Skip to main content
Top
Published in: Annals of Intensive Care 1/2018

Open Access 01-12-2018 | Review

Hemodynamic support in the early phase of septic shock: a review of challenges and unanswered questions

Authors: Olivier Lesur, Eugénie Delile, Pierre Asfar, Peter Radermacher

Published in: Annals of Intensive Care | Issue 1/2018

Login to get access

Abstract

Background

Improving sepsis support is one of the three pillars of a 2017 resolution according to the World Health Organization (WHO). Septic shock is indeed a burden issue in the intensive care units. Hemodynamic stabilization is a cornerstone element in the bundle of supportive treatments recommended in the Surviving Sepsis Campaign (SSC) consecutive biannual reports.

Main body

The “Pandera’s box” of septic shock hemodynamics is an eternal debate, however, with permanent contentious issues. Fluid resuscitation is a prerequisite intervention for sepsis rescue, but selection, modalities, dosage as well as duration are subject to discussion while too much fluid is associated with worsen outcome, vasopressors often need to be early introduced in addition, and catecholamines have long been recommended first in the management of septic shock. However, not all patients respond positively and controversy surrounding the efficacy-to-safety profile of catecholamines has come out. Preservation of the macrocirculation through a “best” mean arterial pressure target is the actual priority but is still contentious. Microcirculation recruitment is a novel goal to be achieved but is claiming more knowledge and monitoring standardization. Protection of the cardio-renal axis, which is prevalently injured during septic shock, is also an unavoidable objective. Several promising alternative or additive drug supporting avenues are emerging, trending toward catecholamine’s sparing or even “decatecholaminization.” Topics to be specifically addressed in this review are: (1) mean arterial pressure targeting, (2) fluid resuscitation, and (3) hemodynamic drug support.

Conclusion

Improving assessment and means for rescuing hemodynamics in early septic shock is still a work in progress. Indeed, the bigger the unresolved questions, the lower the quality of evidence.
Literature
1.
go back to reference Martin G, Mannino D, Eaton S, et al. The epidemiology of sepsis in the U-S from 1979 through 2000. N Engl J Med. 2003;348:1546–54.CrossRef Martin G, Mannino D, Eaton S, et al. The epidemiology of sepsis in the U-S from 1979 through 2000. N Engl J Med. 2003;348:1546–54.CrossRef
2.
go back to reference Reinhart K, Daniels R, Kissoon N, et al. Recognizing sepsis as a global health priority—a WHO resolution. N Engl J Med. 2017;377:414–7.CrossRef Reinhart K, Daniels R, Kissoon N, et al. Recognizing sepsis as a global health priority—a WHO resolution. N Engl J Med. 2017;377:414–7.CrossRef
3.
go back to reference Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRef Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRef
5.
go back to reference Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–10.CrossRef Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–10.CrossRef
6.
go back to reference Varpula M, Tallgren M, Saukkonen K, et al. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–71.CrossRef Varpula M, Tallgren M, Saukkonen K, et al. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–71.CrossRef
7.
go back to reference Dünser MW, Takala J, Ulmer H, et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009;35:1225–33.CrossRef Dünser MW, Takala J, Ulmer H, et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009;35:1225–33.CrossRef
8.
go back to reference Nisula S, Kaukonen K-M, Vaara ST, The FINNAKI Study Group. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.CrossRef Nisula S, Kaukonen K-M, Vaara ST, The FINNAKI Study Group. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8.CrossRef
9.
go back to reference Poukkanen M, Wilkman E, Vaara ST, The FINNAKI Study Group. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care Lond Engl. 2013;17:R295.CrossRef Poukkanen M, Wilkman E, Vaara ST, The FINNAKI Study Group. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care Lond Engl. 2013;17:R295.CrossRef
10.
go back to reference Maheshwari K, Nathanson BH, Munson SH, et al. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44:857–67.CrossRef Maheshwari K, Nathanson BH, Munson SH, et al. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med. 2018;44:857–67.CrossRef
11.
go back to reference Annane D, Vignon P, Renault A, The CATS Study Group. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370:676–84.CrossRef Annane D, Vignon P, Renault A, The CATS Study Group. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370:676–84.CrossRef
12.
go back to reference Russell JA, Walley KR, Singer J, The VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.CrossRef Russell JA, Walley KR, Singer J, The VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.CrossRef
13.
go back to reference De Backer D, Biston P, Devriendt J, The SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.CrossRef De Backer D, Biston P, Devriendt J, The SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.CrossRef
14.
go back to reference Asfar P, Meziani F, Hamel J-F, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef Asfar P, Meziani F, Hamel J-F, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef
15.
go back to reference Strandgaard S, Olesen J, Skinhoj E, et al. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1:507–10.CrossRef Strandgaard S, Olesen J, Skinhoj E, et al. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1:507–10.CrossRef
16.
17.
go back to reference Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol Renal Physiol. 2007;292:F1105–23.CrossRef Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol Renal Physiol. 2007;292:F1105–23.CrossRef
18.
go back to reference Badin J, Boulain T, Ehrmann S, et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit Care Lond Engl. 2011;15:R135.CrossRef Badin J, Boulain T, Ehrmann S, et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit Care Lond Engl. 2011;15:R135.CrossRef
19.
go back to reference Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36(Suppl):S179–86.CrossRef Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36(Suppl):S179–86.CrossRef
20.
go back to reference Legrand M, Dupuis C, Simon C, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care Lond Engl. 2013;17:R278.CrossRef Legrand M, Dupuis C, Simon C, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care Lond Engl. 2013;17:R278.CrossRef
21.
go back to reference Panwar R, Lanyon N, Davies AR, et al. Mean perfusion pressure deficit during the initial management of shock—an observational cohort study. J Crit Care. 2013;28:816–24.CrossRef Panwar R, Lanyon N, Davies AR, et al. Mean perfusion pressure deficit during the initial management of shock—an observational cohort study. J Crit Care. 2013;28:816–24.CrossRef
22.
go back to reference De Backer D, Donadello K, Taccone FS, et al. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011;1:27.CrossRef De Backer D, Donadello K, Taccone FS, et al. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011;1:27.CrossRef
23.
go back to reference De Backer D, Creteur J, Preiser J-C, et al. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.CrossRef De Backer D, Creteur J, Preiser J-C, et al. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.CrossRef
24.
go back to reference De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010;16:250–4.CrossRef De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010;16:250–4.CrossRef
25.
go back to reference LeDoux D, Astiz ME, Carpati CM, et al. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.CrossRef LeDoux D, Astiz ME, Carpati CM, et al. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.CrossRef
26.
go back to reference Bourgoin A, Leone M, Delmas A, et al. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–6.CrossRef Bourgoin A, Leone M, Delmas A, et al. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–6.CrossRef
27.
go back to reference Deruddre S, Cheisson G, Mazoit J-X, et al. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–62.CrossRef Deruddre S, Cheisson G, Mazoit J-X, et al. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–62.CrossRef
28.
go back to reference Jhanji S, Stirling S, Patel N, et al. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37:1961–6.CrossRef Jhanji S, Stirling S, Patel N, et al. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37:1961–6.CrossRef
29.
go back to reference Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care Lond Engl. 2009;13:R92.CrossRef Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care Lond Engl. 2009;13:R92.CrossRef
30.
go back to reference Thooft A, Favory R, Salgado DR, et al. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care Lond Engl. 2011;15:R222.CrossRef Thooft A, Favory R, Salgado DR, et al. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care Lond Engl. 2011;15:R222.CrossRef
31.
go back to reference Hamzaoui O, Georger J-F, Monnet X, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care Lond Engl. 2010;14:R142.CrossRef Hamzaoui O, Georger J-F, Monnet X, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care Lond Engl. 2010;14:R142.CrossRef
32.
go back to reference Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.CrossRef Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24:293–316.CrossRef
33.
go back to reference Rivers E, Nguyen B, Havstad S, The Early Goal-Directed Therapy Collaborative Group, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef Rivers E, Nguyen B, Havstad S, The Early Goal-Directed Therapy Collaborative Group, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.CrossRef
34.
go back to reference Pruinelli L, Westra BL, Yadav P, et al. Delay Within the 3-hour Surviving Sepsis Campaign guideline on mortality for patients with severe sepsis and septic shock. Crit Care Med. 2018;46:500–5.CrossRef Pruinelli L, Westra BL, Yadav P, et al. Delay Within the 3-hour Surviving Sepsis Campaign guideline on mortality for patients with severe sepsis and septic shock. Crit Care Med. 2018;46:500–5.CrossRef
35.
go back to reference ProCESS Investigators, Yearly DM, Kellum JA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.CrossRef ProCESS Investigators, Yearly DM, Kellum JA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.CrossRef
36.
go back to reference ARISE Investigators, Group ACT, Peake SL, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.CrossRef ARISE Investigators, Group ACT, Peake SL, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.CrossRef
37.
go back to reference Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.CrossRef Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.CrossRef
38.
go back to reference PRISM Investigators, Rowan KM, Angus DC, et al. Early, goal-directed therapy for septic shock—a patient-level meta-analysis. N Engl J Med. 2017;376:2223–34.CrossRef PRISM Investigators, Rowan KM, Angus DC, et al. Early, goal-directed therapy for septic shock—a patient-level meta-analysis. N Engl J Med. 2017;376:2223–34.CrossRef
39.
go back to reference Bai X, Yu W, Ji W, et al. Early versus delayed administration of norepinephrine in patients with septic shock. Crit Care Lond Engl. 2014;18:532.CrossRef Bai X, Yu W, Ji W, et al. Early versus delayed administration of norepinephrine in patients with septic shock. Crit Care Lond Engl. 2014;18:532.CrossRef
40.
go back to reference Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.CrossRef Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.CrossRef
41.
go back to reference Gordon AC, Mason AJ, Thirunavukkarasu N, The VANISH Investigators. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316:509–18.CrossRef Gordon AC, Mason AJ, Thirunavukkarasu N, The VANISH Investigators. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316:509–18.CrossRef
42.
go back to reference Cecconi M, Hofer C, Teboul JL, The FENICE Investigators, ESICM Trial Group. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–37.CrossRef Cecconi M, Hofer C, Teboul JL, The FENICE Investigators, ESICM Trial Group. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–37.CrossRef
43.
go back to reference Marik PE, Linde-Zwirble WT, Bittner EA, et al. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43:625–32.CrossRef Marik PE, Linde-Zwirble WT, Bittner EA, et al. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43:625–32.CrossRef
44.
go back to reference Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.CrossRef Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.CrossRef
45.
go back to reference Silversides JA, Fitzgerald E, Manickavasagam US, et al. Deresuscitation of patients with iatrogenic fluid overload is associated with reduced mortality in critical illness. Crit Care Med. 2018;46:1600–7.CrossRef Silversides JA, Fitzgerald E, Manickavasagam US, et al. Deresuscitation of patients with iatrogenic fluid overload is associated with reduced mortality in critical illness. Crit Care Med. 2018;46:1600–7.CrossRef
46.
go back to reference Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically Ill adults. N Engl J Med. 2018;378:829–39.CrossRef Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically Ill adults. N Engl J Med. 2018;378:829–39.CrossRef
47.
go back to reference SAFE Study Investigators, Finfer S, McEvoy S, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37:86–96.CrossRef SAFE Study Investigators, Finfer S, McEvoy S, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37:86–96.CrossRef
48.
go back to reference Caironi P, Tognoni G, Masson S, The ALBIOS Study Investigators, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.CrossRef Caironi P, Tognoni G, Masson S, The ALBIOS Study Investigators, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.CrossRef
50.
go back to reference Bansal M, Farrugia A, Balboni S, et al. Relative survival benefit and morbidity with fluids in severe sepsis—a network meta-analysis of alternative therapies. Curr Drug Saf. 2013;8:236–45.CrossRef Bansal M, Farrugia A, Balboni S, et al. Relative survival benefit and morbidity with fluids in severe sepsis—a network meta-analysis of alternative therapies. Curr Drug Saf. 2013;8:236–45.CrossRef
51.
go back to reference Xu J-Y, Chen Q-H, Xie J-F, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Crit Care Lond Engl. 2014;18:702.CrossRef Xu J-Y, Chen Q-H, Xie J-F, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Crit Care Lond Engl. 2014;18:702.CrossRef
52.
go back to reference Patel A, Laflan MA, Waheed U, et al. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561.CrossRef Patel A, Laflan MA, Waheed U, et al. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561.CrossRef
53.
go back to reference Rochwerg B, Alhazzani W, Sindi A, From the Fluids in Sepsis and Septic Shock Group, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161:347–55.CrossRef Rochwerg B, Alhazzani W, Sindi A, From the Fluids in Sepsis and Septic Shock Group, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161:347–55.CrossRef
54.
go back to reference Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41:1211–9.CrossRef Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41:1211–9.CrossRef
55.
go back to reference Lai AT, Zeller MP, Millen T, The Canadian Critical Care Trials Group, et al. Chloride and other electrolyte concentrations in commonly available 5% albumin products. Crit Care Med. 2018;46:e326–9.CrossRef Lai AT, Zeller MP, Millen T, The Canadian Critical Care Trials Group, et al. Chloride and other electrolyte concentrations in commonly available 5% albumin products. Crit Care Med. 2018;46:e326–9.CrossRef
56.
go back to reference Fencl V, Jabor A, Kazda A, et al. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162:2246–51.CrossRef Fencl V, Jabor A, Kazda A, et al. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162:2246–51.CrossRef
57.
go back to reference Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.CrossRef Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.CrossRef
58.
go back to reference Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit. The SPLIT Randomized Clinical Trial. JAMA. 2015;314:1701–10.CrossRef Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit. The SPLIT Randomized Clinical Trial. JAMA. 2015;314:1701–10.CrossRef
59.
go back to reference Rochwerg B, Alhazzani W, Gibson A, From FISSH Group (Fluids in Sepsis and Septic Shock), et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med. 2015;41:1561–71.CrossRef Rochwerg B, Alhazzani W, Gibson A, From FISSH Group (Fluids in Sepsis and Septic Shock), et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med. 2015;41:1561–71.CrossRef
60.
go back to reference Kellum JA, Chawla LS, Keener C, ProCESS and ProGReSS-AKI Investigators, et al. The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am J Respir Crit Care Med. 2016;193:281–7.CrossRef Kellum JA, Chawla LS, Keener C, ProCESS and ProGReSS-AKI Investigators, et al. The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am J Respir Crit Care Med. 2016;193:281–7.CrossRef
61.
go back to reference Persichini R, Silva S, Teboul JL, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.CrossRef Persichini R, Silva S, Teboul JL, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.CrossRef
62.
go back to reference De Backer D, Creteur J, Silva E, et al. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003;31:1659–67.CrossRef De Backer D, Creteur J, Silva E, et al. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003;31:1659–67.CrossRef
63.
go back to reference MacGregor DA, Prielipp RC, Butterworth JF 4th, James RL, Royster RL. Relative efficacy and potency of beta-adrenoceptor agonists for generating cAMP in human lymphocytes. Chest. 1996;109(1):194–200.CrossRef MacGregor DA, Prielipp RC, Butterworth JF 4th, James RL, Royster RL. Relative efficacy and potency of beta-adrenoceptor agonists for generating cAMP in human lymphocytes. Chest. 1996;109(1):194–200.CrossRef
64.
go back to reference Ensinger H, Geisser W, Brinkmann A, Wachter U, Vogt J, Radermacher P, Georgieff M, Träger K. Metabolic effects of norepinephrine and dobutamine in healthy volunteers. Shock. 2002;18(6):495–500.CrossRef Ensinger H, Geisser W, Brinkmann A, Wachter U, Vogt J, Radermacher P, Georgieff M, Träger K. Metabolic effects of norepinephrine and dobutamine in healthy volunteers. Shock. 2002;18(6):495–500.CrossRef
65.
go back to reference Silverman HJ, Penaranda R, Orens JB, et al. Impaired β-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med. 1993;21:31–9.CrossRef Silverman HJ, Penaranda R, Orens JB, et al. Impaired β-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med. 1993;21:31–9.CrossRef
66.
go back to reference Stolk RF, van der Poll T, Angus DC, et al. Potentially inadvertent immunomodulation: norepinephrine use in sepsis. Am J Respir Crit Care Med. 2016;194:550–8.CrossRef Stolk RF, van der Poll T, Angus DC, et al. Potentially inadvertent immunomodulation: norepinephrine use in sepsis. Am J Respir Crit Care Med. 2016;194:550–8.CrossRef
67.
go back to reference Barth E, Albuszies G, Baumgart K, et al. Glucose metabolism and catecholamines. Crit Care Med. 2007;35(Suppl):S508–18.CrossRef Barth E, Albuszies G, Baumgart K, et al. Glucose metabolism and catecholamines. Crit Care Med. 2007;35(Suppl):S508–18.CrossRef
68.
go back to reference Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42:1387–97.CrossRef Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42:1387–97.CrossRef
69.
go back to reference Hartmann C, Radermacher P, Wepler M, et al. Non-hemodynamic effects of catecholamines. Shock. 2017;48:390–400.CrossRef Hartmann C, Radermacher P, Wepler M, et al. Non-hemodynamic effects of catecholamines. Shock. 2017;48:390–400.CrossRef
70.
go back to reference Dünser MW, Ruokonen E, Pettilä V, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care Lond Engl. 2009;13:R181.CrossRef Dünser MW, Ruokonen E, Pettilä V, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care Lond Engl. 2009;13:R181.CrossRef
71.
go back to reference Schmittinger CA, Dünser MW, Torgersen C, et al. Histologic pathologies of the myocardium in septic shock: a prospective observational study. Shock. 2013;39:329–35.CrossRef Schmittinger CA, Dünser MW, Torgersen C, et al. Histologic pathologies of the myocardium in septic shock: a prospective observational study. Shock. 2013;39:329–35.CrossRef
72.
go back to reference Singer M. Catecholamine treatment for shock–equally good or bad? Lancet. 2007;370:636–7.CrossRef Singer M. Catecholamine treatment for shock–equally good or bad? Lancet. 2007;370:636–7.CrossRef
73.
go back to reference Singer M, Matthay MA. Clinical review: thinking outside the box—an iconoclastic view of current practice. Crit Care Lond Engl. 2011;15:225.CrossRef Singer M, Matthay MA. Clinical review: thinking outside the box—an iconoclastic view of current practice. Crit Care Lond Engl. 2011;15:225.CrossRef
74.
go back to reference McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock. A systematic review and metanalysis. JAMA. 2018;319:1889–900.CrossRef McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock. A systematic review and metanalysis. JAMA. 2018;319:1889–900.CrossRef
75.
go back to reference Walkey AJ, Soylemez Wiener R, Ghobrial JM, et al. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA. 2001;306:2248–54. Walkey AJ, Soylemez Wiener R, Ghobrial JM, et al. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA. 2001;306:2248–54.
76.
go back to reference Bracht H, Calzia E, Georgieff M, et al. Inotropes and vasopressors: more than haemodynamics! Br J Pharmacol. 2012;165:2009–11.CrossRef Bracht H, Calzia E, Georgieff M, et al. Inotropes and vasopressors: more than haemodynamics! Br J Pharmacol. 2012;165:2009–11.CrossRef
77.
go back to reference Russell JA, Lee T, Singer J, The Vasopressin and Septic Shock Trial (VASST) Group. The septic shock 3.0 definition and trials: a Vasopressin and septic shock trial experience. Crit Care Med. 2017;45:940–8.CrossRef Russell JA, Lee T, Singer J, The Vasopressin and Septic Shock Trial (VASST) Group. The septic shock 3.0 definition and trials: a Vasopressin and septic shock trial experience. Crit Care Med. 2017;45:940–8.CrossRef
78.
go back to reference Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126:85–93.CrossRef Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126:85–93.CrossRef
79.
go back to reference Vincent JL, Su F. Physiology and pathophysiology of the vasopressinergic system. Best Pract Res Clin Anaesthesiol. 2008;22:243–52.CrossRef Vincent JL, Su F. Physiology and pathophysiology of the vasopressinergic system. Best Pract Res Clin Anaesthesiol. 2008;22:243–52.CrossRef
80.
go back to reference Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–34.CrossRef Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369:1726–34.CrossRef
81.
go back to reference Russell JA, Vincent JL, Kjølbye AL, et al. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care Lond Engl. 2017;21:213.CrossRef Russell JA, Vincent JL, Kjølbye AL, et al. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care Lond Engl. 2017;21:213.CrossRef
82.
go back to reference Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy. Crit Care Med. 2018;46:625–34.CrossRef Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy. Crit Care Med. 2018;46:625–34.CrossRef
83.
go back to reference Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016;375:1638–48.CrossRef Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016;375:1638–48.CrossRef
84.
go back to reference White FN, Gold EM, Vaughn DL. Renin-aldosterone system in endotoxin shock in the dog. Am J Physiol. 1967;212:1195–8.PubMed White FN, Gold EM, Vaughn DL. Renin-aldosterone system in endotoxin shock in the dog. Am J Physiol. 1967;212:1195–8.PubMed
85.
go back to reference Levy B, Fritz C, Tahon E, et al. Vasoplegia treatments: the past, the present, and the future. Crit Care Lond Engl. 2018;22:52.CrossRef Levy B, Fritz C, Tahon E, et al. Vasoplegia treatments: the past, the present, and the future. Crit Care Lond Engl. 2018;22:52.CrossRef
86.
go back to reference Khanna A, English SW, Wang XS, The ATHOS-3 Investigators. Angiotensin II for the Treatment of Vasodilatory Shock. N Engl J Med. 2017;377:419–30.CrossRef Khanna A, English SW, Wang XS, The ATHOS-3 Investigators. Angiotensin II for the Treatment of Vasodilatory Shock. N Engl J Med. 2017;377:419–30.CrossRef
87.
go back to reference Lira A, Pinsky MR. Should β-blockers be used in septic shock? Crit Care Lond Engl. 2014;18:304.CrossRef Lira A, Pinsky MR. Should β-blockers be used in septic shock? Crit Care Lond Engl. 2014;18:304.CrossRef
88.
go back to reference Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.CrossRef Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.CrossRef
89.
go back to reference Coquerel D, Sainsily X, Dumont L, et al. The apelinergic system as an alternative to catecholamines in low-output septic shock. Crit Care Lond Engl. 2018;22:10.CrossRef Coquerel D, Sainsily X, Dumont L, et al. The apelinergic system as an alternative to catecholamines in low-output septic shock. Crit Care Lond Engl. 2018;22:10.CrossRef
90.
go back to reference Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26(4):645–50.CrossRef Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26(4):645–50.CrossRef
91.
go back to reference Schelling G, Stoll C, Kapfhammer HP, et al. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder and health-related quality of life in survivors. Crit Care Med. 1999;27(12):2678–83.CrossRef Schelling G, Stoll C, Kapfhammer HP, et al. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder and health-related quality of life in survivors. Crit Care Med. 1999;27(12):2678–83.CrossRef
92.
go back to reference Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRef Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.CrossRef
93.
go back to reference Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808.CrossRef Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378(9):797–808.CrossRef
94.
go back to reference Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378(9):809–18.CrossRef Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378(9):809–18.CrossRef
95.
go back to reference Keh D, Boehnke T, Weber-Cartens S, et al. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med. 2003;167(4):512–20.CrossRef Keh D, Boehnke T, Weber-Cartens S, et al. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med. 2003;167(4):512–20.CrossRef
96.
go back to reference Keh D, Trips E, Marx G, et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: the HYPRESS randomized clinical trial. JAMA. 2016;316(17):1775–85.CrossRef Keh D, Trips E, Marx G, et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: the HYPRESS randomized clinical trial. JAMA. 2016;316(17):1775–85.CrossRef
97.
go back to reference Russell JA, Walley KR, Gordon AC, et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med. 2009;37(3):811–8.CrossRef Russell JA, Walley KR, Gordon AC, et al. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med. 2009;37(3):811–8.CrossRef
Metadata
Title
Hemodynamic support in the early phase of septic shock: a review of challenges and unanswered questions
Authors
Olivier Lesur
Eugénie Delile
Pierre Asfar
Peter Radermacher
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2018
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-018-0449-8

Other articles of this Issue 1/2018

Annals of Intensive Care 1/2018 Go to the issue