Skip to main content
Top
Published in: Vascular Cell 1/2015

Open Access 01-12-2015 | Research

Therapeutic manipulation of angiogenesis with miR-27b

Authors: Dorina Veliceasa, Dauren Biyashev, Gangjian Qin, Sol Misener, Alexander Roy Mackie, Raj Kishore, Olga V. Volpert

Published in: Vascular Cell | Issue 1/2015

Login to get access

Abstract

Background

Multiple studies demonstrated pro-angiogenic effects of microRNA (miR)-27b. Its targets include Notch ligand Dll4, Sprouty (Spry)-2, PPARγ and Semaphorin (SEMA) 6A. miR-27 effects in the heart are context-dependent: although it is necessary for ventricular maturation, targeted overexpression in cardiomyocytes causes hypertrophy and dysfunction during development. Despite significant recent advances, therapeutic potential of miR-27b in cardiovascular disease and its effects in adult heart remain unexplored. Here, we assessed the therapeutic potential of miR-27b mimics and inhibitors in rodent models of ischemic disease and cancer.

Methods

We have used a number of models to demonstrate the effects of miR-27b mimicry and inhibition in vivo, including subcutaneous Matrigel plug assay, mouse models of hind limb ischemia and myocardial infarction and subcutaneous Lewis Lung carcinoma.

Results

Using mouse model of myocardial infarction due to the coronary artery ligation, we showed that miR-27b mimic had overall beneficial effects, including increased vascularization, decreased fibrosis and increased ejection fraction. In mouse model of critical limb ischemia, miR-27b mimic also improved tissue re-vascularization and perfusion. In both models, miR-27b mimic clearly decreased macrophage recruitment to the site of hypoxic injury. In contrast, miR-27b increased the recruitment of bone marrow derived cells to the neovasculature, as was shown using mice reconstituted with fluorescence-tagged bone marrow. These effects were due, at least in part, to the decreased expression of Dll4, PPARγ and IL10. In contrast, blocking miR-27b significantly decreased vascularization and reduced growth of subcutaneous tumors and decreased BMDCs recruitment to the tumor vasculature.

Conclusions

Our study demonstrates the utility of manipulating miR-27b levels in the treatment of cardiovascular disease and cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57. Epub 2000/09/23.PubMedCrossRef Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57. Epub 2000/09/23.PubMedCrossRef
2.
go back to reference Carmeliet P. Manipulating angiogenesis in medicine. J Intern Med. 2004;255(5):538–61. Epub 2004/04/14.PubMedCrossRef Carmeliet P. Manipulating angiogenesis in medicine. J Intern Med. 2004;255(5):538–61. Epub 2004/04/14.PubMedCrossRef
3.
go back to reference Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438(7070):967–74. Epub 2005/12/16.PubMedCrossRef Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438(7070):967–74. Epub 2005/12/16.PubMedCrossRef
4.
go back to reference Mousa SA, Mousa SS. Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. BioDrugs. 2010;24(3):183–94. Epub 2010/03/10.PubMedCrossRef Mousa SA, Mousa SS. Current status of vascular endothelial growth factor inhibition in age-related macular degeneration. BioDrugs. 2010;24(3):183–94. Epub 2010/03/10.PubMedCrossRef
5.
go back to reference Syrigos KN, Karapanagiotou E, Boura P, Manegold C, Harrington K. Bevacizumab-induced hypertension: pathogenesis and management. BioDrugs. 2011;25(3):159–69. Epub 2011/06/02.PubMedCrossRef Syrigos KN, Karapanagiotou E, Boura P, Manegold C, Harrington K. Bevacizumab-induced hypertension: pathogenesis and management. BioDrugs. 2011;25(3):159–69. Epub 2011/06/02.PubMedCrossRef
6.
go back to reference Peng L, Zhao Q, Ye X, Zhou Y, Hu D, Zheng S. Incidence and risk of proteinuria with aflibercept in cancer patients: a meta-analysis. PloS one. 2014;9(11):e111839. Epub 2014/11/05.PubMedCentralPubMedCrossRef Peng L, Zhao Q, Ye X, Zhou Y, Hu D, Zheng S. Incidence and risk of proteinuria with aflibercept in cancer patients: a meta-analysis. PloS one. 2014;9(11):e111839. Epub 2014/11/05.PubMedCentralPubMedCrossRef
7.
go back to reference Keefe D, Bowen J, Gibson R, Tan T, Okera M, Stringer A. Noncardiac vascular toxicities of vascular endothelial growth factor inhibitors in advanced cancer: a review. Oncologist. 2011;16(4):432–44. Epub 2011/03/29.PubMedCentralPubMedCrossRef Keefe D, Bowen J, Gibson R, Tan T, Okera M, Stringer A. Noncardiac vascular toxicities of vascular endothelial growth factor inhibitors in advanced cancer: a review. Oncologist. 2011;16(4):432–44. Epub 2011/03/29.PubMedCentralPubMedCrossRef
8.
go back to reference Elice F, Rodeghiero F. Bleeding complications of antiangiogenic therapy: pathogenetic mechanisms and clinical impact. Thromb Res. 2010;125 Suppl 2:S55–7. Epub 2010/05/15.PubMedCrossRef Elice F, Rodeghiero F. Bleeding complications of antiangiogenic therapy: pathogenetic mechanisms and clinical impact. Thromb Res. 2010;125 Suppl 2:S55–7. Epub 2010/05/15.PubMedCrossRef
9.
go back to reference Otsu S, Hirashima Y, Nishikawa K, Sakashita H, Morinaga R, Watanabe K, et al. Neurological toxicity in metastatic colorectal cancer patients treated with modified FOLFOX6 Plus Bevacizumab. Jpn Clin Med. 2014;5:19–23. Epub 2014/09/12.PubMedCentralPubMedCrossRef Otsu S, Hirashima Y, Nishikawa K, Sakashita H, Morinaga R, Watanabe K, et al. Neurological toxicity in metastatic colorectal cancer patients treated with modified FOLFOX6 Plus Bevacizumab. Jpn Clin Med. 2014;5:19–23. Epub 2014/09/12.PubMedCentralPubMedCrossRef
10.
go back to reference Grenon NN. Managing toxicities associated with antiangiogenic biologic agents in combination with chemotherapy for metastatic colorectal cancer. Clin J Oncol Nurs. 2013;17(4):425–33. Epub 2013/08/01.PubMedCrossRef Grenon NN. Managing toxicities associated with antiangiogenic biologic agents in combination with chemotherapy for metastatic colorectal cancer. Clin J Oncol Nurs. 2013;17(4):425–33. Epub 2013/08/01.PubMedCrossRef
11.
go back to reference Smart N, Dube KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol. 2009;90(3):262–83. Epub 2009/07/01.PubMedCentralPubMedCrossRef Smart N, Dube KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol. 2009;90(3):262–83. Epub 2009/07/01.PubMedCentralPubMedCrossRef
12.
go back to reference Yla-Herttuala S. An update on angiogenic gene therapy: vascular endothelial growth factor and other directions. Curr Opin Mol Ther. 2006;8(4):295–300. Epub 2006/09/08.PubMed Yla-Herttuala S. An update on angiogenic gene therapy: vascular endothelial growth factor and other directions. Curr Opin Mol Ther. 2006;8(4):295–300. Epub 2006/09/08.PubMed
13.
go back to reference Grochot-Przeczek A, Dulak J, Jozkowicz A. Therapeutic angiogenesis for revascularization in peripheral artery disease. Gene. 2013;525(2):220–8. Epub 2013/04/10.PubMedCrossRef Grochot-Przeczek A, Dulak J, Jozkowicz A. Therapeutic angiogenesis for revascularization in peripheral artery disease. Gene. 2013;525(2):220–8. Epub 2013/04/10.PubMedCrossRef
15.
go back to reference Jin H, Wyss JM, Yang R, Schwall R. The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure. Curr Pharm Des. 2004;10(20):2525–33. Epub 2004/08/24.PubMedCrossRef Jin H, Wyss JM, Yang R, Schwall R. The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure. Curr Pharm Des. 2004;10(20):2525–33. Epub 2004/08/24.PubMedCrossRef
16.
go back to reference Hammer A, Steiner S. Gene therapy for therapeutic angiogenesis in peripheral arterial disease–a systematic review and meta-analysis of randomized, controlled trials. VASA. 2013;42(5):331–9. Epub 2013/08/31.PubMedCrossRef Hammer A, Steiner S. Gene therapy for therapeutic angiogenesis in peripheral arterial disease–a systematic review and meta-analysis of randomized, controlled trials. VASA. 2013;42(5):331–9. Epub 2013/08/31.PubMedCrossRef
17.
go back to reference Annex BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol. 2013;10(7):387–96. Epub 2013/05/15.PubMedCrossRef Annex BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol. 2013;10(7):387–96. Epub 2013/05/15.PubMedCrossRef
18.
go back to reference Gupta NK, Armstrong EJ, Parikh SA. The current state of stem cell therapy for peripheral artery disease. Curr Cardiol Rep. 2014;16(2):447. Epub 2014/01/15.PubMedCrossRef Gupta NK, Armstrong EJ, Parikh SA. The current state of stem cell therapy for peripheral artery disease. Curr Cardiol Rep. 2014;16(2):447. Epub 2014/01/15.PubMedCrossRef
19.
go back to reference Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J. 2011;32(10):1197–206. Epub 2011/03/03.PubMedCentralPubMedCrossRef Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J. 2011;32(10):1197–206. Epub 2011/03/03.PubMedCentralPubMedCrossRef
20.
go back to reference Westenskow PD, Kurihara T, Aguilar E, Scheppke EL, Moreno SK, Wittgrove C, et al. Ras pathway inhibition prevents neovascularization by repressing endothelial cell sprouting. J Clin Invest. 2013;123(11):4900–8. Epub 2013/10/03.PubMedCentralPubMedCrossRef Westenskow PD, Kurihara T, Aguilar E, Scheppke EL, Moreno SK, Wittgrove C, et al. Ras pathway inhibition prevents neovascularization by repressing endothelial cell sprouting. J Clin Invest. 2013;123(11):4900–8. Epub 2013/10/03.PubMedCentralPubMedCrossRef
21.
go back to reference Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71. Epub 2008/08/13.PubMedCentralPubMedCrossRef Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71. Epub 2008/08/13.PubMedCentralPubMedCrossRef
22.
go back to reference Lu Y, Heng X, Yu J, Su Q, Guan X, You C, et al. miR-137 regulates the migration of human umbilical vein endothelial cells by targeting ephrin-type A receptor 7. Mol Med Rep. 2014;10(3):1475–80. Epub 2014/06/14.PubMed Lu Y, Heng X, Yu J, Su Q, Guan X, You C, et al. miR-137 regulates the migration of human umbilical vein endothelial cells by targeting ephrin-type A receptor 7. Mol Med Rep. 2014;10(3):1475–80. Epub 2014/06/14.PubMed
23.
go back to reference Kane NM, Howard L, Descamps B, Meloni M, McClure J, Lu R, et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells. 2012;30(4):643–54. Epub 2012/01/11.PubMedCentralPubMedCrossRef Kane NM, Howard L, Descamps B, Meloni M, McClure J, Lu R, et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells. 2012;30(4):643–54. Epub 2012/01/11.PubMedCentralPubMedCrossRef
24.
go back to reference He T, Qi F, Jia L, Wang S, Song N, Guo L, et al. MicroRNA-542-3p inhibits tumour angiogenesis by targeting angiopoietin-2. J Pathol. 2014;232(5):499–508. Epub 2014/01/10.PubMedCrossRef He T, Qi F, Jia L, Wang S, Song N, Guo L, et al. MicroRNA-542-3p inhibits tumour angiogenesis by targeting angiopoietin-2. J Pathol. 2014;232(5):499–508. Epub 2014/01/10.PubMedCrossRef
26.
go back to reference Biyashev D, Veliceasa D, Topczewski J, Topczewska JM, Mizgirev I, Vinokour E, et al. miR-27b controls venous specification and tip cell fate. Blood. 2012;119:2679–87. Epub 2011/12/31.PubMedCentralPubMedCrossRef Biyashev D, Veliceasa D, Topczewski J, Topczewska JM, Mizgirev I, Vinokour E, et al. miR-27b controls venous specification and tip cell fate. Blood. 2012;119:2679–87. Epub 2011/12/31.PubMedCentralPubMedCrossRef
27.
go back to reference Urbich C, Kaluza D, Fromel T, Knau A, Bennewitz K, Boon RA, et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119(6):1607–16. Epub 2011/12/21.PubMedCrossRef Urbich C, Kaluza D, Fromel T, Knau A, Bennewitz K, Boon RA, et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119(6):1607–16. Epub 2011/12/21.PubMedCrossRef
28.
go back to reference Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23 ~ 27 ~ 24 clusters. Proc Natl Acad Sci U S A. 2011;108(20):8287–92. Epub 2011/05/04.PubMedCentralPubMedCrossRef Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23 ~ 27 ~ 24 clusters. Proc Natl Acad Sci U S A. 2011;108(20):8287–92. Epub 2011/05/04.PubMedCentralPubMedCrossRef
29.
go back to reference Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest. 1992;67(4):519–28. Epub 1992/10/01.PubMed Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest. 1992;67(4):519–28. Epub 1992/10/01.PubMed
30.
go back to reference Niiyama H, Huang NF, Rollins MD, Cooke JP. Murine model of hindlimb ischemia. JoVE. 2009;23. Epub 2009/02/21. Niiyama H, Huang NF, Rollins MD, Cooke JP. Murine model of hindlimb ischemia. JoVE. 2009;23. Epub 2009/02/21.
31.
go back to reference Limbourg A, Korff T, Napp LC, Schaper W, Drexler H, Limbourg FP. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Protoc. 2009;4(12):1737–46. Epub 2009/11/07.PubMedCrossRef Limbourg A, Korff T, Napp LC, Schaper W, Drexler H, Limbourg FP. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Protoc. 2009;4(12):1737–46. Epub 2009/11/07.PubMedCrossRef
32.
go back to reference Iwakura A, Shastry S, Luedemann C, Hamada H, Kawamoto A, Kishore R, et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation. 2006;113(12):1605–14. Epub 2006/03/15.PubMedCrossRef Iwakura A, Shastry S, Luedemann C, Hamada H, Kawamoto A, Kishore R, et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation. 2006;113(12):1605–14. Epub 2006/03/15.PubMedCrossRef
33.
go back to reference Isner JM, Kalka C, Kawamoto A, Asahara T. Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann N Y Acad Sci. 2001;953:75–84. Epub 2002/01/25.PubMedCrossRef Isner JM, Kalka C, Kawamoto A, Asahara T. Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann N Y Acad Sci. 2001;953:75–84. Epub 2002/01/25.PubMedCrossRef
34.
go back to reference Qi W, Yang C, Dai Z, Che D, Feng J, Mao Y, et al. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling. Diabetes. 2015;64(4):1407–19. Epub 2014/11/05.PubMedCrossRef Qi W, Yang C, Dai Z, Che D, Feng J, Mao Y, et al. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling. Diabetes. 2015;64(4):1407–19. Epub 2014/11/05.PubMedCrossRef
35.
go back to reference Tung JJ, Tattersall IW, Kitajewski J. Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harbor perspectives in medicine. 2012;2(2):a006601. Epub 2012/02/23. Tung JJ, Tattersall IW, Kitajewski J. Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harbor perspectives in medicine. 2012;2(2):a006601. Epub 2012/02/23.
36.
go back to reference Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T, et al. Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. J Cell Biochem. 2010;111(3):727–34. Epub 2010/07/14.PubMedCrossRef Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T, et al. Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. J Cell Biochem. 2010;111(3):727–34. Epub 2010/07/14.PubMedCrossRef
37.
go back to reference Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol. 2006;71:513–21. Epub 2007/03/27.PubMedCrossRef Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol. 2006;71:513–21. Epub 2007/03/27.PubMedCrossRef
38.
go back to reference Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006;125(6):1111–24. Epub 2006/06/17.PubMedCrossRef Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006;125(6):1111–24. Epub 2006/06/17.PubMedCrossRef
39.
go back to reference Jennewein C, von Knethen A, Schmid T, Brune B. MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem. 2010;285(16):11846–53. Epub 2010/02/19.PubMedCentralPubMedCrossRef Jennewein C, von Knethen A, Schmid T, Brune B. MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem. 2010;285(16):11846–53. Epub 2010/02/19.PubMedCentralPubMedCrossRef
40.
go back to reference Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta. 2014;1846(1):161–79. Epub 2014/05/20.PubMed Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta. 2014;1846(1):161–79. Epub 2014/05/20.PubMed
41.
42.
go back to reference Ouma GO, Rodriguez E, Muthumani K, Weiner DB, Wilensky RL, Mohler 3rd ER. In vivo electroporation of constitutively expressed HIF-1alpha plasmid DNA improves neovascularization in a mouse model of limb ischemia. J Vasc Surg . 2014;59(3):786–93. Epub 2013/07/16.PubMedCentralPubMedCrossRef Ouma GO, Rodriguez E, Muthumani K, Weiner DB, Wilensky RL, Mohler 3rd ER. In vivo electroporation of constitutively expressed HIF-1alpha plasmid DNA improves neovascularization in a mouse model of limb ischemia. J Vasc Surg . 2014;59(3):786–93. Epub 2013/07/16.PubMedCentralPubMedCrossRef
43.
go back to reference Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007;49(10):1015–26. Epub 2007/03/14.PubMedCrossRef Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007;49(10):1015–26. Epub 2007/03/14.PubMedCrossRef
45.
go back to reference van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008;103(9):919–28. Epub 2008/10/25.PubMedCentralPubMedCrossRef van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008;103(9):919–28. Epub 2008/10/25.PubMedCentralPubMedCrossRef
46.
go back to reference Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79(4):581–8. Epub 2008/06/14.PubMedCrossRef Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79(4):581–8. Epub 2008/06/14.PubMedCrossRef
47.
go back to reference Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222(2):314–23. Epub 2012/02/07.PubMedCrossRef Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222(2):314–23. Epub 2012/02/07.PubMedCrossRef
48.
go back to reference Chinchilla A, Lozano E, Daimi H, Esteban FJ, Crist C, Aranega AE, et al. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res. 2011;89(1):98–108. Epub 2010/08/26.PubMedCrossRef Chinchilla A, Lozano E, Daimi H, Esteban FJ, Crist C, Aranega AE, et al. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res. 2011;89(1):98–108. Epub 2010/08/26.PubMedCrossRef
49.
go back to reference Busk PK, Cirera S. MicroRNA profiling in early hypertrophic growth of the left ventricle in rats. Biochem Biophys Res Commun. 2010;396(4):989–93. Epub 2010/05/18.PubMedCrossRef Busk PK, Cirera S. MicroRNA profiling in early hypertrophic growth of the left ventricle in rats. Biochem Biophys Res Commun. 2010;396(4):989–93. Epub 2010/05/18.PubMedCrossRef
50.
go back to reference Jentzsch C, Leierseder S, Loyer X, Flohrschutz I, Sassi Y, Hartmann D, et al. A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol. 2012;52(1):13–20. Epub 2011/08/02.PubMedCrossRef Jentzsch C, Leierseder S, Loyer X, Flohrschutz I, Sassi Y, Hartmann D, et al. A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol. 2012;52(1):13–20. Epub 2011/08/02.PubMedCrossRef
51.
go back to reference Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res. 2012;22(3):516–27. Epub 2011/08/17.PubMedCentralPubMedCrossRef Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res. 2012;22(3):516–27. Epub 2011/08/17.PubMedCentralPubMedCrossRef
52.
go back to reference Graham JR, Williams CM, Yang Z. MicroRNA-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J Cell Biochem. 2014;115(9):1539–48. Epub 2014/03/19.PubMedCrossRef Graham JR, Williams CM, Yang Z. MicroRNA-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J Cell Biochem. 2014;115(9):1539–48. Epub 2014/03/19.PubMedCrossRef
53.
go back to reference Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234(1):54–64. Epub 2014/03/13.PubMedCrossRef Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234(1):54–64. Epub 2014/03/13.PubMedCrossRef
54.
go back to reference Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57(2):533–42. Epub 2012/07/11.PubMedCentralPubMedCrossRef Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57(2):533–42. Epub 2012/07/11.PubMedCentralPubMedCrossRef
55.
go back to reference Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, et al. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem. 2013;288(48):34394–402. Epub 2013/10/18.PubMedCentralPubMedCrossRef Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, et al. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem. 2013;288(48):34394–402. Epub 2013/10/18.PubMedCentralPubMedCrossRef
56.
go back to reference Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun. 2009;390(2):247–51. Epub 2009/10/06.PubMedCrossRef Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun. 2009;390(2):247–51. Epub 2009/10/06.PubMedCrossRef
57.
go back to reference Bang C, Fiedler J, Thum T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation. 2012;19(3):208–14. Epub 2011/12/06.PubMedCrossRef Bang C, Fiedler J, Thum T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation. 2012;19(3):208–14. Epub 2011/12/06.PubMedCrossRef
58.
go back to reference Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q, et al. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34(1):99–109. Epub 2013/11/02.PubMedCrossRef Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q, et al. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34(1):99–109. Epub 2013/11/02.PubMedCrossRef
59.
go back to reference Peric D, Chvalova K, Rousselet G. Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs. Oncogene. 2012;31(16):2039–48. Epub 2011/09/13.PubMedCrossRef Peric D, Chvalova K, Rousselet G. Identification of microprocessor-dependent cancer cells allows screening for growth-sustaining micro-RNAs. Oncogene. 2012;31(16):2039–48. Epub 2011/09/13.PubMedCrossRef
60.
go back to reference Shen S, Sun Q, Liang Z, Cui X, Ren X, Chen H, et al. A prognostic model of triple-negative breast cancer based on miR-27b-3p and node status. PLoS One. 2014;9(6):e100664. Epub 2014/06/20.PubMedCentralPubMedCrossRef Shen S, Sun Q, Liang Z, Cui X, Ren X, Chen H, et al. A prognostic model of triple-negative breast cancer based on miR-27b-3p and node status. PLoS One. 2014;9(6):e100664. Epub 2014/06/20.PubMedCentralPubMedCrossRef
61.
go back to reference Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL. The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One. 2012;7(12):e52106. Epub 2013/01/10.PubMedCentralPubMedCrossRef Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL. The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One. 2012;7(12):e52106. Epub 2013/01/10.PubMedCentralPubMedCrossRef
62.
go back to reference Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, Alahari SK. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-alpha in breast cancer. Cancer Res. 2013;73(9):2884–96. Epub 2013/01/23.PubMedCrossRef Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, Alahari SK. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-alpha in breast cancer. Cancer Res. 2013;73(9):2884–96. Epub 2013/01/23.PubMedCrossRef
63.
go back to reference Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M, et al. Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol. 2012;227(10):3373–80. Epub 2012/01/04.PubMedCentralPubMedCrossRef Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M, et al. Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol. 2012;227(10):3373–80. Epub 2012/01/04.PubMedCentralPubMedCrossRef
64.
go back to reference Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res. 2012;8(2):215–25. Epub 2012/01/24.PubMedCrossRef Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res. 2012;8(2):215–25. Epub 2012/01/24.PubMedCrossRef
65.
go back to reference Chiyomaru T, Seki N, Inoguchi S, Ishihara T, Mataki H, Matsushita R, et al. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int J Oncol. 2015;46(2):487–96. 2014. Epub 2014/11/19.PubMedCentralPubMed Chiyomaru T, Seki N, Inoguchi S, Ishihara T, Mataki H, Matsushita R, et al. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int J Oncol. 2015;46(2):487–96. 2014. Epub 2014/11/19.PubMedCentralPubMed
66.
go back to reference Kjersem JB, Ikdahl T, Lingjaerde OC, Guren T, Tveit KM, Kure EH. Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol Oncol. 2014;8(1):59–67. Epub 2013/10/15.PubMedCrossRef Kjersem JB, Ikdahl T, Lingjaerde OC, Guren T, Tveit KM, Kure EH. Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin-based treatment. Mol Oncol. 2014;8(1):59–67. Epub 2013/10/15.PubMedCrossRef
67.
go back to reference Thulasingam S, Massilamany C, Gangaplara A, Dai H, Yarbaeva S, Subramaniam S, et al. miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells. Mol Cell Biochem. 2011;352(1–2):181–8. Epub 2011/02/26.PubMedCrossRef Thulasingam S, Massilamany C, Gangaplara A, Dai H, Yarbaeva S, Subramaniam S, et al. miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells. Mol Cell Biochem. 2011;352(1–2):181–8. Epub 2011/02/26.PubMedCrossRef
68.
go back to reference Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol. 2012;15(1):7–18. Epub 2012/05/15.PubMed Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol. 2012;15(1):7–18. Epub 2012/05/15.PubMed
Metadata
Title
Therapeutic manipulation of angiogenesis with miR-27b
Authors
Dorina Veliceasa
Dauren Biyashev
Gangjian Qin
Sol Misener
Alexander Roy Mackie
Raj Kishore
Olga V. Volpert
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Vascular Cell / Issue 1/2015
Electronic ISSN: 2045-824X
DOI
https://doi.org/10.1186/s13221-015-0031-1

Other articles of this Issue 1/2015

Vascular Cell 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.