Skip to main content
Top
Published in: Insights into Imaging 1/2021

01-12-2021 | Glioma | Educational Review

Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging

Authors: Ahmed Abdel Khalek Abdel Razek, Ahmed Alksas, Mohamed Shehata, Amr AbdelKhalek, Khaled Abdel Baky, Ayman El-Baz, Eman Helmy

Published in: Insights into Imaging | Issue 1/2021

Login to get access

Abstract

This article is a comprehensive review of the basic background, technique, and clinical applications of artificial intelligence (AI) and radiomics in the field of neuro-oncology. A variety of AI and radiomics utilized conventional and advanced techniques to differentiate brain tumors from non-neoplastic lesions such as inflammatory and demyelinating brain lesions. It is used in the diagnosis of gliomas and discrimination of gliomas from lymphomas and metastasis. Also, semiautomated and automated tumor segmentation has been developed for radiotherapy planning and follow-up. It has a role in the grading, prediction of treatment response, and prognosis of gliomas. Radiogenomics allowed the connection of the imaging phenotype of the tumor to its molecular environment. In addition, AI is applied for the assessment of extra-axial brain tumors and pediatric tumors with high performance in tumor detection, classification, and stratification of patient’s prognoses.
Literature
1.
go back to reference Kaka H, Zhang E, Khan N (2021) artificial intelligence and deep learning in neuroradiology: exploring the new frontier. Can Assoc Radiol J 72:35–44CrossRefPubMed Kaka H, Zhang E, Khan N (2021) artificial intelligence and deep learning in neuroradiology: exploring the new frontier. Can Assoc Radiol J 72:35–44CrossRefPubMed
2.
go back to reference Aneja S, Chang E, Omuro A (2019) Applications of artificial intelligence in neuro-oncology. Curr Opin Neurol 32:850–856CrossRefPubMed Aneja S, Chang E, Omuro A (2019) Applications of artificial intelligence in neuro-oncology. Curr Opin Neurol 32:850–856CrossRefPubMed
4.
5.
go back to reference Muthukrishnan N, Maleki F, Ovens K, Reinhold C, Forghani B, Forghani R (2020) Brief history of artificial intelligence. Neuroimaging Clin N Am 30:393–399CrossRefPubMed Muthukrishnan N, Maleki F, Ovens K, Reinhold C, Forghani B, Forghani R (2020) Brief history of artificial intelligence. Neuroimaging Clin N Am 30:393–399CrossRefPubMed
7.
go back to reference Pinker K, Shitano F, Sala E et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620CrossRefPubMed Pinker K, Shitano F, Sala E et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620CrossRefPubMed
8.
go back to reference Lohmann P, Galldiks N, Kocher M et al (2020) Radiomics in neuro-oncology: basics, workflow, and applications. Methods S1046–2023(19):30317–30322 Lohmann P, Galldiks N, Kocher M et al (2020) Radiomics in neuro-oncology: basics, workflow, and applications. Methods S1046–2023(19):30317–30322
9.
go back to reference Sarkiss CA, Germano IM (2019) Machine learning in neuro-oncology: can data analysis from 5,346 patients change decision making paradigms? World Neurosurg 6:66 Sarkiss CA, Germano IM (2019) Machine learning in neuro-oncology: can data analysis from 5,346 patients change decision making paradigms? World Neurosurg 6:66
10.
go back to reference Razek AAKA (2018) MR imaging of neoplastic and non-neoplastic lesions of the brain and spine in neurofibromatosis type I. Neurol Sci 39:821–827CrossRefPubMed Razek AAKA (2018) MR imaging of neoplastic and non-neoplastic lesions of the brain and spine in neurofibromatosis type I. Neurol Sci 39:821–827CrossRefPubMed
11.
go back to reference Abdel Razek AAK, Talaat M, El-Serougy L, Gaballa G, Abdelsalam M (2019) Clinical applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr 43:525–532CrossRefPubMed Abdel Razek AAK, Talaat M, El-Serougy L, Gaballa G, Abdelsalam M (2019) Clinical applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr 43:525–532CrossRefPubMed
12.
go back to reference Abdelrasoul AA, Elsebaie NA, Gamaleldin OA, Khalifa MH, Razek AAKA (2019) Imaging of brain infarctions: beyond the usual territories. J Comput Assist Tomogr 43:443–451CrossRefPubMed Abdelrasoul AA, Elsebaie NA, Gamaleldin OA, Khalifa MH, Razek AAKA (2019) Imaging of brain infarctions: beyond the usual territories. J Comput Assist Tomogr 43:443–451CrossRefPubMed
13.
go back to reference Razek AAKA, Taman SE, El Regal ME, Megahed A, Elzeny S, El Tantawi N (2020) Diffusion tensor imaging of microstructural changes in the gray and white matter in patients with Crigler–Najjar syndrome type I. J Comput Assist Tomogr 44:393–398CrossRefPubMed Razek AAKA, Taman SE, El Regal ME, Megahed A, Elzeny S, El Tantawi N (2020) Diffusion tensor imaging of microstructural changes in the gray and white matter in patients with Crigler–Najjar syndrome type I. J Comput Assist Tomogr 44:393–398CrossRefPubMed
14.
go back to reference Razek AA, Abdalla A, Gaber NA et al (2013) Proton MR Spectroscopy of the brain in children with neuronopathic Gaucher’s disease. Eur Radiol 23:3005–3011CrossRefPubMed Razek AA, Abdalla A, Gaber NA et al (2013) Proton MR Spectroscopy of the brain in children with neuronopathic Gaucher’s disease. Eur Radiol 23:3005–3011CrossRefPubMed
15.
go back to reference Nagoev ZV, Sundukov ZA, Pshenokova IA, Denisenko VA (2020) Architecture of CAD for distributed artificial intelligence based on self-organizing neuro-cognitive architectures. News Kabardin–Balkar Sci Center RAS 2:40–47CrossRef Nagoev ZV, Sundukov ZA, Pshenokova IA, Denisenko VA (2020) Architecture of CAD for distributed artificial intelligence based on self-organizing neuro-cognitive architectures. News Kabardin–Balkar Sci Center RAS 2:40–47CrossRef
16.
go back to reference Rao MS, Reddy BE (2021) Parametric analysis of texture classification using modified weighted probabilistic neural network (MWPNN). Modern approaches in machine learning and cognitive science: a walkthrough: latest trends in AI, vol 2. Springer, p 459 Rao MS, Reddy BE (2021) Parametric analysis of texture classification using modified weighted probabilistic neural network (MWPNN). Modern approaches in machine learning and cognitive science: a walkthrough: latest trends in AI, vol 2. Springer, p 459
17.
go back to reference Aerts HJWL (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642CrossRefPubMed Aerts HJWL (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642CrossRefPubMed
19.
go back to reference Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRefPubMed Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRefPubMed
21.
go back to reference Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 39:208–216CrossRefPubMedPubMedCentral Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 39:208–216CrossRefPubMedPubMedCentral
22.
23.
go back to reference Cha YJ, Jang WI, Kim MS et al (2018) Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res 38:5437–5445CrossRefPubMed Cha YJ, Jang WI, Kim MS et al (2018) Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res 38:5437–5445CrossRefPubMed
24.
go back to reference Ueda D, Shimazaki A, Miki Y (2019) Technical and clinical overview of deep learning in radiology. Jpn J Radiol 37:15–33CrossRefPubMed Ueda D, Shimazaki A, Miki Y (2019) Technical and clinical overview of deep learning in radiology. Jpn J Radiol 37:15–33CrossRefPubMed
25.
go back to reference Zlochower A, Chow DS, Chang P, Khatri D, Boockvar JA, Filippi CG (2020) Deep learning AI applications in the imaging of glioma. Top Magn Reson Imaging 29:115–121CrossRefPubMed Zlochower A, Chow DS, Chang P, Khatri D, Boockvar JA, Filippi CG (2020) Deep learning AI applications in the imaging of glioma. Top Magn Reson Imaging 29:115–121CrossRefPubMed
26.
go back to reference Chow DS, Khatri D, Chang PD, Zlochower A, Boockvar JA, Filippi CG (2020) Updates on deep learning and glioma: use of convolutional neural networks to image glioma heterogeneity. Neuroimaging Clin N Am 30:493–503CrossRefPubMed Chow DS, Khatri D, Chang PD, Zlochower A, Boockvar JA, Filippi CG (2020) Updates on deep learning and glioma: use of convolutional neural networks to image glioma heterogeneity. Neuroimaging Clin N Am 30:493–503CrossRefPubMed
27.
go back to reference Gore S, Chougule T, Jagtap J, Saini J, Ingalhalikar M (2020) A review of radiomics and deep predictive modeling in glioma characterization. Acad Radiol 10:66 Gore S, Chougule T, Jagtap J, Saini J, Ingalhalikar M (2020) A review of radiomics and deep predictive modeling in glioma characterization. Acad Radiol 10:66
28.
go back to reference Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW (2019) State of the art: machine learning applications in glioma imaging. AJR Am J Roentgenol 212:26–37CrossRefPubMed Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW (2019) State of the art: machine learning applications in glioma imaging. AJR Am J Roentgenol 212:26–37CrossRefPubMed
29.
go back to reference Jin W, Fatehi M, Abhishek K, Mallya M, Toyota B, Hamarneh G (2020) Artificial intelligence in glioma imaging: challenges and advances. J Neural Eng 17:021002CrossRefPubMed Jin W, Fatehi M, Abhishek K, Mallya M, Toyota B, Hamarneh G (2020) Artificial intelligence in glioma imaging: challenges and advances. J Neural Eng 17:021002CrossRefPubMed
30.
go back to reference Booth TC, Williams M, Luis A, Cardoso J, Ashkan K, Shuaib H (2020) Machine learning and glioma imaging biomarkers. Clin Radiol 75:20–32CrossRefPubMed Booth TC, Williams M, Luis A, Cardoso J, Ashkan K, Shuaib H (2020) Machine learning and glioma imaging biomarkers. Clin Radiol 75:20–32CrossRefPubMed
31.
go back to reference Shaver MM, Kohanteb PA, Chiou C et al (2019) Optimizing neuro-oncology imaging: a review of deep learning approaches for glioma imaging. Cancers 11:829CrossRefPubMedCentral Shaver MM, Kohanteb PA, Chiou C et al (2019) Optimizing neuro-oncology imaging: a review of deep learning approaches for glioma imaging. Cancers 11:829CrossRefPubMedCentral
32.
go back to reference Kocher M, Ruge MI, Galldiks N, Lohmann P (2020) Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther Onkol 196:856–867CrossRefPubMedPubMedCentral Kocher M, Ruge MI, Galldiks N, Lohmann P (2020) Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther Onkol 196:856–867CrossRefPubMedPubMedCentral
33.
go back to reference Bonm AV, Ritterbusch R, Throckmorton P, Graber JJ (2020) Clinical imaging for diagnostic challenges in the management of gliomas: a review. J Neuroimaging 30:139–145CrossRefPubMedPubMedCentral Bonm AV, Ritterbusch R, Throckmorton P, Graber JJ (2020) Clinical imaging for diagnostic challenges in the management of gliomas: a review. J Neuroimaging 30:139–145CrossRefPubMedPubMedCentral
34.
go back to reference El-Serougy L, Abdel Razek AA, Ezzat A, Eldawoody H, El-Morsy A (2016) Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J 29:400–407CrossRefPubMedPubMedCentral El-Serougy L, Abdel Razek AA, Ezzat A, Eldawoody H, El-Morsy A (2016) Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J 29:400–407CrossRefPubMedPubMedCentral
35.
go back to reference Razek AAKA, Elsebaie NA (2020) Imaging of fulminant demyelinating disorders of the central nervous system. J Comput Assist Tomogr 44:248–254CrossRefPubMed Razek AAKA, Elsebaie NA (2020) Imaging of fulminant demyelinating disorders of the central nervous system. J Comput Assist Tomogr 44:248–254CrossRefPubMed
36.
go back to reference Verma RK, Wiest R, Locher C et al (2017) Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with Dynamic texture Parameters Analysis (DTPA): a feasibility study. Med Phys 44:4000–4008CrossRefPubMed Verma RK, Wiest R, Locher C et al (2017) Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with Dynamic texture Parameters Analysis (DTPA): a feasibility study. Med Phys 44:4000–4008CrossRefPubMed
37.
go back to reference Zoccarato M, Valeggia S, Zuliani L et al (2019) Conventional brain MRI features distinguishing limbic encephalitis from mesial temporal glioma. Neuroradiology 61:853–860CrossRefPubMed Zoccarato M, Valeggia S, Zuliani L et al (2019) Conventional brain MRI features distinguishing limbic encephalitis from mesial temporal glioma. Neuroradiology 61:853–860CrossRefPubMed
38.
go back to reference Hiremath SB, Muraleedharan A, Kumar S et al (2017) Combining diffusion tensor metrics and DSC perfusion imaging: Can it improve the diagnostic accuracy in differentiating tumefactive demyelination from high-grade glioma? AJNR Am J Neuroradiol 38:685–690CrossRefPubMedPubMedCentral Hiremath SB, Muraleedharan A, Kumar S et al (2017) Combining diffusion tensor metrics and DSC perfusion imaging: Can it improve the diagnostic accuracy in differentiating tumefactive demyelination from high-grade glioma? AJNR Am J Neuroradiol 38:685–690CrossRefPubMedPubMedCentral
39.
go back to reference Han Y, Yang Y, Shi ZS et al (2021) Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. Eur J Radiol 134:109467CrossRefPubMed Han Y, Yang Y, Shi ZS et al (2021) Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. Eur J Radiol 134:109467CrossRefPubMed
40.
go back to reference Cho HH, Lee SH, Kim J, Park H (2018) Classification of the glioma grading using radiomics analysis. PeerJ 6:5982CrossRef Cho HH, Lee SH, Kim J, Park H (2018) Classification of the glioma grading using radiomics analysis. PeerJ 6:5982CrossRef
41.
go back to reference Tian Q, Yan LF, Zhang X et al (2018) Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging 48:1518–1528CrossRefPubMed Tian Q, Yan LF, Zhang X et al (2018) Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging 48:1518–1528CrossRefPubMed
42.
go back to reference Vamvakas A, Williams SC, Theodorou K et al (2019) Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Phys Med 60:188–198CrossRefPubMed Vamvakas A, Williams SC, Theodorou K et al (2019) Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Phys Med 60:188–198CrossRefPubMed
43.
go back to reference Xie T, Chen X, Fang J et al (2018) Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading. J Magn Reson Imaging 47:1099–1111CrossRefPubMed Xie T, Chen X, Fang J et al (2018) Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading. J Magn Reson Imaging 47:1099–1111CrossRefPubMed
44.
go back to reference Sengupta A, Ramaniharan AK, Gupta RK, Agarwal S, Singh A (2019) Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components. J Magn Reson Imaging 50:1295–1306CrossRefPubMed Sengupta A, Ramaniharan AK, Gupta RK, Agarwal S, Singh A (2019) Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components. J Magn Reson Imaging 50:1295–1306CrossRefPubMed
45.
go back to reference Seow P, Wong JHD, Ahmad-Annuar A, Mahajan A, Abdullah NA, Ramli N (2018) Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br J Radiol 91:20170930CrossRefPubMedPubMedCentral Seow P, Wong JHD, Ahmad-Annuar A, Mahajan A, Abdullah NA, Ramli N (2018) Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br J Radiol 91:20170930CrossRefPubMedPubMedCentral
46.
go back to reference Korfiatis P, Erickson B (2019) Deep learning can see the unseeable: predicting molecular markers from MRI of brain gliomas. Clin Radiol 74:367–373CrossRefPubMed Korfiatis P, Erickson B (2019) Deep learning can see the unseeable: predicting molecular markers from MRI of brain gliomas. Clin Radiol 74:367–373CrossRefPubMed
48.
go back to reference Verma G, Mohan S, Nasrallah MP et al (2016) Non-invasive detection of 2-hydroxyglutarate in IDH-mutated gliomas using two-dimensional localized correlation spectroscopy (2D L-COSY) at 7 Tesla. J Transl Med 14:274CrossRefPubMedPubMedCentral Verma G, Mohan S, Nasrallah MP et al (2016) Non-invasive detection of 2-hydroxyglutarate in IDH-mutated gliomas using two-dimensional localized correlation spectroscopy (2D L-COSY) at 7 Tesla. J Transl Med 14:274CrossRefPubMedPubMedCentral
49.
go back to reference Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S (2019) Emerging applications of artificial intelligence in neuro-oncology. Radiology 290:607–618CrossRefPubMed Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S (2019) Emerging applications of artificial intelligence in neuro-oncology. Radiology 290:607–618CrossRefPubMed
50.
go back to reference Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRefPubMedPubMedCentral Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRefPubMedPubMedCentral
51.
go back to reference Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M et al (2020) A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 22:402–411PubMed Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M et al (2020) A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 22:402–411PubMed
52.
go back to reference Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918CrossRefPubMed Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918CrossRefPubMed
53.
go back to reference Hajianfar G, Shiri I, Maleki H et al (2019) Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg 132:e140–e161CrossRefPubMed Hajianfar G, Shiri I, Maleki H et al (2019) Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg 132:e140–e161CrossRefPubMed
54.
go back to reference Li ZC, Bai H, Sun Q et al (2018) multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650CrossRefPubMed Li ZC, Bai H, Sun Q et al (2018) multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650CrossRefPubMed
55.
go back to reference Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436CrossRefPubMed Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436CrossRefPubMed
56.
go back to reference Akkus Z, Ali I, Sedlář J et al (2017) Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging 30:469–476CrossRefPubMedPubMedCentral Akkus Z, Ali I, Sedlář J et al (2017) Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging 30:469–476CrossRefPubMedPubMedCentral
57.
go back to reference Rathore S, Akbari H, Rozycki M et al (2018) Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 8:5087CrossRefPubMedPubMedCentral Rathore S, Akbari H, Rozycki M et al (2018) Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 8:5087CrossRefPubMedPubMedCentral
58.
go back to reference Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 28:356–362CrossRefPubMed Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 28:356–362CrossRefPubMed
59.
go back to reference Akbari H, Bakas S, Pisapia JM et al (2018) In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 20:1068–1079CrossRefPubMedPubMedCentral Akbari H, Bakas S, Pisapia JM et al (2018) In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 20:1068–1079CrossRefPubMedPubMedCentral
60.
go back to reference Rathore S, Akbari H, Bakas S et al (2019) Multivariate analysis of preoperative magnetic resonance imaging reveals transcriptomic classification of de novo glioblastoma patients. Front Comput Neurosci 13:81CrossRefPubMedPubMedCentral Rathore S, Akbari H, Bakas S et al (2019) Multivariate analysis of preoperative magnetic resonance imaging reveals transcriptomic classification of de novo glioblastoma patients. Front Comput Neurosci 13:81CrossRefPubMedPubMedCentral
61.
go back to reference Bisdas S, Shen H, Thust S et al (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep 8:6108CrossRefPubMedPubMedCentral Bisdas S, Shen H, Thust S et al (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci Rep 8:6108CrossRefPubMedPubMedCentral
62.
go back to reference Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRefPubMed Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRefPubMed
63.
go back to reference Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed
64.
go back to reference Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre. Lancet Oncol 20:728–740CrossRefPubMed Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre. Lancet Oncol 20:728–740CrossRefPubMed
65.
go back to reference Chang PD, Chow DS, Yang PH, Filippi CG, Lignelli A (2017) Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 208:57–65CrossRefPubMed Chang PD, Chow DS, Yang PH, Filippi CG, Lignelli A (2017) Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 208:57–65CrossRefPubMed
66.
go back to reference Akbari H, Macyszyn L, Da X et al (2016) Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78:572–580CrossRefPubMed Akbari H, Macyszyn L, Da X et al (2016) Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78:572–580CrossRefPubMed
67.
go back to reference Chang PD, Malone HR, Bowden SG et al (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 38:890–898CrossRefPubMedPubMedCentral Chang PD, Malone HR, Bowden SG et al (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 38:890–898CrossRefPubMedPubMedCentral
68.
go back to reference Abdel Razek AAK, El-Serougy L, Ezzat A, Eldawoody H, El-Morsy A (2020) Interobserver agreement of white matter tract involvement in gliomas with diffusion tensor tractography. J Neurol Surg A Cent Eur Neurosurg 81:233–237CrossRefPubMed Abdel Razek AAK, El-Serougy L, Ezzat A, Eldawoody H, El-Morsy A (2020) Interobserver agreement of white matter tract involvement in gliomas with diffusion tensor tractography. J Neurol Surg A Cent Eur Neurosurg 81:233–237CrossRefPubMed
69.
go back to reference Gutman DA, Cooper LA, Hwang SN et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560–569CrossRefPubMedPubMedCentral Gutman DA, Cooper LA, Hwang SN et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560–569CrossRefPubMedPubMedCentral
70.
go back to reference Zinn PO, Sathyan P, Mahajan B et al (2012) A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate MicroRNA-gene signature. PLoS One 7:e41522CrossRefPubMedPubMedCentral Zinn PO, Sathyan P, Mahajan B et al (2012) A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate MicroRNA-gene signature. PLoS One 7:e41522CrossRefPubMedPubMedCentral
71.
go back to reference Macyszyn L, Akbari H, Pisapia JM et al (2016) Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol 18:417–425CrossRefPubMed Macyszyn L, Akbari H, Pisapia JM et al (2016) Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol 18:417–425CrossRefPubMed
72.
go back to reference Nie D, Lu J, Zhang H et al (2019) Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep 9:1103CrossRefPubMedPubMedCentral Nie D, Lu J, Zhang H et al (2019) Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep 9:1103CrossRefPubMedPubMedCentral
73.
go back to reference Galldiks N, Kocher M, Langen KJ (2017) Pseudoprogression after glioma therapy: an update. Expert Rev Neurother 17:1109–1115CrossRefPubMed Galldiks N, Kocher M, Langen KJ (2017) Pseudoprogression after glioma therapy: an update. Expert Rev Neurother 17:1109–1115CrossRefPubMed
74.
go back to reference Tipping M, Eickhoff J, Ian RH (2017) Clinical outcomes in recurrent glioblastoma with bevacizumab therapy: an analysis of the literature. J Clin Neurosci 44:101–106CrossRefPubMedPubMedCentral Tipping M, Eickhoff J, Ian RH (2017) Clinical outcomes in recurrent glioblastoma with bevacizumab therapy: an analysis of the literature. J Clin Neurosci 44:101–106CrossRefPubMedPubMedCentral
75.
go back to reference Kim JY, Park JE, Jo Y et al (2019) Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 21:404–414CrossRefPubMed Kim JY, Park JE, Jo Y et al (2019) Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 21:404–414CrossRefPubMed
76.
go back to reference Jang BS, Jeon SH, Kim IH, Kim IA (2018) Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma. Sci Rep 8:12516CrossRefPubMedPubMedCentral Jang BS, Jeon SH, Kim IH, Kim IA (2018) Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma. Sci Rep 8:12516CrossRefPubMedPubMedCentral
77.
go back to reference Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M (2018) Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 60:169–177CrossRefPubMed Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M (2018) Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 60:169–177CrossRefPubMed
78.
79.
go back to reference Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44:5162–5171CrossRefPubMed Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44:5162–5171CrossRefPubMed
80.
go back to reference Zhang Q, Cao J, Zhang J et al (2019) Differentiation of recurrence from radiation necrosis in gliomas based on the radiomics of combinational features and multimodality MRI images. Comput Math Methods Med 2019:2893043PubMedPubMedCentral Zhang Q, Cao J, Zhang J et al (2019) Differentiation of recurrence from radiation necrosis in gliomas based on the radiomics of combinational features and multimodality MRI images. Comput Math Methods Med 2019:2893043PubMedPubMedCentral
81.
go back to reference Abdel Razek AAK, Talaat M, El-Serougy L, Abdelsalam M, Gaballa G (2019) Differentiating glioblastomas from solitary brain metastases using arterial spin labeling perfusion- and diffusion tensor imaging-derived metrics. World Neurosurg 127:e593–e598CrossRefPubMed Abdel Razek AAK, Talaat M, El-Serougy L, Abdelsalam M, Gaballa G (2019) Differentiating glioblastomas from solitary brain metastases using arterial spin labeling perfusion- and diffusion tensor imaging-derived metrics. World Neurosurg 127:e593–e598CrossRefPubMed
82.
go back to reference El-serougy LG, Abdel Razek AA, Mousa A, Eldowoudy H, El-morsy A (2015) Differentiation between the high-grade glioma and metastatic brain tumor using DTI metrics. Egypt J Radiol Nucl Med 46:1099–1104CrossRef El-serougy LG, Abdel Razek AA, Mousa A, Eldowoudy H, El-morsy A (2015) Differentiation between the high-grade glioma and metastatic brain tumor using DTI metrics. Egypt J Radiol Nucl Med 46:1099–1104CrossRef
83.
go back to reference Artzi M, Bressler I, Ben BD (2019) Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging 50:519–528CrossRefPubMed Artzi M, Bressler I, Ben BD (2019) Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging 50:519–528CrossRefPubMed
84.
go back to reference Qian Z, Li Y, Wang Y et al (2019) Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett 451:128–135CrossRefPubMed Qian Z, Li Y, Wang Y et al (2019) Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett 451:128–135CrossRefPubMed
85.
go back to reference Skogen K, Schulz A, Helseth E, Ganeshan B, Dormagen JB, Server A (2019) Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis. Acta Radiol 60:356–366CrossRefPubMed Skogen K, Schulz A, Helseth E, Ganeshan B, Dormagen JB, Server A (2019) Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis. Acta Radiol 60:356–366CrossRefPubMed
86.
go back to reference Kniep HC, Madesta F, Schneider T et al (2019) Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290:479–487CrossRefPubMed Kniep HC, Madesta F, Schneider T et al (2019) Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290:479–487CrossRefPubMed
87.
go back to reference Abdel Razek AAK, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M (2019) Differentiation of primary central nervous system lymphoma from glioblastoma: quantitative analysis using arterial spin labeling and diffusion tensor imaging. World Neurosurg 123:e303–e309CrossRefPubMed Abdel Razek AAK, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M (2019) Differentiation of primary central nervous system lymphoma from glioblastoma: quantitative analysis using arterial spin labeling and diffusion tensor imaging. World Neurosurg 123:e303–e309CrossRefPubMed
88.
go back to reference Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J (2018) Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis. Neurosurg Focus 45:E5CrossRefPubMed Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J (2018) Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis. Neurosurg Focus 45:E5CrossRefPubMed
89.
go back to reference Cha J, Kim ST, Nam DH et al (2017) Differentiation of hemangioblastoma from metastatic brain tumor using dynamic contrast-enhanced MR imaging. Clin Neuroradiol 27:329–334CrossRefPubMed Cha J, Kim ST, Nam DH et al (2017) Differentiation of hemangioblastoma from metastatic brain tumor using dynamic contrast-enhanced MR imaging. Clin Neuroradiol 27:329–334CrossRefPubMed
90.
go back to reference Payabvash S, Aboian M, Tihan T, Cha S (2020) Machine learning decision tree models for differentiation of posterior fossa tumors using diffusion histogram analysis and structural MRI findings. Front Oncol 10:71CrossRefPubMedPubMedCentral Payabvash S, Aboian M, Tihan T, Cha S (2020) Machine learning decision tree models for differentiation of posterior fossa tumors using diffusion histogram analysis and structural MRI findings. Front Oncol 10:71CrossRefPubMedPubMedCentral
92.
93.
go back to reference Svolos P, Kousi E, Kapsalaki E et al (2014) The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives. Cancer Imaging 14:20CrossRefPubMedPubMedCentral Svolos P, Kousi E, Kapsalaki E et al (2014) The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives. Cancer Imaging 14:20CrossRefPubMedPubMedCentral
94.
go back to reference Zhu Y, Man C, Gong L et al (2019) A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol 116:128–134CrossRefPubMed Zhu Y, Man C, Gong L et al (2019) A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol 116:128–134CrossRefPubMed
95.
go back to reference Park YW, Oh J, You SC et al (2019) Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol 29:4068–4076CrossRefPubMed Park YW, Oh J, You SC et al (2019) Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol 29:4068–4076CrossRefPubMed
96.
go back to reference Niu L, Zhou X, Duan C et al (2019) Differentiation researches on the meningioma subtypes by radiomics from contrast-enhanced magnetic resonance imaging: a preliminary study. World Neurosurg 126:e646–e652CrossRefPubMed Niu L, Zhou X, Duan C et al (2019) Differentiation researches on the meningioma subtypes by radiomics from contrast-enhanced magnetic resonance imaging: a preliminary study. World Neurosurg 126:e646–e652CrossRefPubMed
97.
go back to reference Morin O, Chen WC, Nassiri F et al (2019) Integrated models incorporating radiologic and radiomic features predict meningioma grade, local failure, and overall survival. Neurooncol Adv 1:1vdz011 Morin O, Chen WC, Nassiri F et al (2019) Integrated models incorporating radiologic and radiomic features predict meningioma grade, local failure, and overall survival. Neurooncol Adv 1:1vdz011
98.
99.
go back to reference Zhang J, Yao K, Liu P et al (2020) A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: a multicentre study. EBioMedicine 58:102933CrossRefPubMedPubMedCentral Zhang J, Yao K, Liu P et al (2020) A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: a multicentre study. EBioMedicine 58:102933CrossRefPubMedPubMedCentral
100.
go back to reference Tian Z, Chen C, Zhang Y et al (2020) Radiomic analysis of craniopharyngioma and meningioma in the sellar/parasellar area with MR images features and texture features: a feasible study. Contrast Media Mol Imaging 2020:4837156CrossRefPubMedPubMedCentral Tian Z, Chen C, Zhang Y et al (2020) Radiomic analysis of craniopharyngioma and meningioma in the sellar/parasellar area with MR images features and texture features: a feasible study. Contrast Media Mol Imaging 2020:4837156CrossRefPubMedPubMedCentral
101.
go back to reference He W, Xiao X, Li X et al (2019) Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma. Eur J Radiol 112:186–191CrossRefPubMed He W, Xiao X, Li X et al (2019) Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma. Eur J Radiol 112:186–191CrossRefPubMed
102.
go back to reference Li X, Lu Y, Xiong J et al (2019) Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis. J Neuroradiol 46:281–287CrossRefPubMed Li X, Lu Y, Xiong J et al (2019) Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis. J Neuroradiol 46:281–287CrossRefPubMed
103.
go back to reference Niu J, Zhang S, Ma S et al (2019) Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images. Eur Radiol 29:1625–1634CrossRefPubMed Niu J, Zhang S, Ma S et al (2019) Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images. Eur Radiol 29:1625–1634CrossRefPubMed
104.
go back to reference Zhang Y, Chen C, Tian Z, Xu J (2020) Discrimination between pituitary adenoma and craniopharyngioma using MRI-based image features and texture features. Jpn J Radiol 38:1125–1134CrossRefPubMed Zhang Y, Chen C, Tian Z, Xu J (2020) Discrimination between pituitary adenoma and craniopharyngioma using MRI-based image features and texture features. Jpn J Radiol 38:1125–1134CrossRefPubMed
105.
go back to reference Ugga L, Cuocolo R, Solari D et al (2019) Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61:1365–1373CrossRefPubMed Ugga L, Cuocolo R, Solari D et al (2019) Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61:1365–1373CrossRefPubMed
106.
go back to reference Lee WK, Wu CC, Lee CC et al (2020) Combining analysis of multi-parametric MR images into a convolutional neural network: precise target delineation for vestibular schwannoma treatment planning. Artif Intell Med 107:101911CrossRefPubMed Lee WK, Wu CC, Lee CC et al (2020) Combining analysis of multi-parametric MR images into a convolutional neural network: precise target delineation for vestibular schwannoma treatment planning. Artif Intell Med 107:101911CrossRefPubMed
107.
go back to reference Yang HC, Wu CC, Lee CC et al (2021) Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after gamma knife radiosurgery based on preradiosurgical MR radiomics. Radiother Oncol 155:123–130CrossRefPubMed Yang HC, Wu CC, Lee CC et al (2021) Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after gamma knife radiosurgery based on preradiosurgical MR radiomics. Radiother Oncol 155:123–130CrossRefPubMed
108.
go back to reference Lee CC, Lee WK, Wu CC et al (2021) Applying artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery. Sci Rep 11:3106CrossRefPubMedPubMedCentral Lee CC, Lee WK, Wu CC et al (2021) Applying artificial intelligence to longitudinal imaging analysis of vestibular schwannoma following radiosurgery. Sci Rep 11:3106CrossRefPubMedPubMedCentral
109.
go back to reference Abdel Razek AAK, Elsebaie NA, Zamora C, Castillo M (2020) Imaging of neuronal and mixed glioneuronal tumors. J Comput Assist Tomogr 44:356–369CrossRefPubMed Abdel Razek AAK, Elsebaie NA, Zamora C, Castillo M (2020) Imaging of neuronal and mixed glioneuronal tumors. J Comput Assist Tomogr 44:356–369CrossRefPubMed
110.
go back to reference Fetit AE, Novak J, Rodriguez D et al (2018) Radiomics in pediatric neuro-oncology: a multicentre study on MRI texture analysis. NMR Biomed 31(1):66CrossRef Fetit AE, Novak J, Rodriguez D et al (2018) Radiomics in pediatric neuro-oncology: a multicentre study on MRI texture analysis. NMR Biomed 31(1):66CrossRef
111.
go back to reference Quon JL, Bala W, Chen LC et al (2020) Deep learning for pediatric posterior fossa tumor detection and classification: a multi-institutional study. AJNR Am J Neuroradiol 41:1718–1725PubMedPubMedCentral Quon JL, Bala W, Chen LC et al (2020) Deep learning for pediatric posterior fossa tumor detection and classification: a multi-institutional study. AJNR Am J Neuroradiol 41:1718–1725PubMedPubMedCentral
112.
go back to reference Zhou H, Hu R, Tang O et al (2020) Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol 41:1279–1285CrossRefPubMedPubMedCentral Zhou H, Hu R, Tang O et al (2020) Automatic machine learning to differentiate pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol 41:1279–1285CrossRefPubMedPubMedCentral
113.
go back to reference Ramaswamy V, Remke M, Bouffet E et al (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131:821–831CrossRefPubMedPubMedCentral Ramaswamy V, Remke M, Bouffet E et al (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131:821–831CrossRefPubMedPubMedCentral
114.
115.
go back to reference Iv M, Zhou M, Shpanskaya K et al (2019) MR Imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 40:154–161CrossRefPubMedPubMedCentral Iv M, Zhou M, Shpanskaya K et al (2019) MR Imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 40:154–161CrossRefPubMedPubMedCentral
116.
go back to reference Sturm D, Pfister SM, Jones DTW (2017) Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol 35:2370–2377CrossRefPubMed Sturm D, Pfister SM, Jones DTW (2017) Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol 35:2370–2377CrossRefPubMed
117.
go back to reference AlRayahi J, Zapotocky M, Ramaswamy V et al (2018) Pediatric brain tumor genetics: what radiologists need to know. Radiographics 38:2102–2122CrossRefPubMed AlRayahi J, Zapotocky M, Ramaswamy V et al (2018) Pediatric brain tumor genetics: what radiologists need to know. Radiographics 38:2102–2122CrossRefPubMed
118.
go back to reference Lassaletta A, Zapotocky M, Mistry M et al (2017) therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35:2934–2941CrossRefPubMedPubMedCentral Lassaletta A, Zapotocky M, Mistry M et al (2017) therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35:2934–2941CrossRefPubMedPubMedCentral
120.
go back to reference Calmon R, Puget S, Varlet P et al (2017) Multimodal magnetic resonance imaging of treatment-induced changes to diffuse infiltrating pontine gliomas in children and correlation to patient progression-free survival. Int J Radiat Oncol Biol Phys 99:476–485CrossRefPubMed Calmon R, Puget S, Varlet P et al (2017) Multimodal magnetic resonance imaging of treatment-induced changes to diffuse infiltrating pontine gliomas in children and correlation to patient progression-free survival. Int J Radiat Oncol Biol Phys 99:476–485CrossRefPubMed
121.
go back to reference Su X, Chen N, Sun H et al (2020) Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 22:393–401PubMed Su X, Chen N, Sun H et al (2020) Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 22:393–401PubMed
122.
go back to reference Pan CC, Liu J, Tang J et al (2019) A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiother Oncol 130:172–179CrossRefPubMed Pan CC, Liu J, Tang J et al (2019) A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiother Oncol 130:172–179CrossRefPubMed
123.
go back to reference Szychot E, Youssef A, Ganeshan B et al (2020) Predicting outcome in childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis. J Neuroradiol S0150–9861(20):30131 Szychot E, Youssef A, Ganeshan B et al (2020) Predicting outcome in childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis. J Neuroradiol S0150–9861(20):30131
124.
go back to reference Choy G, Khalilzadeh O, Michalski M et al (2018) Current applications and future impact of machine learning in radiology. Radiology 288:318–328CrossRefPubMed Choy G, Khalilzadeh O, Michalski M et al (2018) Current applications and future impact of machine learning in radiology. Radiology 288:318–328CrossRefPubMed
125.
126.
go back to reference Fortin JP, Cullen N, Sheline YI et al (2018) Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167:104–120CrossRefPubMed Fortin JP, Cullen N, Sheline YI et al (2018) Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167:104–120CrossRefPubMed
Metadata
Title
Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
Authors
Ahmed Abdel Khalek Abdel Razek
Ahmed Alksas
Mohamed Shehata
Amr AbdelKhalek
Khaled Abdel Baky
Ayman El-Baz
Eman Helmy
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Insights into Imaging / Issue 1/2021
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-021-01102-6

Other articles of this Issue 1/2021

Insights into Imaging 1/2021 Go to the issue