Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer’s disease: findings based on urine proteomics and machine learning

Authors: Yuye Wang, Yu Sun, Yu Wang, Shuhong Jia, Yanan Qiao, Zhi Zhou, Wen Shao, Xiangfei Zhang, Jing Guo, Bin Zhang, Xiaoqian Niu, Yi Wang, Dantao Peng

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Background

Alzheimer’s disease is a prevalent disease with a heavy global burden. Proteomics is the systematic study of proteins and peptides to provide comprehensive descriptions. Aiming to obtain a more accurate and convenient clinical diagnosis, researchers are working for better biomarkers. Urine is more convenient which could reflect the change of disease at an earlier stage. Thus, we conducted a cross-sectional study to investigate novel diagnostic panels.

Methods

We firstly enrolled participants from China-Japan Friendship Hospital from April 2022 to November 2022, collected urine samples, and conducted an LC–MS/MS analysis. In parallel, clinical data were collected, and clinical examinations were performed. After statistical and bioinformatics analyses, significant risk factors and differential urinary proteins were determined. We attempt to investigate diagnostic panels based on machine learning including LASSO and SVM.

Results

Fifty-seven AD patients, 43 MCI patients, and 62 CN subjects were enrolled. A total of 3366 proteins were identified, and 608 urine proteins were finally included in the analysis. There were 33 significantly differential proteins between the AD and CN groups and 15 significantly differential proteins between the MCI and CN groups. AD diagnostic panel included DDC, CTSC, EHD4, GSTA3, SLC44A4, GNS, GSTA1, ANXA4, PLD3, CTSH, HP, RPS3, CPVL, age, and APOE ε4 with an AUC of 0.9989 in the training test and 0.8824 in the test set while MCI diagnostic panel included TUBB, SUCLG2, PROCR, TCP1, ACE, FLOT2, EHD4, PROZ, C9, SERPINA3, age, and APOE ε4 with an AUC of 0.9985 in the training test and 0.8143 in the test set. Besides, diagnostic proteins were weakly correlated with cognitive functions.

Conclusions

In conclusion, the procedure is convenient, non-invasive, and useful for diagnosis, which could assist physicians in differentiating AD and MCI from CN.
Appendix
Available only for authorised users
Literature
3.
go back to reference Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. The Lancet Public Health. 2020;5(12):e661–71.PubMedCrossRef Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. The Lancet Public Health. 2020;5(12):e661–71.PubMedCrossRef
5.
go back to reference McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedPubMedCentralCrossRef McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.PubMedPubMedCentralCrossRef
6.
go back to reference Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.PubMedCrossRef Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.PubMedCrossRef
7.
go back to reference Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–62.CrossRef Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–62.CrossRef
8.
9.
go back to reference Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS, Maye JE, Coleman RE, et al. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement. 2013;9(5 Suppl):S72–83.PubMedPubMedCentral Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS, Maye JE, Coleman RE, et al. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement. 2013;9(5 Suppl):S72–83.PubMedPubMedCentral
10.
go back to reference van Maurik IS, Vos SJ, Bos I, Bouwman FH, Teunissen CE, Scheltens P, et al. Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol. 2019;18(11):1034–44.PubMedCrossRef van Maurik IS, Vos SJ, Bos I, Bouwman FH, Teunissen CE, Scheltens P, et al. Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol. 2019;18(11):1034–44.PubMedCrossRef
11.
go back to reference Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement. 2014;10(1):109–14.PubMedPubMedCentralCrossRef Snyder HM, Carrillo MC, Grodstein F, Henriksen K, Jeromin A, Lovestone S, et al. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement. 2014;10(1):109–14.PubMedPubMedCentralCrossRef
12.
go back to reference Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003;33(Suppl):311–23.PubMedCrossRef Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003;33(Suppl):311–23.PubMedCrossRef
13.
go back to reference Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci. 2017;60(10):1093–113.PubMedCrossRef Li X, Wang W, Chen J. Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci. 2017;60(10):1093–113.PubMedCrossRef
14.
go back to reference Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2021;22(1):19–37.PubMedCrossRef Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2021;22(1):19–37.PubMedCrossRef
15.
go back to reference Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, et al. Proteomic landscape of Alzheimer’s disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener. 2021;16(1):55.PubMedPubMedCentralCrossRef Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, et al. Proteomic landscape of Alzheimer’s disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegener. 2021;16(1):55.PubMedPubMedCentralCrossRef
16.
go back to reference An M, Gao Y. Urinary biomarkers of brain diseases. Genomics Proteomics Bioinformatics. 2015;13(6):345–54.PubMedCrossRef An M, Gao Y. Urinary biomarkers of brain diseases. Genomics Proteomics Bioinformatics. 2015;13(6):345–54.PubMedCrossRef
18.
go back to reference Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, et al. Urine-based biomarkers for Alzheimer’s disease identified through coupling computational and experimental methods. J Alzheimers Dis. 2018;65(2):421–31.PubMedCrossRef Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, et al. Urine-based biomarkers for Alzheimer’s disease identified through coupling computational and experimental methods. J Alzheimers Dis. 2018;65(2):421–31.PubMedCrossRef
19.
go back to reference Ma L, Chen J, Wang R, Han Y, Zhang J, Dong W, et al. The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment. J Clin Neurosci. 2015;22(4):649–52.PubMedCrossRef Ma L, Chen J, Wang R, Han Y, Zhang J, Dong W, et al. The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment. J Clin Neurosci. 2015;22(4):649–52.PubMedCrossRef
20.
go back to reference Youn YC, Park KW, Han SH, Kim S. Urine neural thread protein measurements in Alzheimer disease. J Am Med Dir Assoc. 2011;12(5):372–6.PubMedCrossRef Youn YC, Park KW, Han SH, Kim S. Urine neural thread protein measurements in Alzheimer disease. J Am Med Dir Assoc. 2011;12(5):372–6.PubMedCrossRef
21.
go back to reference Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Kitamura K, Niida S, et al. Urinary apolipoprotein C3 is a potential biomarker for Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2020;10(3):94–104.PubMedPubMedCentralCrossRef Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Kitamura K, Niida S, et al. Urinary apolipoprotein C3 is a potential biomarker for Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2020;10(3):94–104.PubMedPubMedCentralCrossRef
22.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.PubMedPubMedCentralCrossRef Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.PubMedPubMedCentralCrossRef
23.
go back to reference Li H, Jia J, Yang Z. Mini-Mental State Examination in elderly Chinese: a population-based normative study. J Alzheimers Dis. 2016;53(2):487–96.PubMedCrossRef Li H, Jia J, Yang Z. Mini-Mental State Examination in elderly Chinese: a population-based normative study. J Alzheimers Dis. 2016;53(2):487–96.PubMedCrossRef
24.
go back to reference Qiao Y, Sun Y, Guo J, Chen Y, Hou W, Zhang J, et al. Disrupted white matter integrity and cognitive functions in amyloid-β positive Alzheimer’s disease with concomitant lobar cerebral microbleeds. J Alzheimers Dis. 2022;85(1):369–80.PubMedCrossRef Qiao Y, Sun Y, Guo J, Chen Y, Hou W, Zhang J, et al. Disrupted white matter integrity and cognitive functions in amyloid-β positive Alzheimer’s disease with concomitant lobar cerebral microbleeds. J Alzheimers Dis. 2022;85(1):369–80.PubMedCrossRef
27.
go back to reference Feng J, Ding C, Qiu N, Ni X, Zhan D, Liu W, et al. Firmiana: towards a one-stop proteomic cloud platform for data processing and analysis. Nat Biotechnol. 2017;35(5):409–12.PubMedCrossRef Feng J, Ding C, Qiu N, Ni X, Zhan D, Liu W, et al. Firmiana: towards a one-stop proteomic cloud platform for data processing and analysis. Nat Biotechnol. 2017;35(5):409–12.PubMedCrossRef
28.
go back to reference Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.PubMedCrossRef Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.PubMedCrossRef
29.
go back to reference Leng W, Ni X, Sun C, Lu T, Malovannaya A, Jung SY, et al. Proof-of-concept workflow for establishing reference intervals of human urine proteome for monitoring physiological and pathological changes. EBioMedicine. 2017;18:300–10.PubMedPubMedCentralCrossRef Leng W, Ni X, Sun C, Lu T, Malovannaya A, Jung SY, et al. Proof-of-concept workflow for establishing reference intervals of human urine proteome for monitoring physiological and pathological changes. EBioMedicine. 2017;18:300–10.PubMedPubMedCentralCrossRef
30.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedPubMedCentralCrossRef
35.
go back to reference Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (New York, NY). 2021;2(3):100141. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (New York, NY). 2021;2(3):100141.
38.
go back to reference Shi L, Westwood S, Baird AL, Winchester L, Dobricic V, Kilpert F, et al. Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay. Alzheimers Dement. 2019;15(11):1478–88.PubMedPubMedCentralCrossRef Shi L, Westwood S, Baird AL, Winchester L, Dobricic V, Kilpert F, et al. Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay. Alzheimers Dement. 2019;15(11):1478–88.PubMedPubMedCentralCrossRef
39.
go back to reference Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, et al. Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Dement Geriatr Cogn Dis Extra. 2019;9(1):53–65.PubMedPubMedCentralCrossRef Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, et al. Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Dement Geriatr Cogn Dis Extra. 2019;9(1):53–65.PubMedPubMedCentralCrossRef
40.
go back to reference Chen R, Yi Y, Xiao W, Zhong B, Zhang L, Zeng Y. Urinary protein biomarkers based on LC-MS/MS analysis to discriminate vascular dementia from Alzheimer’s disease in Han Chinese population. Front Aging Neurosci. 2023;15:1070854.PubMedPubMedCentralCrossRef Chen R, Yi Y, Xiao W, Zhong B, Zhang L, Zeng Y. Urinary protein biomarkers based on LC-MS/MS analysis to discriminate vascular dementia from Alzheimer’s disease in Han Chinese population. Front Aging Neurosci. 2023;15:1070854.PubMedPubMedCentralCrossRef
41.
go back to reference Motta C, Assogna M, Bonomi CG, Di Lorenzo F, Nuccetelli M, Mercuri NB, et al. Interplay between the catecholaminergic enzymatic axis and neurodegeneration/neuroinflammation processes in the Alzheimer’s disease continuum. Eur J Neurol. 2023;30(4):839–48.PubMedCrossRef Motta C, Assogna M, Bonomi CG, Di Lorenzo F, Nuccetelli M, Mercuri NB, et al. Interplay between the catecholaminergic enzymatic axis and neurodegeneration/neuroinflammation processes in the Alzheimer’s disease continuum. Eur J Neurol. 2023;30(4):839–48.PubMedCrossRef
42.
go back to reference Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, et al. Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep. 2017;7(1):17762.PubMedPubMedCentralCrossRef Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, et al. Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep. 2017;7(1):17762.PubMedPubMedCentralCrossRef
43.
go back to reference Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153(3):707–20.PubMedPubMedCentralCrossRef Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153(3):707–20.PubMedPubMedCentralCrossRef
44.
go back to reference Lin W, Zhang J, Liu Y, Wu R, Yang H, Hu X, et al. Studies on diagnostic biomarkers and therapeutic mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. Eur J Pharm Sci. 2017;105:119–26.PubMedCrossRef Lin W, Zhang J, Liu Y, Wu R, Yang H, Hu X, et al. Studies on diagnostic biomarkers and therapeutic mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. Eur J Pharm Sci. 2017;105:119–26.PubMedCrossRef
45.
go back to reference Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.PubMedCrossRef Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.PubMedCrossRef
46.
go back to reference Zhang DF, Fan Y, Wang D, Bi R, Zhang C, Fang Y, et al. PLD3 in Alzheimer’s disease: a modest effect as revealed by updated association and expression analyses. Mol Neurobiol. 2016;53(6):4034–45.PubMedCrossRef Zhang DF, Fan Y, Wang D, Bi R, Zhang C, Fang Y, et al. PLD3 in Alzheimer’s disease: a modest effect as revealed by updated association and expression analyses. Mol Neurobiol. 2016;53(6):4034–45.PubMedCrossRef
47.
go back to reference Tan MS, Zhu JX, Cao XP, Yu JT, Tan L. Rare variants in PLD3 increase risk for Alzheimer’s disease in Han Chinese. J Alzheimers Dis. 2018;64(1):55–9.PubMedCrossRef Tan MS, Zhu JX, Cao XP, Yu JT, Tan L. Rare variants in PLD3 increase risk for Alzheimer’s disease in Han Chinese. J Alzheimers Dis. 2018;64(1):55–9.PubMedCrossRef
48.
go back to reference Blanco-Luquin I, Altuna M, Sanchez-Ruiz de Gordoa J, Urdanoz-Casado A, Roldan M, Camara M, et al. PLD3 epigenetic changes in the hippocampus of Alzheimer’s disease. Clin Epigenetics. 2018;10(1):116.PubMedPubMedCentralCrossRef Blanco-Luquin I, Altuna M, Sanchez-Ruiz de Gordoa J, Urdanoz-Casado A, Roldan M, Camara M, et al. PLD3 epigenetic changes in the hippocampus of Alzheimer’s disease. Clin Epigenetics. 2018;10(1):116.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Yuan P, Zhang M, Tong L, Morse TM, McDougal RA, Ding H, et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature. 2022;612(7939):328–37.PubMedPubMedCentralCrossRef Yuan P, Zhang M, Tong L, Morse TM, McDougal RA, Ding H, et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature. 2022;612(7939):328–37.PubMedPubMedCentralCrossRef
51.
go back to reference Andujar-Vera F, Garcia-Fontana C, Sanabria-de la Torre R, Gonzalez-Salvatierra S, Martinez-Heredia L, Iglesias-Baena I, et al. Identification of potential targets linked to the cardiovascular/Alzheimer’s axis through bioinformatics approaches. Biomedicines. 2022;10(2):389.PubMedPubMedCentralCrossRef Andujar-Vera F, Garcia-Fontana C, Sanabria-de la Torre R, Gonzalez-Salvatierra S, Martinez-Heredia L, Iglesias-Baena I, et al. Identification of potential targets linked to the cardiovascular/Alzheimer’s axis through bioinformatics approaches. Biomedicines. 2022;10(2):389.PubMedPubMedCentralCrossRef
52.
go back to reference Zhu CJ, Jiang GX, Chen JM, Zhou ZM, Cheng Q. Serum haptoglobin in Chinese patients with Alzheimer’s disease and mild cognitive impairment: a case-control study. Brain Res Bull. 2018;137:301–5.PubMedCrossRef Zhu CJ, Jiang GX, Chen JM, Zhou ZM, Cheng Q. Serum haptoglobin in Chinese patients with Alzheimer’s disease and mild cognitive impairment: a case-control study. Brain Res Bull. 2018;137:301–5.PubMedCrossRef
53.
go back to reference Song IU, Kim YD, Chung SW, Cho HJ. Association between serum haptoglobin and the pathogenesis of Alzheimer’s disease. Intern Med. 2015;54(5):453–7.PubMedCrossRef Song IU, Kim YD, Chung SW, Cho HJ. Association between serum haptoglobin and the pathogenesis of Alzheimer’s disease. Intern Med. 2015;54(5):453–7.PubMedCrossRef
54.
go back to reference Philbert SA, Xu J, Unwin RD, Dowsey AW, Cooper GJS. Widespread severe cerebral elevations of haptoglobin and haemopexin in sporadic Alzheimer’s disease: evidence for a pervasive microvasculopathy. Biochem Biophys Res Commun. 2021;555:89–94.PubMedCrossRef Philbert SA, Xu J, Unwin RD, Dowsey AW, Cooper GJS. Widespread severe cerebral elevations of haptoglobin and haemopexin in sporadic Alzheimer’s disease: evidence for a pervasive microvasculopathy. Biochem Biophys Res Commun. 2021;555:89–94.PubMedCrossRef
55.
go back to reference Spagnuolo MS, Maresca B, La Marca V, Carrizzo A, Veronesi C, Cupidi C, et al. Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk. ACS Chem Neurosci. 2014;5(9):837–47.PubMedCrossRef Spagnuolo MS, Maresca B, La Marca V, Carrizzo A, Veronesi C, Cupidi C, et al. Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk. ACS Chem Neurosci. 2014;5(9):837–47.PubMedCrossRef
56.
go back to reference Maresca B, Spagnuolo MS, Cigliano L. Haptoglobin modulates beta-amyloid uptake by U-87 MG astrocyte cell line. J Mol Neurosci. 2014;56(1):35–47.PubMedCrossRef Maresca B, Spagnuolo MS, Cigliano L. Haptoglobin modulates beta-amyloid uptake by U-87 MG astrocyte cell line. J Mol Neurosci. 2014;56(1):35–47.PubMedCrossRef
57.
go back to reference Zhang Z, Deng L, Yu H, Shi Y, Bai F, Xie C, et al. Association of angiotensin-converting enzyme functional gene I/D polymorphism with amnestic mild cognitive impairment. Neurosci Lett. 2012;514(1):131–5.PubMedCrossRef Zhang Z, Deng L, Yu H, Shi Y, Bai F, Xie C, et al. Association of angiotensin-converting enzyme functional gene I/D polymorphism with amnestic mild cognitive impairment. Neurosci Lett. 2012;514(1):131–5.PubMedCrossRef
58.
go back to reference Li Y, Zhang Z, Deng L, Bai F, Shi Y, Yu H, et al. Genetic variation in angiotensin converting-enzyme affects the white matter integrity and cognitive function of amnestic mild cognitive impairment patients. J Neurol Sci. 2017;380:177–81.PubMedCrossRef Li Y, Zhang Z, Deng L, Bai F, Shi Y, Yu H, et al. Genetic variation in angiotensin converting-enzyme affects the white matter integrity and cognitive function of amnestic mild cognitive impairment patients. J Neurol Sci. 2017;380:177–81.PubMedCrossRef
59.
go back to reference Rozzini L, Chilovi BV, Bertoletti E, Conti M, Del Rio I, Trabucchi M, et al. Angiotensin converting enzyme (ACE) inhibitors modulate the rate of progression of amnestic mild cognitive impairment. Int J Geriatr Psychiatry. 2006;21(6):550–5.PubMedCrossRef Rozzini L, Chilovi BV, Bertoletti E, Conti M, Del Rio I, Trabucchi M, et al. Angiotensin converting enzyme (ACE) inhibitors modulate the rate of progression of amnestic mild cognitive impairment. Int J Geriatr Psychiatry. 2006;21(6):550–5.PubMedCrossRef
60.
go back to reference Rahman MR, Islam T, Zaman T, Shahjaman M, Karim MR, Huq F, et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290–9.PubMedCrossRef Rahman MR, Islam T, Zaman T, Shahjaman M, Karim MR, Huq F, et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290–9.PubMedCrossRef
61.
go back to reference Bamberger C, Pankow S, Martinez-Bartolome S, Ma M, Diedrich J, Rissman RA, et al. Protein footprinting via covalent protein painting reveals structural changes of the proteome in Alzheimer’s disease. J Proteome Res. 2021;20(5):2762–71.PubMedPubMedCentralCrossRef Bamberger C, Pankow S, Martinez-Bartolome S, Ma M, Diedrich J, Rissman RA, et al. Protein footprinting via covalent protein painting reveals structural changes of the proteome in Alzheimer’s disease. J Proteome Res. 2021;20(5):2762–71.PubMedPubMedCentralCrossRef
62.
go back to reference Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15(1):43.PubMedPubMedCentralCrossRef Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15(1):43.PubMedPubMedCentralCrossRef
63.
go back to reference Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, et al. SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet. 2014;23(24):6644–58.PubMedPubMedCentralCrossRef Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, et al. SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet. 2014;23(24):6644–58.PubMedPubMedCentralCrossRef
64.
go back to reference Zhu Y, Chen Z, Chen X, Hu S. Serum sEPCR levels are elevated in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2015;30(5):517–21.PubMedCrossRef Zhu Y, Chen Z, Chen X, Hu S. Serum sEPCR levels are elevated in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2015;30(5):517–21.PubMedCrossRef
65.
go back to reference Huang C, Wen X, Xie H, Hu D, Li K. Identification and experimental validation of marker genes between diabetes and Alzheimer’s disease. Oxid Med Cell Longev. 2022;2022:8122532.PubMedPubMedCentralCrossRef Huang C, Wen X, Xie H, Hu D, Li K. Identification and experimental validation of marker genes between diabetes and Alzheimer’s disease. Oxid Med Cell Longev. 2022;2022:8122532.PubMedPubMedCentralCrossRef
Metadata
Title
Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer’s disease: findings based on urine proteomics and machine learning
Authors
Yuye Wang
Yu Sun
Yu Wang
Shuhong Jia
Yanan Qiao
Zhi Zhou
Wen Shao
Xiangfei Zhang
Jing Guo
Bin Zhang
Xiaoqian Niu
Yi Wang
Dantao Peng
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01324-4

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue