluid containing AB-FUBINACA and ADB-FUBINACA: a case report with quantitative analysis of serum drug concentrations. Clin Toxicol. 2017;55:662–7.CrossRef Lam RPK, Tang MHY, Leung SC, Chong YK, Tsui MSH, Mak TWL. Supraventricular tachycardia and acute confusion following ingestion of e-cigarette fluid containing AB-FUBINACA and ADB-FUBINACA: a case report with quantitative analysis of serum drug concentrations. Clin Toxicol. 2017;55:662–7.CrossRef
66.
go back to reference Mir A, Obafemi A, Young A, Kane C. Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics. 2011;128:e1622–7.PubMedCrossRef Mir A, Obafemi A, Young A, Kane C. Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics. 2011;128:e1622–7.PubMedCrossRef
67.
go back to reference Ibrahim S, Al-Saffar F, Wannenburg T. A Unique case of cardiac arrest following K2 abuse. Case Reports Cardiol. 2014;2014:120607.CrossRef Ibrahim S, Al-Saffar F, Wannenburg T. A Unique case of cardiac arrest following K2 abuse. Case Reports Cardiol. 2014;2014:120607.CrossRef
68.
go back to reference Davis C, Boddington D. Teenage cardiac arrest following abuse of synthetic cannabis. Heart Lung Circ. 2015;24:e162–3.PubMedCrossRef Davis C, Boddington D. Teenage cardiac arrest following abuse of synthetic cannabis. Heart Lung Circ. 2015;24:e162–3.PubMedCrossRef
69.
go back to reference McIlroy G, Ford LT, Khan JM. Acute myocardial infarction, associated with the use of a synthetic adamantyl-cannabinoid: a case report. BMC Pharmacol Toxicol. 2016;17:1–4.CrossRef McIlroy G, Ford LT, Khan JM. Acute myocardial infarction, associated with the use of a synthetic adamantyl-cannabinoid: a case report. BMC Pharmacol Toxicol. 2016;17:1–4.CrossRef
70.
go back to reference Ahmed T, Khan A, See VY, Robinson SW. Cardiac arrest associated with synthetic cannabinoid use and acquired prolonged QTc interval: a case report and review of literature. HeartRhythm Case Reports. 2020;6:283–6.PubMedPubMedCentralCrossRef Ahmed T, Khan A, See VY, Robinson SW. Cardiac arrest associated with synthetic cannabinoid use and acquired prolonged QTc interval: a case report and review of literature. HeartRhythm Case Reports. 2020;6:283–6.PubMedPubMedCentralCrossRef
71.
go back to reference Labay LM, Caruso JL, Gilson TP, Phipps RJ, Knight LD, Lemos NP, et al. Synthetic cannabinoid drug use as a cause or contributory cause of death. Forensic Sci Int. 2016;260:31–9.PubMedCrossRef Labay LM, Caruso JL, Gilson TP, Phipps RJ, Knight LD, Lemos NP, et al. Synthetic cannabinoid drug use as a cause or contributory cause of death. Forensic Sci Int. 2016;260:31–9.PubMedCrossRef
72.
go back to reference Patton AL, Chimalakonda KC, Moran CL, McCain KR, Radominska-Pandya A, James LP, et al. K2 toxicity: fatal case of psychiatric complications following AM2201 exposure. J Forensic Sci. 2013;58:1676–80.PubMedPubMedCentralCrossRef Patton AL, Chimalakonda KC, Moran CL, McCain KR, Radominska-Pandya A, James LP, et al. K2 toxicity: fatal case of psychiatric complications following AM2201 exposure. J Forensic Sci. 2013;58:1676–80.PubMedPubMedCentralCrossRef
73.
go back to reference Anzillotti L, Marezza F, Calò L, Banchini A, Cecchi R. A case report positive for synthetic cannabinoids: are cardiovascular effects related to their protracted use? Leg Med. 2019;41: 101637.CrossRef Anzillotti L, Marezza F, Calò L, Banchini A, Cecchi R. A case report positive for synthetic cannabinoids: are cardiovascular effects related to their protracted use? Leg Med. 2019;41: 101637.CrossRef
74.
go back to reference Darke S, Duflou J, Farrell M, Peacock A, Lappin J. Characteristics and circumstances of synthetic cannabinoid-related death. Clin Toxicol. 2020;58:368–74.CrossRef Darke S, Duflou J, Farrell M, Peacock A, Lappin J. Characteristics and circumstances of synthetic cannabinoid-related death. Clin Toxicol. 2020;58:368–74.CrossRef
75.
go back to reference Boland DM, Reidy LJ, Seither JM, Radtke JM, Lew EO. Forty-three fatalities involving the synthetic cannabinoid, 5-fluoro-ADB: forensic pathology and toxicology implications. J Forensic Sci. 2020;65:170–82.PubMedCrossRef Boland DM, Reidy LJ, Seither JM, Radtke JM, Lew EO. Forty-three fatalities involving the synthetic cannabinoid, 5-fluoro-ADB: forensic pathology and toxicology implications. J Forensic Sci. 2020;65:170–82.PubMedCrossRef
76.
go back to reference Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol. 2018;15:151–66.PubMedCrossRef Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol. 2018;15:151–66.PubMedCrossRef
77.
go back to reference Radaelli D, Manfredi A, Zanon M, Fattorini P, Scopetti M, Neri M, et al. Synthetic cannabinoids and cathinones cardiotoxicity: facts and perspectives. Curr Neuropharmacol. 2021;19:2038–48.PubMedPubMedCentralCrossRef Radaelli D, Manfredi A, Zanon M, Fattorini P, Scopetti M, Neri M, et al. Synthetic cannabinoids and cathinones cardiotoxicity: facts and perspectives. Curr Neuropharmacol. 2021;19:2038–48.PubMedPubMedCentralCrossRef
78.
go back to reference Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circul Physiol. 2015;309:H1453–67.CrossRef Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circul Physiol. 2015;309:H1453–67.CrossRef
79.
go back to reference Alexandre J, Malheiro R, da Dias Silva D, Carmo H, Carvalho F, Silva JP. The synthetic cannabinoids THJ-2201 and 5F-PB22 enhance in vitro CB1 receptor-mediated neuronal differentiation at biologically relevant concentrations. Int J Mol Sci. 2020;21:6277.PubMedPubMedCentralCrossRef Alexandre J, Malheiro R, da Dias Silva D, Carmo H, Carvalho F, Silva JP. The synthetic cannabinoids THJ-2201 and 5F-PB22 enhance in vitro CB1 receptor-mediated neuronal differentiation at biologically relevant concentrations. Int J Mol Sci. 2020;21:6277.PubMedPubMedCentralCrossRef
80.
go back to reference Silva JP, Araújo AM, de Pinho PG, Carmo H, Carvalho F. Synthetic cannabinoids JWH-122 and THJ-2201 disrupt endocannabinoid-regulated mitochondrial function and activate apoptotic pathways as a primary mechanism of in vitro nephrotoxicity at in vivo relevant concentrations. Toxicol Sci. 2019;169:422–35.PubMedCrossRef Silva JP, Araújo AM, de Pinho PG, Carmo H, Carvalho F. Synthetic cannabinoids JWH-122 and THJ-2201 disrupt endocannabinoid-regulated mitochondrial function and activate apoptotic pathways as a primary mechanism of in vitro nephrotoxicity at in vivo relevant concentrations. Toxicol Sci. 2019;169:422–35.PubMedCrossRef
81.
go back to reference Kaminski NE. Inhibition of the cAMP signaling cascade via cannabinoid receptors: a putative mechanism of immune modulation by cannabinoid compounds. Toxicol Lett. 1998;102–103:59–63.PubMedCrossRef Kaminski NE. Inhibition of the cAMP signaling cascade via cannabinoid receptors: a putative mechanism of immune modulation by cannabinoid compounds. Toxicol Lett. 1998;102–103:59–63.PubMedCrossRef
82.
go back to reference Rahman N, Buck J, Levin L. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC). Front Physiol. 2013;25:343. Rahman N, Buck J, Levin L. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC). Front Physiol. 2013;25:343.
83.
go back to reference Singh A, Saluja S, Kumar A, Agrawal S, Thind M, Nanda S, et al. Cardiovascular complications of marijuana and related substances: a review. Cardiol Therapy. 2018;7:45–59.CrossRef Singh A, Saluja S, Kumar A, Agrawal S, Thind M, Nanda S, et al. Cardiovascular complications of marijuana and related substances: a review. Cardiol Therapy. 2018;7:45–59.CrossRef
84.
go back to reference Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res. 2018;28:35–52.PubMedCrossRef Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res. 2018;28:35–52.PubMedCrossRef
85.
go back to reference Puhl S-L, Hilby M, Kohlhaas M, Keidel LM, Jansen Y, Hristov M, et al. Haematopoietic and cardiac GPR55 synchronize post-myocardial infarction remodelling. Sci Rep. 2021;11:14385.PubMedPubMedCentralCrossRef Puhl S-L, Hilby M, Kohlhaas M, Keidel LM, Jansen Y, Hristov M, et al. Haematopoietic and cardiac GPR55 synchronize post-myocardial infarction remodelling. Sci Rep. 2021;11:14385.PubMedPubMedCentralCrossRef
86.
go back to reference Park F, Potukuchi PK, Moradi H, Kovesdy CP. Cannabinoids and the kidney: effects in health and disease. Am J Physiol Renal Physiol. 2017;313:F1124–32.PubMedPubMedCentralCrossRef Park F, Potukuchi PK, Moradi H, Kovesdy CP. Cannabinoids and the kidney: effects in health and disease. Am J Physiol Renal Physiol. 2017;313:F1124–32.PubMedPubMedCentralCrossRef
87.
go back to reference Murphy TD, Weidenbach KN, Van Houten C, Gerona RR, Moran JH, Kirschner RI, Marraffa JM, Stork CM, Birkhead GS, Newman A, Hendrickson R. Centers for Disease Control and Prevention (CDC). Acute kidney injury associated with synthetic cannabinoid use—multiple states, 2012. MMWR Morb Mortal Wkly Rep. 2013;62:93–8.PubMedCentral Murphy TD, Weidenbach KN, Van Houten C, Gerona RR, Moran JH, Kirschner RI, Marraffa JM, Stork CM, Birkhead GS, Newman A, Hendrickson R. Centers for Disease Control and Prevention (CDC). Acute kidney injury associated with synthetic cannabinoid use—multiple states, 2012. MMWR Morb Mortal Wkly Rep. 2013;62:93–8.PubMedCentral
90.
go back to reference Gudsoorkar VS Jr, Perez Jose A Jr. A New differential diagnosis: synthetic cannabinoids-associated acute renal failure. Methodist DeBakey Cardiovas J. 2015;11:189.CrossRef Gudsoorkar VS Jr, Perez Jose A Jr. A New differential diagnosis: synthetic cannabinoids-associated acute renal failure. Methodist DeBakey Cardiovas J. 2015;11:189.CrossRef
91.
go back to reference D’Errico S, Zanon M, Radaelli D, Concato M, Padovano M, Scopetti M, et al. Acute kidney injury (AKI) in young synthetic cannabinoids abusers. Biomedicines. 2022;10:1936.PubMedPubMedCentralCrossRef D’Errico S, Zanon M, Radaelli D, Concato M, Padovano M, Scopetti M, et al. Acute kidney injury (AKI) in young synthetic cannabinoids abusers. Biomedicines. 2022;10:1936.PubMedPubMedCentralCrossRef
92.
go back to reference Lin C-L, Hsu Y-C, Lee P-H, Lei C-C, Wang J-Y, Huang Y-T, et al. Cannabinoid receptor 1 disturbance of PPARγ2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renal glomeruli. J Mol Med. 2014;92:779–92.PubMedCrossRef Lin C-L, Hsu Y-C, Lee P-H, Lei C-C, Wang J-Y, Huang Y-T, et al. Cannabinoid receptor 1 disturbance of PPARγ2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renal glomeruli. J Mol Med. 2014;92:779–92.PubMedCrossRef
93.
go back to reference Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, et al. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology. 2012;153:1387–96.PubMedCrossRef Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, et al. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology. 2012;153:1387–96.PubMedCrossRef
94.
go back to reference Silva GB, Atchison DK, Juncos LI, García NH. Anandamide inhibits transport-related oxygen consumption in the loop of Henle by activating CB1 receptors. Am J Physiol Renal Physiol. 2013;304:F376–81.PubMedCrossRef Silva GB, Atchison DK, Juncos LI, García NH. Anandamide inhibits transport-related oxygen consumption in the loop of Henle by activating CB1 receptors. Am J Physiol Renal Physiol. 2013;304:F376–81.PubMedCrossRef
95.
go back to reference Ritter JK, Li G, Xia M, Boini KM. Anandamide and its metabolites: what are their roles in the kidney? Front Biosci. 2016;8:264–77.CrossRef Ritter JK, Li G, Xia M, Boini KM. Anandamide and its metabolites: what are their roles in the kidney? Front Biosci. 2016;8:264–77.CrossRef
96.
go back to reference Tam J. The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Am Soc Nephrol. 2016;27:267–76. Tam J. The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Am Soc Nephrol. 2016;27:267–76.
97.
go back to reference Silva JP, Carmo H, Carvalho F. The synthetic cannabinoid XLR-11 induces in vitro nephrotoxicity by impairment of endocannabinoid-mediated regulation of mitochondrial function homeostasis and triggering of apoptosis. Toxicol Lett. 2018;287:59–69.PubMedCrossRef Silva JP, Carmo H, Carvalho F. The synthetic cannabinoid XLR-11 induces in vitro nephrotoxicity by impairment of endocannabinoid-mediated regulation of mitochondrial function homeostasis and triggering of apoptosis. Toxicol Lett. 2018;287:59–69.PubMedCrossRef
98.
go back to reference Lim JC, Lim SK, Han HJ, Park SH. Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol. 2010;225:654–63.PubMedCrossRef Lim JC, Lim SK, Han HJ, Park SH. Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol. 2010;225:654–63.PubMedCrossRef
99.
go back to reference Mukhopadhyay P, Pan H, Rajesh M, Bátkai S, Patel V, Harvey-White J, et al. CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol. 2010;160:657–68.PubMedPubMedCentralCrossRef Mukhopadhyay P, Pan H, Rajesh M, Bátkai S, Patel V, Harvey-White J, et al. CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol. 2010;160:657–68.PubMedPubMedCentralCrossRef
100.
go back to reference Takayama T, Suzuki M, Todoroki K, Inoue K, Min JZ, Kikura-Hanajiri R, et al. UPLC/ESI-MS/MS-based determination of metabolism of several new illicit drugs, ADB-FUBINACA, AB-FUBINACA, AB-PINACA, QUPIC, 5F-QUPIC and α-PVT, by human liver microsome. Biomed Chromatogr. 2014;28:831–8.PubMedCrossRef Takayama T, Suzuki M, Todoroki K, Inoue K, Min JZ, Kikura-Hanajiri R, et al. UPLC/ESI-MS/MS-based determination of metabolism of several new illicit drugs, ADB-FUBINACA, AB-FUBINACA, AB-PINACA, QUPIC, 5F-QUPIC and α-PVT, by human liver microsome. Biomed Chromatogr. 2014;28:831–8.PubMedCrossRef
101.
go back to reference Hsin-Hung Chen M, Dip A, Ahmed M, Tan ML, Walterscheid JP, Sun H, et al. Detection and characterization of the effect of AB-FUBINACA and its metabolites in a rat model. J Cell Biochem. 2016;117:1033–43.PubMedCrossRef Hsin-Hung Chen M, Dip A, Ahmed M, Tan ML, Walterscheid JP, Sun H, et al. Detection and characterization of the effect of AB-FUBINACA and its metabolites in a rat model. J Cell Biochem. 2016;117:1033–43.PubMedCrossRef
102.
go back to reference Alzu’bi A, Zoubi MS, Al-Trad B, AbuAlArjah MI, Shehab M, Alzoubi H, et al. Acute hepatic injury associated with acute administration of synthetic cannabinoid XLR-11 in mouse animal model. Toxics. 2022;10:668.PubMedPubMedCentralCrossRef Alzu’bi A, Zoubi MS, Al-Trad B, AbuAlArjah MI, Shehab M, Alzoubi H, et al. Acute hepatic injury associated with acute administration of synthetic cannabinoid XLR-11 in mouse animal model. Toxics. 2022;10:668.PubMedPubMedCentralCrossRef
103.
go back to reference Sheikh IA, Lukšič M, Ferstenberg R, Culpepper-Morgan JA. SPICE/K2 synthetic marijuana-induced toxic hepatitis treated with N-acetylcysteine. Am J Case Rep. 2014;15:584–8.PubMedPubMedCentralCrossRef Sheikh IA, Lukšič M, Ferstenberg R, Culpepper-Morgan JA. SPICE/K2 synthetic marijuana-induced toxic hepatitis treated with N-acetylcysteine. Am J Case Rep. 2014;15:584–8.PubMedPubMedCentralCrossRef
107.
go back to reference Behonick G, Shanks KG, Firchau DJ, Mathur G, Lynch CF, Nashelsky M, et al. Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J Anal Toxicol. 2014;38:559–62.PubMedPubMedCentralCrossRef Behonick G, Shanks KG, Firchau DJ, Mathur G, Lynch CF, Nashelsky M, et al. Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J Anal Toxicol. 2014;38:559–62.PubMedPubMedCentralCrossRef
108.
go back to reference Gonzalez-Gonzalez FJ, Chandel NS, Jain M, Budinger GRS. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Transl Res. 2017;190:61–8.PubMedPubMedCentralCrossRef Gonzalez-Gonzalez FJ, Chandel NS, Jain M, Budinger GRS. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Transl Res. 2017;190:61–8.PubMedPubMedCentralCrossRef
109.
go back to reference Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyannis A, et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J. 2000;346:835–40.PubMedPubMedCentralCrossRef Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyannis A, et al. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J. 2000;346:835–40.PubMedPubMedCentralCrossRef
111.
go back to reference Kim Y, Gautam S, Aseer KR, Kim J, Chandrasekaran P, Mazucanti CH, et al. Hepatocyte cannabinoid 1 receptor nullification alleviates toxin-induced liver damage via NF-κB signaling. Cell Death Dis. 2020;11:1044.PubMedPubMedCentralCrossRef Kim Y, Gautam S, Aseer KR, Kim J, Chandrasekaran P, Mazucanti CH, et al. Hepatocyte cannabinoid 1 receptor nullification alleviates toxin-induced liver damage via NF-κB signaling. Cell Death Dis. 2020;11:1044.PubMedPubMedCentralCrossRef
112.
go back to reference Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, et al. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metabol. 2020;42: 101087.CrossRef Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, et al. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metabol. 2020;42: 101087.CrossRef
113.
go back to reference Alon MH, Saint-Fleur MO. Synthetic cannabinoid induced acute respiratory depression: case series and literature review. Respir Med Case Rep. 2017;22:137–41.PubMedPubMedCentral Alon MH, Saint-Fleur MO. Synthetic cannabinoid induced acute respiratory depression: case series and literature review. Respir Med Case Rep. 2017;22:137–41.PubMedPubMedCentral
115.
go back to reference Śledziński P, Nowak-Terpiłowska A, Zeyland J. Cannabinoids in medicine: cancer, immunity, and microbial diseases. Int J Mol Sci. 2021;22:263.CrossRef Śledziński P, Nowak-Terpiłowska A, Zeyland J. Cannabinoids in medicine: cancer, immunity, and microbial diseases. Int J Mol Sci. 2021;22:263.CrossRef
116.
117.
go back to reference Ortiz-Peregrina S, Ortiz C, Casares-López M, Jiménez JR, Anera RG. Effects of cannabis on visual function and self-perceived visual quality. Sci Rep. 2021;11:1655.PubMedPubMedCentralCrossRef Ortiz-Peregrina S, Ortiz C, Casares-López M, Jiménez JR, Anera RG. Effects of cannabis on visual function and self-perceived visual quality. Sci Rep. 2021;11:1655.PubMedPubMedCentralCrossRef
Metadata
Title
The synthetic cannabinoids menace: a review of health risks and toxicity
Authors
Ayman Alzu’bi
Fatimah Almahasneh
Ramada Khasawneh
Ejlal Abu-El-Rub
Worood Bani Baker
Raed M. Al-Zoubi
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Cannabinoid
Published in
European Journal of Medical Research / Issue 1/2024
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01443-6

Other articles of this Issue 1/2024

European Journal of Medical Research 1/2024 Go to the issue