Skip to main content
Top
Published in: EJNMMI Research 1/2016

Open Access 01-12-2016 | Original research

αVβ3 integrin-targeted microSPECT/CT imaging of inflamed atherosclerotic plaques in mice

Published in: EJNMMI Research | Issue 1/2016

Login to get access

Abstract

Background

αVβ3-integrin is expressed by activated endothelial cells and macrophages in atherosclerotic plaques and may represent a valuable marker of high-risk plaques. We evaluated 99mTc-maraciclatide, an integrin-specific tracer, for imaging vascular inflammation in atherosclerotic lesions in mice.

Methods

Apolipoprotein E-negative (ApoE−/−) mice on a Western diet (n = 10) and normally fed adult C57BL/6 control mice (n = 4) were injected with 99mTc-maraciclatide (51.8 ± 3.7 MBq). A blocking peptide was infused in three ApoE−/− mice; this condition served as another control. After 90 min, the animals were imaged via single-photon emission computed tomography (SPECT). While maintained in the same position, the mice were transferred to computed tomography (CT) to obtain contrast-enhanced images of the aortic arch. Images from both modalities were fused, and signal was quantified in the aortic arch and in the vena cava for subtraction of blood-pool activity. The aorta was carefully dissected after imaging for gamma counting, autoradiography, and histology.

Results

Tracer uptake was significantly higher in ApoE−/− mice than in both groups of control mice (1.56 ± 0.33 vs. 0.82 ± 0.24 vs. 0.98 ± 0.11, respectively; P = 0.006). Furthermore, higher tracer activity was detected via gamma counting in the aorta of hypercholesterolemic mice than in both groups of control mice (1.52 ± 0.43 vs. 0.78 ± 0.19 vs. 0.47 ± 0.31 99mTc-maraciclatide %ID/g, respectively; P = 0.018). Autoradiography showed significantly higher tracer uptake in the atherosclerotic aorta than in the control aorta (P = 0.026). Finally, in the atherosclerotic aorta, immunostaining indicated that the integrin signal came predominantly from macrophages and was correlated with the macrophage CD68 immunomarker (r = 0.73).

Conclusions

99mTc-maraciclatide allows in vivo detection of inflamed atherosclerotic plaques in mice and may represent a non-invasive approach for identifying high-risk plaques in patients.
Literature
2.
go back to reference Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.CrossRefPubMed Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.CrossRefPubMed
3.
go back to reference Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S2–10.CrossRefPubMed Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S2–10.CrossRefPubMed
4.
go back to reference Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JL. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961–79.CrossRefPubMed Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JL. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961–79.CrossRefPubMed
5.
go back to reference Antonov AS, Kolodgie FD, Munn DH, Gerrity RG. Regulation of macrophage foam cell formation by αVβ3 integrin. Potential role in human atherosclerosis. Am J Pathol. 2004;165:247–58.CrossRefPubMedPubMedCentral Antonov AS, Kolodgie FD, Munn DH, Gerrity RG. Regulation of macrophage foam cell formation by αVβ3 integrin. Potential role in human atherosclerosis. Am J Pathol. 2004;165:247–58.CrossRefPubMedPubMedCentral
6.
go back to reference Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. αVβ3 integrin expression in normal and atherosclerotic artery. Circ Res. 1995;77:1129–35.CrossRefPubMed Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. αVβ3 integrin expression in normal and atherosclerotic artery. Circ Res. 1995;77:1129–35.CrossRefPubMed
7.
go back to reference Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, et al. Molecular imaging of αVβ3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res. 2008;78:148–57.CrossRefPubMed Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, et al. Molecular imaging of αVβ3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res. 2008;78:148–57.CrossRefPubMed
8.
go back to reference Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of αVβ3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2:331–8.CrossRefPubMed Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of αVβ3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2:331–8.CrossRefPubMed
9.
go back to reference Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with αVβ3-integrin-targeted nanoparticles. Circulation. 2003;108:2270–4.CrossRefPubMed Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with αVβ3-integrin-targeted nanoparticles. Circulation. 2003;108:2270–4.CrossRefPubMed
10.
go back to reference Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin αVβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging. 2014;7:178–87.CrossRefPubMed Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin αVβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging. 2014;7:178–87.CrossRefPubMed
11.
go back to reference Edwards D, Jones P, Haramis H, Battle M, Lear R, Barnett DJ, et al. 99mTc-NC100692—a tracer for imaging vitronectin receptors associated with angiogenesis: a preclinical investigation. Nucl Med and Biol. 2008;32:365–75.CrossRef Edwards D, Jones P, Haramis H, Battle M, Lear R, Barnett DJ, et al. 99mTc-NC100692—a tracer for imaging vitronectin receptors associated with angiogenesis: a preclinical investigation. Nucl Med and Biol. 2008;32:365–75.CrossRef
12.
go back to reference Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at αVβ3 integrin after murine hindlimb ischemia. Circulation. 2005;111:3255–60.CrossRefPubMed Hua J, Dobrucki LW, Sadeghi MM, Zhang J, Bourke BN, Cavaliere P, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at αVβ3 integrin after murine hindlimb ischemia. Circulation. 2005;111:3255–60.CrossRefPubMed
13.
go back to reference Dobrucki LW, Dione DP, Kalinowski L, Dione D, Mendizabal M, Yu J, et al. Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med. 2009;50:1356–63.CrossRefPubMedPubMedCentral Dobrucki LW, Dione DP, Kalinowski L, Dione D, Mendizabal M, Yu J, et al. Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med. 2009;50:1356–63.CrossRefPubMedPubMedCentral
14.
go back to reference Dobrucki LW, Tsutsumi Y, Kalinowski L, Dean J, Gavin M, Sen S, et al. Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol. 2010;48:1071–9.CrossRefPubMedPubMedCentral Dobrucki LW, Tsutsumi Y, Kalinowski L, Dean J, Gavin M, Sen S, et al. Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol. 2010;48:1071–9.CrossRefPubMedPubMedCentral
15.
go back to reference Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zjang J, et al. Integrin-targeted imaging of inflammation in vascular remodelling. Arterioscler Thromb Vasc Biol. 2011;31:2820–6.CrossRefPubMedPubMedCentral Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zjang J, et al. Integrin-targeted imaging of inflammation in vascular remodelling. Arterioscler Thromb Vasc Biol. 2011;31:2820–6.CrossRefPubMedPubMedCentral
16.
go back to reference Walrand S, Jamar F, de Jong M, Pauwels S. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections. J Nucl Med. 2005;46:1872–80.PubMed Walrand S, Jamar F, de Jong M, Pauwels S. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections. J Nucl Med. 2005;46:1872–80.PubMed
17.
go back to reference Beer AJ, Schwaiger M. Imaging of integrin αVβ3 expression. Cancer Metastasis Rev. 2008;27:631–44.CrossRefPubMed Beer AJ, Schwaiger M. Imaging of integrin αVβ3 expression. Cancer Metastasis Rev. 2008;27:631–44.CrossRefPubMed
18.
go back to reference Gaemperli O, Shalhoub J, Owen DR, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33:1902–10.CrossRefPubMed Gaemperli O, Shalhoub J, Owen DR, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33:1902–10.CrossRefPubMed
19.
go back to reference Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.CrossRefPubMed Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.CrossRefPubMed
20.
go back to reference Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–59.CrossRefPubMed Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–59.CrossRefPubMed
21.
go back to reference Demeure F, Hanin FX, Bol A, Vincent MF, Pouleur AC, Gerber B, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: implications for vulnerable coronary plaque imaging. J Nucl Med. 2014;55:1629–35.CrossRefPubMed Demeure F, Hanin FX, Bol A, Vincent MF, Pouleur AC, Gerber B, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: implications for vulnerable coronary plaque imaging. J Nucl Med. 2014;55:1629–35.CrossRefPubMed
22.
go back to reference Slomka PJ, Berman DS, Germano G. New cardiac cameras: single-photon emission CT and PET. Semin Nucl Med. 2014;44(4):232–51.CrossRefPubMed Slomka PJ, Berman DS, Germano G. New cardiac cameras: single-photon emission CT and PET. Semin Nucl Med. 2014;44(4):232–51.CrossRefPubMed
23.
go back to reference Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res. 2009;50:S178–82.CrossRefPubMedPubMedCentral Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res. 2009;50:S178–82.CrossRefPubMedPubMedCentral
24.
go back to reference Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein E-deficient mouse. A decade of progress. Arterioscler Thromb Vasc Biol. 2004;24:1006–14.CrossRefPubMed Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein E-deficient mouse. A decade of progress. Arterioscler Thromb Vasc Biol. 2004;24:1006–14.CrossRefPubMed
25.
go back to reference Bach-Gansmo T, Danielsson R, Saracco A, Wilczek B, Bogsrud TV, Fangberget A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99m Tc-NC100692. J Nucl Med. 2006;47:1434–9.PubMed Bach-Gansmo T, Danielsson R, Saracco A, Wilczek B, Bogsrud TV, Fangberget A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99m Tc-NC100692. J Nucl Med. 2006;47:1434–9.PubMed
26.
go back to reference Yoo JS, Lee J, Jung JH, Moon BS, Kim S, Lee BC, Kim SE. SPECT/CT imaging of high-risk atherosclerotic plaques using integrin-binding RGD dimer peptides. Sci Rep. 2015;5:11752.CrossRefPubMed Yoo JS, Lee J, Jung JH, Moon BS, Kim S, Lee BC, Kim SE. SPECT/CT imaging of high-risk atherosclerotic plaques using integrin-binding RGD dimer peptides. Sci Rep. 2015;5:11752.CrossRefPubMed
27.
go back to reference Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.CrossRefPubMed Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.CrossRefPubMed
Metadata
Title
αVβ3 integrin-targeted microSPECT/CT imaging of inflamed atherosclerotic plaques in mice
Publication date
01-12-2016
Published in
EJNMMI Research / Issue 1/2016
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0184-9

Other articles of this Issue 1/2016

EJNMMI Research 1/2016 Go to the issue