Skip to main content
Top
Published in: Systematic Reviews 1/2020

Open Access 01-12-2020 | COVID-19 | Protocol

Vaccines to prevent COVID-19: a protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING VACCINE Project)

Authors: Steven Kwasi Korang, Sophie Juul, Emil Eik Nielsen, Joshua Feinberg, Faiza Siddiqui, Giok Ong, Sarah Klingenberg, Areti Angeliki Veroniki, Fanlong Bu, Lehana Thabane, Allan Randrup Thomsen, Janus C. Jakobsen, Christian Gluud

Published in: Systematic Reviews | Issue 1/2020

Login to get access

Abstract

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) which has rapidly spread worldwide. Several human randomized clinical trials assessing potential vaccines are currently underway. There is an urgent need for a living systematic review that continuously assesses the beneficial and harmful effects of all available vaccines for COVID-19.

Methods/design

We will conduct a living systematic review based on searches of major medical databases (e.g., MEDLINE, EMBASE, CENTRAL) and clinical trial registries from their inception onwards to identify relevant randomized clinical trials. We will update the literature search once a week to continuously assess if new evidence is available. Two review authors will independently extract data and conduct risk of bias assessments. We will include randomized clinical trials comparing any vaccine aiming to prevent COVID-19 (including but not limited to messenger RNA; DNA; non-replicating viral vector; replicating viral vector; inactivated virus; protein subunit; dendritic cell; other vaccines) with any comparator (placebo; “active placebo;” no intervention; standard care; an “active” intervention; another vaccine for COVID-19) for participants in all age groups.
Primary outcomes will be all-cause mortality; a diagnosis of COVID-19; and serious adverse events. Secondary outcomes will be quality of life and non-serious adverse events. The living systematic review will include aggregate data meta-analyses, trial sequential analyses, network meta-analyses, and individual patient data meta-analyses. Within-study bias will be assessed using Cochrane risk of bias tool. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) and Confidence in Network Meta-Analysis (CINeMA) approaches will be used to assess certainty of evidence. Observational studies describing harms identified during the search for trials will also be included and described and analyzed separately.

Discussion

COVID-19 has become a pandemic with substantial mortality. A living systematic review assessing the beneficial and harmful effects of different vaccines is urgently needed. This living systematic review will regularly inform best practice in vaccine prevention and clinical research of this highly prevalent disease.

Systematic review registration

PROSPERO CRD42020196492
Appendix
Available only for authorised users
Literature
1.
go back to reference Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.PubMedCrossRef Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.PubMedCrossRef
2.
go back to reference WHO. Novel coronavirus (2019-nCOV). Situation report 51. Available at: https://wwwwhoint/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19pdf?sfvrsn=1ba62e57_10. 2020. WHO. Novel coronavirus (2019-nCOV). Situation report 51. Available at: https://​wwwwhoint/​docs/​default-source/​coronaviruse/​situation-reports/​20200311-sitrep-51-covid-19pdf?​sfvrsn=​1ba62e57_​10.​ 2020.
3.
go back to reference Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226–36.PubMedPubMedCentralCrossRef Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226–36.PubMedPubMedCentralCrossRef
6.
go back to reference Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A. 2004;101(17):6641–6.PubMedPubMedCentralCrossRef Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A. 2004;101(17):6641–6.PubMedPubMedCentralCrossRef
7.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentralCrossRef Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentralCrossRef
9.
go back to reference Ali M, Shah STH, Imran M, Khan A. The role of asymptomatic class, quarantine and isolation in the transmission of COVID-19. J Biol Dyn. 2020;14(1):389–408.PubMedCrossRef Ali M, Shah STH, Imran M, Khan A. The role of asymptomatic class, quarantine and isolation in the transmission of COVID-19. J Biol Dyn. 2020;14(1):389–408.PubMedCrossRef
11.
go back to reference Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787–99.PubMedCrossRef Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787–99.PubMedCrossRef
12.
go back to reference Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, Chirna. Lancet. 2020;395(10223):497–506.PubMedPubMedCentralCrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, Chirna. Lancet. 2020;395(10223):497–506.PubMedPubMedCentralCrossRef
13.
go back to reference Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.
14.
go back to reference Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–69. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–69.
18.
go back to reference Baden LR, Rubin EJ. Covid-19 - the search for effective therapy. N Engl J Med. 2020;382(19):1851–2.PubMedCrossRef Baden LR, Rubin EJ. Covid-19 - the search for effective therapy. N Engl J Med. 2020;382(19):1851–2.PubMedCrossRef
19.
go back to reference Juul S, Nielsen N, Bentzer P, Veroniki AA, Thabane L, Linder A, et al. Interventions for treatment of COVID-19: a protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING Project). Syst Rev. 2020;9(1):108.PubMedPubMedCentralCrossRef Juul S, Nielsen N, Bentzer P, Veroniki AA, Thabane L, Linder A, et al. Interventions for treatment of COVID-19: a protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING Project). Syst Rev. 2020;9(1):108.PubMedPubMedCentralCrossRef
20.
go back to reference Pichichero ME. Booster vaccinations: can immunologic memory outpace disease pathogenesis? Pediatrics. 2009;124(6):1633–41.PubMedCrossRef Pichichero ME. Booster vaccinations: can immunologic memory outpace disease pathogenesis? Pediatrics. 2009;124(6):1633–41.PubMedCrossRef
21.
22.
go back to reference Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489–501.e15.PubMedPubMedCentralCrossRef Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489–501.e15.PubMedPubMedCentralCrossRef
23.
go back to reference Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antivir Res. 2017;137:82–92.PubMedCrossRef Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antivir Res. 2017;137:82–92.PubMedCrossRef
24.
go back to reference Zhao J, Zhao J, Mangalam Ashutosh K, Channappanavar R, Fett C, Meyerholz David K, et al. Airway memory CD4+ T Cells mediate protective immunity against emerging respiratory coronaviruses. Immunity. 2016;44(6):1379–91.PubMedPubMedCentralCrossRef Zhao J, Zhao J, Mangalam Ashutosh K, Channappanavar R, Fett C, Meyerholz David K, et al. Airway memory CD4+ T Cells mediate protective immunity against emerging respiratory coronaviruses. Immunity. 2016;44(6):1379–91.PubMedPubMedCentralCrossRef
25.
go back to reference National Institute of Allergy Infectious Diseases. Phase I, open-label, dose-ranging study of the safety and immunogenicity of 2019-nCoV vaccine (mRNA-1273) in healthy adults. Clinical trial registration. clinicaltrials.gov; 2020 2020/02/25/. Report No.: NCT04283461. National Institute of Allergy Infectious Diseases. Phase I, open-label, dose-ranging study of the safety and immunogenicity of 2019-nCoV vaccine (mRNA-1273) in healthy adults. Clinical trial registration. clinicaltrials.​gov; 2020 2020/02/25/. Report No.: NCT04283461.
26.
go back to reference ModernaTX, Inc. Dose-confirmation study to evaluate the safety, reactogenicity, and immunogenicity of mRNA-1273 COVID-19 vaccine in adults aged 18 years and older. Clinical trial registration. clinicaltrials.gov; 2020 2020/05/28/. Report No.: NCT04405076. ModernaTX, Inc. Dose-confirmation study to evaluate the safety, reactogenicity, and immunogenicity of mRNA-1273 COVID-19 vaccine in adults aged 18 years and older. Clinical trial registration. clinicaltrials.gov; 2020 2020/05/28/. Report No.: NCT04405076.
28.
go back to reference Novavax. A 2-part, phase 1/2, randomized, observer-blinded study to evaluate the safety and immunogenicity of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine (SARS-CoV-2 rS) with or without MATRIX-M™ adjuvant in healthy subjects. Clinical trial registration. clinicaltrials.gov; 2020 2020/05/26/. Report No.: NCT04368988. Novavax. A 2-part, phase 1/2, randomized, observer-blinded study to evaluate the safety and immunogenicity of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine (SARS-CoV-2 rS) with or without MATRIX-M™ adjuvant in healthy subjects. Clinical trial registration. clinicaltrials.​gov; 2020 2020/05/26/. Report No.: NCT04368988.
29.
go back to reference Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, et al. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J Immunol. 2008;180(2):948–56.PubMedCrossRef Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, et al. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J Immunol. 2008;180(2):948–56.PubMedCrossRef
31.
go back to reference University of O. A phase 2/3 study to determine the efficacy, safety and immunogenicity of the candidate coronavirus disease (COVID-19) vaccine ChAdOx1 nCoV-19. Clinical trial registration. clinicaltrials.gov; 2020 2020/05/22/. Report No.: NCT04400838. University of O. A phase 2/3 study to determine the efficacy, safety and immunogenicity of the candidate coronavirus disease (COVID-19) vaccine ChAdOx1 nCoV-19. Clinical trial registration. clinicaltrials.​gov; 2020 2020/05/22/. Report No.: NCT04400838.
32.
go back to reference Sinovac R, Development Co L. A randomized, double-blinded, placebo-controlled, phase I/II clinical trial, to evaluate the safety and immunogenicity of the SARS-CoV-2 inactivated vaccine (Vero cell) in healthy population aged ≥60 years. Clinical trial registration. clinicaltrials.gov; 2020 2020/05/09/. Report No.: NCT04383574. Sinovac R, Development Co L. A randomized, double-blinded, placebo-controlled, phase I/II clinical trial, to evaluate the safety and immunogenicity of the SARS-CoV-2 inactivated vaccine (Vero cell) in healthy population aged ≥60 years. Clinical trial registration. clinicaltrials.​gov; 2020 2020/05/09/. Report No.: NCT04383574.
33.
go back to reference Sinovac R, Development Co L. A randomized, double-blinded, placebo-controlled, phase I/II clinical trial, to evaluate the safety and immunogenicity of the SARS-CoV-2 inactivated vaccine in healthy adults aged 18~59 years. Clinical trial registration. clinicaltrials.gov; 2020 2020/04/26/. Report No.: NCT04352608. Sinovac R, Development Co L. A randomized, double-blinded, placebo-controlled, phase I/II clinical trial, to evaluate the safety and immunogenicity of the SARS-CoV-2 inactivated vaccine in healthy adults aged 18~59 years. Clinical trial registration. clinicaltrials.​gov; 2020 2020/04/26/. Report No.: NCT04352608.
34.
go back to reference Clover Biopharmaceuticals AUSPL. A phase 1, randomized, double-blind, placebo-controlled, first-in-human study to evaluate the safety and immunogenicity of SCB 2019, a recombinant SARS-CoV-2 trimeric S protein subunit vaccine for COVID-19 in healthy volunteers. Clinical trial registration. clinicaltrials.gov; 2020 2020/05/28/. Report No.: NCT04405908. Clover Biopharmaceuticals AUSPL. A phase 1, randomized, double-blind, placebo-controlled, first-in-human study to evaluate the safety and immunogenicity of SCB 2019, a recombinant SARS-CoV-2 trimeric S protein subunit vaccine for COVID-19 in healthy volunteers. Clinical trial registration. clinicaltrials.​gov; 2020 2020/05/28/. Report No.: NCT04405908.
36.
go back to reference Aivita Biomedical, Inc. Phase Ib-II trial of dendritic cell vaccine to prevent COVID-19 in adults. Clinical trial registration. clinicaltrials.gov; 2020 2020/5/13/. Report No.: NCT04386252. Aivita Biomedical, Inc. Phase Ib-II trial of dendritic cell vaccine to prevent COVID-19 in adults. Clinical trial registration. clinicaltrials.​gov; 2020 2020/5/13/. Report No.: NCT04386252.
38.
go back to reference Garattini S, Jakobsen JC, Wetterslev J, Bertelé V, Banzi R, Rath A, et al. Evidence-based clinical practice: overview of threats to the validity of evidence and how to minimise them. Eur J Intern Med. 2016;32:13–21.PubMedCrossRef Garattini S, Jakobsen JC, Wetterslev J, Bertelé V, Banzi R, Rath A, et al. Evidence-based clinical practice: overview of threats to the validity of evidence and how to minimise them. Eur J Intern Med. 2016;32:13–21.PubMedCrossRef
39.
go back to reference Le TT, Cramer JP, Chen R, Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19:667–8.PubMedCrossRef Le TT, Cramer JP, Chen R, Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19:667–8.PubMedCrossRef
40.
go back to reference Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54.PubMedPubMedCentralCrossRef Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54.PubMedPubMedCentralCrossRef
42.
go back to reference Boutron I, Chaimani A, Meerpohl JJ, Hróbjartsson A, Devane D, Rada G, et al. Interventions for preventing and treating COVID-19: living systematic reviews and network meta-analyses. Zenodo; 2020 2020/09/08/. Boutron I, Chaimani A, Meerpohl JJ, Hróbjartsson A, Devane D, Rada G, et al. Interventions for preventing and treating COVID-19: living systematic reviews and network meta-analyses. Zenodo; 2020 2020/09/08/.
43.
44.
go back to reference Siemieniuk RAC, Bartoszko JJ, Ge L, Zeraatkar D, Izcovich A, Pardo-Hernandez H, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020;370:m2980. Siemieniuk RAC, Bartoszko JJ, Ge L, Zeraatkar D, Izcovich A, Pardo-Hernandez H, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020;370:m2980.
47.
go back to reference Jakobsen JC, Wetterslev J, Winkel P, Lange T, Gluud C. Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods. BMC Med Res Methodol. 2014;14:120.PubMedPubMedCentralCrossRef Jakobsen JC, Wetterslev J, Winkel P, Lange T, Gluud C. Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods. BMC Med Res Methodol. 2014;14:120.PubMedPubMedCentralCrossRef
48.
go back to reference Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61(1):64–75.PubMedCrossRef Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61(1):64–75.PubMedCrossRef
49.
go back to reference Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med Res Methodol. 2009;9:86.PubMedPubMedCentralCrossRef Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med Res Methodol. 2009;9:86.PubMedPubMedCentralCrossRef
50.
go back to reference Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef
51.
go back to reference Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.PubMedCrossRef Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.PubMedCrossRef
52.
go back to reference Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.PubMedCrossRef Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–84.PubMedCrossRef
53.
go back to reference Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. JAMA. 2015;313(16):1657–65.PubMedCrossRef Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. JAMA. 2015;313(16):1657–65.PubMedCrossRef
54.
go back to reference International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised guideline: integrated addendum to ICH E6(R1): Guideline for Good Clinical Practice (ICH-GCP). 2015. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised guideline: integrated addendum to ICH E6(R1): Guideline for Good Clinical Practice (ICH-GCP). 2015.
56.
go back to reference Elliott JH, Synnot A, Turner T, Simmonds M, Akl E, McDonald S, et al. Living systematic review: 1. Introduction-the why, what, when, and how. J Clin Epidemiol. 2017;91:23–30.PubMedCrossRef Elliott JH, Synnot A, Turner T, Simmonds M, Akl E, McDonald S, et al. Living systematic review: 1. Introduction-the why, what, when, and how. J Clin Epidemiol. 2017;91:23–30.PubMedCrossRef
57.
go back to reference Elliott JH, Turner T, Clavisi O, Thomas J, Higgins JPT, Mavergames C, et al. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Med. 2014;11(2):e1001603.PubMedPubMedCentralCrossRef Elliott JH, Turner T, Clavisi O, Thomas J, Higgins JPT, Mavergames C, et al. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Med. 2014;11(2):e1001603.PubMedPubMedCentralCrossRef
58.
go back to reference CINeMA: Confidence in Network Meta-analysis. . Bern: Institute of Social and Preventative Medicine, University of Bern: Institute of Social and Preventative Medicine, University of Bern; 2017. CINeMA: Confidence in Network Meta-analysis. . Bern: Institute of Social and Preventative Medicine, University of Bern: Institute of Social and Preventative Medicine, University of Bern; 2017.
59.
go back to reference Nikolakopoulou A, Higgins JPT, Papakonstantinou T, Chaimani A, Del Giovane C, Egger M, et al. CINeMA: an approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020;17(4):e1003082.PubMedPubMedCentralCrossRef Nikolakopoulou A, Higgins JPT, Papakonstantinou T, Chaimani A, Del Giovane C, Egger M, et al. CINeMA: an approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020;17(4):e1003082.PubMedPubMedCentralCrossRef
60.
go back to reference Papakonstantinou T, Nikolakopoulou A, Higgins JPT, Egger M, Salanti G. CINeMA: Software for semiautomated assessment of the confidence in the results of network meta-analysis. Campbell Syst Rev. 2020;16(1):e1080. Papakonstantinou T, Nikolakopoulou A, Higgins JPT, Egger M, Salanti G. CINeMA: Software for semiautomated assessment of the confidence in the results of network meta-analysis. Campbell Syst Rev. 2020;16(1):e1080.
62.
go back to reference Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.PubMedPubMedCentralCrossRef Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.PubMedPubMedCentralCrossRef
64.
go back to reference Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefPubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefPubMed
65.
go back to reference Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83–98.PubMedCrossRef Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83–98.PubMedCrossRef
66.
go back to reference Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55–79.PubMedCrossRef Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55–79.PubMedCrossRef
67.
go back to reference Rhodes KM, Turner RM, Higgins JPT. Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. J Clin Epidemiol. 2015;68(1):52–60.PubMedPubMedCentralCrossRef Rhodes KM, Turner RM, Higgins JPT. Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. J Clin Epidemiol. 2015;68(1):52–60.PubMedPubMedCentralCrossRef
68.
go back to reference Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012;41(3):818–27.PubMedPubMedCentralCrossRef Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012;41(3):818–27.PubMedPubMedCentralCrossRef
69.
go back to reference Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57.PubMedCrossRef Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57.PubMedCrossRef
70.
go back to reference Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315(7109):629–34.CrossRef Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315(7109):629–34.CrossRef
71.
go back to reference Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.PubMedCrossRef Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.PubMedCrossRef
72.
go back to reference Killip S, Mahfoud Z, Pearce K. What is an intracluster correlation coefficient? Crucial concepts for primary care researchers. Ann Fam Med. 2004;2(3):204–8.PubMedPubMedCentralCrossRef Killip S, Mahfoud Z, Pearce K. What is an intracluster correlation coefficient? Crucial concepts for primary care researchers. Ann Fam Med. 2004;2(3):204–8.PubMedPubMedCentralCrossRef
73.
go back to reference Storebø OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielsen SS, Krogh HB, et al. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents - assessment of adverse events in non-randomised studies. Cochrane Database Syst Rev. 2018;5:CD012069.PubMed Storebø OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielsen SS, Krogh HB, et al. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents - assessment of adverse events in non-randomised studies. Cochrane Database Syst Rev. 2018;5:CD012069.PubMed
74.
go back to reference Keus F, Wetterslev J, Gluud C, van Laarhoven CJHM. Evidence at a glance: error matrix approach for overviewing available evidence. BMC Med Res Methodol. 2010;10:90.PubMedPubMedCentralCrossRef Keus F, Wetterslev J, Gluud C, van Laarhoven CJHM. Evidence at a glance: error matrix approach for overviewing available evidence. BMC Med Res Methodol. 2010;10:90.PubMedPubMedCentralCrossRef
75.
go back to reference Demets DL. Methods for combining randomized clinical trials: strengths and limitations. Stat Med. 1987;6(3):341–50.PubMedCrossRef Demets DL. Methods for combining randomized clinical trials: strengths and limitations. Stat Med. 1987;6(3):341–50.PubMedCrossRef
77.
go back to reference CTU. TSA - trial sequential analysis. Available at: http://wwwctudk/tsa/. 2020. CTU. TSA - trial sequential analysis. Available at: http://​wwwctudk/​tsa/​.​ 2020.
78.
go back to reference Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. 2008;61(8):763–9.PubMedCrossRef Brok J, Thorlund K, Gluud C, Wetterslev J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol. 2008;61(8):763–9.PubMedCrossRef
79.
go back to reference Brok J, Thorlund K, Wetterslev J, Gluud C. Apparently conclusive meta-analyses may be inconclusive--trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal meta-analyses. Int J Epidemiol. 2009;38(1):287–98.PubMedCrossRef Brok J, Thorlund K, Wetterslev J, Gluud C. Apparently conclusive meta-analyses may be inconclusive--trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal meta-analyses. Int J Epidemiol. 2009;38(1):287–98.PubMedCrossRef
80.
go back to reference Thorlund K, Anema A, Mills E. Interpreting meta-analysis according to the adequacy of sample size. An example using isoniazid chemoprophylaxis for tuberculosis in purified protein derivative negative HIV-infected individuals. Clin Epidemiol. 2010;2:57–66.PubMedPubMedCentral Thorlund K, Anema A, Mills E. Interpreting meta-analysis according to the adequacy of sample size. An example using isoniazid chemoprophylaxis for tuberculosis in purified protein derivative negative HIV-infected individuals. Clin Epidemiol. 2010;2:57–66.PubMedPubMedCentral
81.
go back to reference Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JPA, Thabane L, et al. Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses? Int J Epidemiol. 2009;38(1):276–86.PubMedCrossRef Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JPA, Thabane L, et al. Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses? Int J Epidemiol. 2009;38(1):276–86.PubMedCrossRef
82.
go back to reference Imberger G, Thorlund K, Gluud C, Wetterslev J. False-positive findings in Cochrane meta-analyses with and without application of trial sequential analysis: an empirical review. BMJ Open. 2016;6(8):e011890.PubMedPubMedCentralCrossRef Imberger G, Thorlund K, Gluud C, Wetterslev J. False-positive findings in Cochrane meta-analyses with and without application of trial sequential analysis: an empirical review. BMJ Open. 2016;6(8):e011890.PubMedPubMedCentralCrossRef
85.
go back to reference Mills EJ, Thorlund K, Ioannidis JPA. Demystifying trial networks and network meta-analysis. BMJ. 2013;346:f2914.PubMedCrossRef Mills EJ, Thorlund K, Ioannidis JPA. Demystifying trial networks and network meta-analysis. BMJ. 2013;346:f2914.PubMedCrossRef
86.
87.
go back to reference Salanti G, Ades AE, Ioannidis JPA. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–71.PubMedCrossRef Salanti G, Ades AE, Ioannidis JPA. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–71.PubMedCrossRef
88.
go back to reference Veroniki AA, Straus SE, Fyraridis A, Tricco AC. The rank-heat plot is a novel way to present the results from a network meta-analysis including multiple outcomes. J Clin Epidemiol. 2016;76:193–9.PubMedCrossRef Veroniki AA, Straus SE, Fyraridis A, Tricco AC. The rank-heat plot is a novel way to present the results from a network meta-analysis including multiple outcomes. J Clin Epidemiol. 2016;76:193–9.PubMedCrossRef
89.
go back to reference Brignardello-Petersen R, Murad MH, Walter SD, McLeod S, Carrasco-Labra A, Rochwerg B, et al. GRADE approach to rate the certainty from a network meta-analysis: avoiding spurious judgments of imprecision in sparse networks. J Clin Epidemiol. 2019;105:60–7.PubMedCrossRef Brignardello-Petersen R, Murad MH, Walter SD, McLeod S, Carrasco-Labra A, Rochwerg B, et al. GRADE approach to rate the certainty from a network meta-analysis: avoiding spurious judgments of imprecision in sparse networks. J Clin Epidemiol. 2019;105:60–7.PubMedCrossRef
90.
go back to reference Efthimiou O, Rücker G, Schwarzer G, Higgins JPT, Egger M, Salanti G. Network meta-analysis of rare events using the Mantel-Haenszel method. Stat Med. 2019;38(16):2992–3012.PubMedCrossRef Efthimiou O, Rücker G, Schwarzer G, Higgins JPT, Egger M, Salanti G. Network meta-analysis of rare events using the Mantel-Haenszel method. Stat Med. 2019;38(16):2992–3012.PubMedCrossRef
91.
go back to reference Debray TPA, Moons KGM, van Valkenhoef G, Efthimiou O, Hummel N, Groenwold RHH, et al. Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Res Synth Methods. 2015;6(4):293–309.PubMedPubMedCentralCrossRef Debray TPA, Moons KGM, van Valkenhoef G, Efthimiou O, Hummel N, Groenwold RHH, et al. Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Res Synth Methods. 2015;6(4):293–309.PubMedPubMedCentralCrossRef
92.
go back to reference Schuit E, Li AH, Ioannidis JPA. How often can meta-analyses of individual-level data individualize treatment? A meta-epidemiologic study. Int J Epidemiol. 2019;48(2):596–608.PubMedCrossRef Schuit E, Li AH, Ioannidis JPA. How often can meta-analyses of individual-level data individualize treatment? A meta-epidemiologic study. Int J Epidemiol. 2019;48(2):596–608.PubMedCrossRef
93.
go back to reference Smith CT, Marcucci M, Nolan SJ, Iorio A, Sudell M, Riley R, et al. Individual participant data meta-analyses compared with meta-analyses based on aggregate data. Cochrane Database Syst Rev. 2016;9:MR000007. Smith CT, Marcucci M, Nolan SJ, Iorio A, Sudell M, Riley R, et al. Individual participant data meta-analyses compared with meta-analyses based on aggregate data. Cochrane Database Syst Rev. 2016;9:MR000007.
94.
go back to reference Nielsen EE, Nørskov AK, Lange T, Thabane L, Wetterslev J, Beyersmann J, et al. Assessing assumptions for statistical analyses in randomised clinical trials. BMJ Evid Based Med. 2019;24(5):185–9.PubMedCrossRef Nielsen EE, Nørskov AK, Lange T, Thabane L, Wetterslev J, Beyersmann J, et al. Assessing assumptions for statistical analyses in randomised clinical trials. BMJ Evid Based Med. 2019;24(5):185–9.PubMedCrossRef
96.
97.
go back to reference Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1995;273(5):408–12.PubMedCrossRef Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1995;273(5):408–12.PubMedCrossRef
98.
go back to reference Wood L, Egger M, Gluud LL, Schulz KF, Juni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ. 2008;336(7644):601–5.PubMedPubMedCentralCrossRef Wood L, Egger M, Gluud LL, Schulz KF, Juni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ. 2008;336(7644):601–5.PubMedPubMedCentralCrossRef
99.
go back to reference Lundh A, Lexchin J, Mintzes B, Schroll JB, Bero L. Industry sponsorship and research outcome: systematic review with meta-analysis. Intensive Care Med. 2018;44(10):1603–12.PubMedCrossRef Lundh A, Lexchin J, Mintzes B, Schroll JB, Bero L. Industry sponsorship and research outcome: systematic review with meta-analysis. Intensive Care Med. 2018;44(10):1603–12.PubMedCrossRef
102.
go back to reference Schandelmaier S, Briel M, Varadhan R, Schmid CH, Devasenapathy N, Hayward RA, et al. Development of the Instrument to assess the Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and meta-analyses. CMAJ. 2020;192(32):E901–E6.PubMedCrossRefPubMedCentral Schandelmaier S, Briel M, Varadhan R, Schmid CH, Devasenapathy N, Hayward RA, et al. Development of the Instrument to assess the Credibility of Effect Modification Analyses (ICEMAN) in randomized controlled trials and meta-analyses. CMAJ. 2020;192(32):E901–E6.PubMedCrossRefPubMedCentral
103.
go back to reference Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380–2.CrossRefPubMed Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380–2.CrossRefPubMed
104.
go back to reference Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.PubMedPubMedCentralCrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.PubMedPubMedCentralCrossRef
105.
go back to reference Schünemann HJ, Best D, Vist G, Oxman AD, Group GW. Letters, numbers, symbols and words: how to communicate grades of evidence and recommendations. CMAJ. 2003;169(7):677–80.PubMedPubMedCentral Schünemann HJ, Best D, Vist G, Oxman AD, Group GW. Letters, numbers, symbols and words: how to communicate grades of evidence and recommendations. CMAJ. 2003;169(7):677–80.PubMedPubMedCentral
106.
go back to reference Mehra MR, Desai SS, Kuy SR, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med. 2020;382(25):e102. Mehra MR, Desai SS, Kuy SR, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med. 2020;382(25):e102.
107.
go back to reference Lundh A, Lexchin J, Mintzes B, Schroll JB, Bero L. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2017;2:MR000033.PubMed Lundh A, Lexchin J, Mintzes B, Schroll JB, Bero L. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2017;2:MR000033.PubMed
Metadata
Title
Vaccines to prevent COVID-19: a protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING VACCINE Project)
Authors
Steven Kwasi Korang
Sophie Juul
Emil Eik Nielsen
Joshua Feinberg
Faiza Siddiqui
Giok Ong
Sarah Klingenberg
Areti Angeliki Veroniki
Fanlong Bu
Lehana Thabane
Allan Randrup Thomsen
Janus C. Jakobsen
Christian Gluud
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
COVID-19
Published in
Systematic Reviews / Issue 1/2020
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-020-01516-1

Other articles of this Issue 1/2020

Systematic Reviews 1/2020 Go to the issue