Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2022

Open Access 01-12-2022 | Ambroxol | Review

RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia—an international Delphi consensus

Authors: John T. O’Brien, Leonidas Chouliaras, Janet Sultana, John-Paul Taylor, Clive Ballard, on behalf of the RENEWAL Study Group

Published in: Alzheimer's Research & Therapy | Issue 1/2022

Login to get access

Abstract

Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson’s disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Literature
1.
go back to reference Vann Jones SA, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44:673–83.PubMedCrossRef Vann Jones SA, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44:673–83.PubMedCrossRef
2.
go back to reference Kane JPM, Surendranathan A, Bentley A, Barker SAH, Taylor J-P, Thomas AJ, et al. Clinical prevalence of Lewy body dementia. Alzheimers Res Ther. 2018;10:19.PubMedPubMedCentralCrossRef Kane JPM, Surendranathan A, Bentley A, Barker SAH, Taylor J-P, Thomas AJ, et al. Clinical prevalence of Lewy body dementia. Alzheimers Res Ther. 2018;10:19.PubMedPubMedCentralCrossRef
3.
go back to reference McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;66:1455. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;66:1455.
4.
go back to reference Wu Y-T, Clare L, Hindle JV, Nelis SM, Martyr A, Matthews FE, et al. Dementia subtype and living well: results from the Improving the experience of Dementia and Enhancing Active Life (IDEAL) study. BMC Med. 2018;16:140.PubMedPubMedCentralCrossRef Wu Y-T, Clare L, Hindle JV, Nelis SM, Martyr A, Matthews FE, et al. Dementia subtype and living well: results from the Improving the experience of Dementia and Enhancing Active Life (IDEAL) study. BMC Med. 2018;16:140.PubMedPubMedCentralCrossRef
5.
go back to reference Price A, Farooq R, Yuan J-M, Menon VB, Cardinal RN, O’Brien JT. Mortality in dementia with Lewy bodies compared with Alzheimer’s dementia: a retrospective naturalistic cohort study. BMJ Open. 2017;7:e017504.PubMedPubMedCentralCrossRef Price A, Farooq R, Yuan J-M, Menon VB, Cardinal RN, O’Brien JT. Mortality in dementia with Lewy bodies compared with Alzheimer’s dementia: a retrospective naturalistic cohort study. BMJ Open. 2017;7:e017504.PubMedPubMedCentralCrossRef
6.
go back to reference Surendranathan A, Su L, Mak E, Passamonti L, Hong YT, Arnold R, et al. Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain. 2018;141:3415–27.PubMedPubMedCentralCrossRef Surendranathan A, Su L, Mak E, Passamonti L, Hong YT, Arnold R, et al. Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain. 2018;141:3415–27.PubMedPubMedCentralCrossRef
7.
go back to reference King E, O’Brien JT, Donaghy P, Morris C, Barnett N, Olsen K, et al. Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias. J Neurol Neurosurg Psychiatry. 2018;89:339–45.PubMedCrossRef King E, O’Brien JT, Donaghy P, Morris C, Barnett N, Olsen K, et al. Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias. J Neurol Neurosurg Psychiatry. 2018;89:339–45.PubMedCrossRef
8.
go back to reference Malpetti M, Kievit RA, Passamonti L, Jones PS, Tsvetanov KA, Rittman T, et al. Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain. 2020;143:1588–602.PubMedPubMedCentralCrossRef Malpetti M, Kievit RA, Passamonti L, Jones PS, Tsvetanov KA, Rittman T, et al. Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain. 2020;143:1588–602.PubMedPubMedCentralCrossRef
9.
go back to reference Taylor J-P, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, et al. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020;19:157–69.PubMedCrossRef Taylor J-P, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, et al. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020;19:157–69.PubMedCrossRef
11.
go back to reference Germann UA, Alam JJ. P38α MAPK signaling-a robust therapeutic target for Rab5-mediated neurodegenerative disease. Int J Mol Sci. 2020;21:E5485.PubMedCrossRef Germann UA, Alam JJ. P38α MAPK signaling-a robust therapeutic target for Rab5-mediated neurodegenerative disease. Int J Mol Sci. 2020;21:E5485.PubMedCrossRef
12.
go back to reference Antoszczak M, Markowska A, Markowska J, Huczyński A. Old wine in new bottles: drug repurposing in oncology. Eur J Pharmacol. 2020;866:172784.PubMedCrossRef Antoszczak M, Markowska A, Markowska J, Huczyński A. Old wine in new bottles: drug repurposing in oncology. Eur J Pharmacol. 2020;866:172784.PubMedCrossRef
13.
go back to reference Ballard C, Aarsland D, Cummings J, O’Brien J, Mills R, Molinuevo JL, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16:661–73.PubMedPubMedCentralCrossRef Ballard C, Aarsland D, Cummings J, O’Brien J, Mills R, Molinuevo JL, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16:661–73.PubMedPubMedCentralCrossRef
14.
go back to reference Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, Schutjens M-HDB. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20:1027–34.PubMedCrossRef Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, Schutjens M-HDB. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20:1027–34.PubMedCrossRef
15.
go back to reference Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov. 2012;11:833–46.PubMedCrossRef Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov. 2012;11:833–46.PubMedCrossRef
16.
go back to reference Kantar A, Klimek L, Cazan D, Sperl A, Sent U, Mesquita M. An overview of efficacy and safety of ambroxol for the treatment of acute and chronic respiratory diseases with a special regard to children. Multidiscip Respir Med. 2020;15:511.PubMedPubMedCentralCrossRef Kantar A, Klimek L, Cazan D, Sperl A, Sent U, Mesquita M. An overview of efficacy and safety of ambroxol for the treatment of acute and chronic respiratory diseases with a special regard to children. Multidiscip Respir Med. 2020;15:511.PubMedPubMedCentralCrossRef
17.
go back to reference Bouscary A, Quessada C, René F, Spedding M, Henriques A, Ngo S, et al. Drug repositioning in neurodegeneration: an overview of the use of ambroxol in neurodegenerative diseases. Eur J Pharmacol. 2020;884:173446.PubMedCrossRef Bouscary A, Quessada C, René F, Spedding M, Henriques A, Ngo S, et al. Drug repositioning in neurodegeneration: an overview of the use of ambroxol in neurodegenerative diseases. Eur J Pharmacol. 2020;884:173446.PubMedCrossRef
18.
go back to reference Magalhaes J, Gegg ME, Migdalska-Richards A, Schapira AH. Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons. Sci Rep. Nature Publishing Group. 2018;8:1385.PubMedPubMedCentralCrossRef Magalhaes J, Gegg ME, Migdalska-Richards A, Schapira AH. Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons. Sci Rep. Nature Publishing Group. 2018;8:1385.PubMedPubMedCentralCrossRef
19.
go back to reference Velayudhan L, Ffytche D, Ballard C, Aarsland D. New therapeutic strategies for Lewy body dementias. Curr Neurol Neurosci Rep. 2017;17:68.PubMedCrossRef Velayudhan L, Ffytche D, Ballard C, Aarsland D. New therapeutic strategies for Lewy body dementias. Curr Neurol Neurosci Rep. 2017;17:68.PubMedCrossRef
20.
go back to reference Mullin S, Smith L, Lee K, D’Souza G, Woodgate P, Elflein J, et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations. JAMA Neurol. 2020;77:427–34.PubMedPubMedCentralCrossRef Mullin S, Smith L, Lee K, D’Souza G, Woodgate P, Elflein J, et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations. JAMA Neurol. 2020;77:427–34.PubMedPubMedCentralCrossRef
21.
go back to reference Migdalska-Richards A, Ko WKD, Li Q, Bezard E, Schapira AHV. Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate. Synapse. 2017;71:e21967.PubMedCentralCrossRef Migdalska-Richards A, Ko WKD, Li Q, Bezard E, Schapira AHV. Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate. Synapse. 2017;71:e21967.PubMedCentralCrossRef
22.
go back to reference Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, et al. Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson’s patient midbrain neurons. J Neurosci. 2016;36:7693–706.PubMedPubMedCentralCrossRef Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, et al. Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson’s patient midbrain neurons. J Neurosci. 2016;36:7693–706.PubMedPubMedCentralCrossRef
23.
go back to reference Mishra A, Krishnamurthy S. Neurorestorative effects of sub-chronic administration of ambroxol in rodent model of Parkinson’s disease. Naunyn Schmiedeberg's Arch Pharmacol. 2020;393:429–44.CrossRef Mishra A, Krishnamurthy S. Neurorestorative effects of sub-chronic administration of ambroxol in rodent model of Parkinson’s disease. Naunyn Schmiedeberg's Arch Pharmacol. 2020;393:429–44.CrossRef
24.
go back to reference Mishra A, Chandravanshi LP, Trigun SK, Krishnamurthy S. Ambroxol modulates 6-Hydroxydopamine-induced temporal reduction in Glucocerebrosidase (GCase) enzymatic activity and Parkinson’s disease symptoms. Biochem Pharmacol. 2018;155:479–93.PubMedCrossRef Mishra A, Chandravanshi LP, Trigun SK, Krishnamurthy S. Ambroxol modulates 6-Hydroxydopamine-induced temporal reduction in Glucocerebrosidase (GCase) enzymatic activity and Parkinson’s disease symptoms. Biochem Pharmacol. 2018;155:479–93.PubMedCrossRef
25.
go back to reference Yang S-Y, Gegg M, Chau D, Schapira A. Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation. Neurobiol Dis. 2020;134:104620.PubMedPubMedCentralCrossRef Yang S-Y, Gegg M, Chau D, Schapira A. Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation. Neurobiol Dis. 2020;134:104620.PubMedPubMedCentralCrossRef
26.
go back to reference Sanchez-Martinez A, Beavan M, Gegg ME, Chau K-Y, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep. 2016;6:31380.PubMedPubMedCentralCrossRef Sanchez-Martinez A, Beavan M, Gegg ME, Chau K-Y, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep. 2016;6:31380.PubMedPubMedCentralCrossRef
27.
go back to reference Maor G, Cabasso O, Krivoruk O, Rodriguez J, Steller H, Segal D, et al. The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum Mol Genet. 2016;25:2712–27.PubMedPubMedCentral Maor G, Cabasso O, Krivoruk O, Rodriguez J, Steller H, Segal D, et al. The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum Mol Genet. 2016;25:2712–27.PubMedPubMedCentral
28.
go back to reference McNeill A, Magalhaes J, Shen C, Chau K-Y, Hughes D, Mehta A, et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain. 2014;137:1481–95.PubMedPubMedCentralCrossRef McNeill A, Magalhaes J, Shen C, Chau K-Y, Hughes D, Mehta A, et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain. 2014;137:1481–95.PubMedPubMedCentralCrossRef
29.
go back to reference Migdalska-Richards A, Daly L, Bezard E, Schapira AHV. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann Neurol. 2016;80:766–75.PubMedPubMedCentralCrossRef Migdalska-Richards A, Daly L, Bezard E, Schapira AHV. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann Neurol. 2016;80:766–75.PubMedPubMedCentralCrossRef
31.
go back to reference Kopytova AE, Rychkov GN, Nikolaev MA, Baydakova GV, Cheblokov AA, Senkevich KA, et al. Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism Relat Disord. 2021;84:112–21.PubMedCrossRef Kopytova AE, Rychkov GN, Nikolaev MA, Baydakova GV, Cheblokov AA, Senkevich KA, et al. Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism Relat Disord. 2021;84:112–21.PubMedCrossRef
32.
go back to reference Istaiti M, Revel-Vilk S, Becker-Cohen M, Dinur T, Ramaswami U, Castillo-Garcia D, et al. Upgrading the evidence for the use of ambroxol in Gaucher disease and GBA related Parkinson: Investigator initiated registry based on real life data. Am J Hematol. 2021;96:545–51.PubMedCrossRef Istaiti M, Revel-Vilk S, Becker-Cohen M, Dinur T, Ramaswami U, Castillo-Garcia D, et al. Upgrading the evidence for the use of ambroxol in Gaucher disease and GBA related Parkinson: Investigator initiated registry based on real life data. Am J Hematol. 2021;96:545–51.PubMedCrossRef
34.
go back to reference Silveira CRA, MacKinley J, Coleman K, Li Z, Finger E, Bartha R, et al. Ambroxol as a novel disease-modifying treatment for Parkinson’s disease dementia: protocol for a single-centre, randomized, double-blind, placebo-controlled trial. BMC Neurol. 2019;19:20.PubMedPubMedCentralCrossRef Silveira CRA, MacKinley J, Coleman K, Li Z, Finger E, Bartha R, et al. Ambroxol as a novel disease-modifying treatment for Parkinson’s disease dementia: protocol for a single-centre, randomized, double-blind, placebo-controlled trial. BMC Neurol. 2019;19:20.PubMedPubMedCentralCrossRef
36.
go back to reference Helse Fonna. A clinical trial to demonstrate clinical efficacy on cognitive, neuropsychiatric and functional outcomes of ambroxol in new and early patients with prodromal and mild dementia with Lewy bodies. clinicaltrials.gov; 2020. Report no.: NCT04588285. Available from: https://clinicaltrials.gov/ct2/show/NCT04588285. Helse Fonna. A clinical trial to demonstrate clinical efficacy on cognitive, neuropsychiatric and functional outcomes of ambroxol in new and early patients with prodromal and mild dementia with Lewy bodies. clinicaltrials.gov; 2020. Report no.: NCT04588285. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT04588285.
38.
go back to reference Fowler AJ, Hebron M, Missner AA, Wang R, Gao X, Kurd-Misto BT, et al. Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Drugs R D. 2019;19:149–66.PubMedPubMedCentralCrossRef Fowler AJ, Hebron M, Missner AA, Wang R, Gao X, Kurd-Misto BT, et al. Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Drugs R D. 2019;19:149–66.PubMedPubMedCentralCrossRef
39.
go back to reference Liu X, Hebron M, Shi W, Lonskaya I, Moussa CE-H. Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum Mol Genet. 2019;28:548–60.PubMedCrossRef Liu X, Hebron M, Shi W, Lonskaya I, Moussa CE-H. Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum Mol Genet. 2019;28:548–60.PubMedCrossRef
40.
go back to reference Lonskaya I, Hebron ML, Selby ST, Turner RS, Moussa CE-H. Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer’s disease models. Neuroscience. 2015;304:316–27.PubMedCrossRef Lonskaya I, Hebron ML, Selby ST, Turner RS, Moussa CE-H. Nilotinib and bosutinib modulate pre-plaque alterations of blood immune markers and neuro-inflammation in Alzheimer’s disease models. Neuroscience. 2015;304:316–27.PubMedCrossRef
41.
go back to reference Hebron ML, Lonskaya I, Olopade P, Selby ST, Pagan F, Moussa CE-H. Tyrosine kinase inhibition regulates early systemic immune changes and modulates the neuroimmune response in α-synucleinopathy. J Clin Cell Immunol. 2014;5:259.PubMedPubMedCentralCrossRef Hebron ML, Lonskaya I, Olopade P, Selby ST, Pagan F, Moussa CE-H. Tyrosine kinase inhibition regulates early systemic immune changes and modulates the neuroimmune response in α-synucleinopathy. J Clin Cell Immunol. 2014;5:259.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Hebron ML, Javidnia M, Moussa CE-H. Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci. 2018;391:90–9.PubMedCrossRef Hebron ML, Javidnia M, Moussa CE-H. Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci. 2018;391:90–9.PubMedCrossRef
44.
go back to reference Karim MR, Liao EE, Kim J, Meints J, Martinez HM, Pletnikova O, et al. α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Mol Neurodegener. 2020;15:27.PubMedPubMedCentralCrossRef Karim MR, Liao EE, Kim J, Meints J, Martinez HM, Pletnikova O, et al. α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Mol Neurodegener. 2020;15:27.PubMedPubMedCentralCrossRef
45.
go back to reference Barbera LL, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, et al. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer’s Disease. Prog Neurobiol. 2021;202:102031 Elsevier Limited.PubMedCrossRef Barbera LL, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, et al. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer’s Disease. Prog Neurobiol. 2021;202:102031 Elsevier Limited.PubMedCrossRef
46.
go back to reference Nishioka H, Tooi N, Isobe T, Nakatsuji N, Aiba K. BMS-708163 and Nilotinib restore synaptic dysfunction in human embryonic stem cell-derived Alzheimer’s disease models. Sci Rep. 2016;6:33427.PubMedPubMedCentralCrossRef Nishioka H, Tooi N, Isobe T, Nakatsuji N, Aiba K. BMS-708163 and Nilotinib restore synaptic dysfunction in human embryonic stem cell-derived Alzheimer’s disease models. Sci Rep. 2016;6:33427.PubMedPubMedCentralCrossRef
47.
go back to reference Heyburn L, Hebron ML, Smith J, Winston C, Bechara J, Li Z, et al. Tyrosine kinase inhibition reverses TDP-43 effects on synaptic protein expression, astrocytic function and amino acid dis-homeostasis. J Neurochem. 2016;139:610–23.PubMedCrossRef Heyburn L, Hebron ML, Smith J, Winston C, Bechara J, Li Z, et al. Tyrosine kinase inhibition reverses TDP-43 effects on synaptic protein expression, astrocytic function and amino acid dis-homeostasis. J Neurochem. 2016;139:610–23.PubMedCrossRef
48.
go back to reference Lopez-Cuina M, Guerin PA, Canron M-H, Delamarre A, Dehay B, Bezard E, et al. Nilotinib fails to prevent synucleinopathy and cell loss in a mouse model of multiple system atrophy. Mov Disord. 2020;35:1163–72.PubMedCrossRef Lopez-Cuina M, Guerin PA, Canron M-H, Delamarre A, Dehay B, Bezard E, et al. Nilotinib fails to prevent synucleinopathy and cell loss in a mouse model of multiple system atrophy. Mov Disord. 2020;35:1163–72.PubMedCrossRef
49.
go back to reference Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52:3099–105.PubMedCrossRef Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52:3099–105.PubMedCrossRef
50.
go back to reference Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77:309–17.PubMedCrossRef Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77:309–17.PubMedCrossRef
51.
go back to reference Pagan FL, Wilmarth B, Torres-Yaghi Y, Hebron ML, Mulki S, Ferrante D, et al. Long-Term Safety and Clinical Effects of Nilotinib in Parkinson’s Disease. Mov Disord. 2021;36:740–9. Pagan FL, Wilmarth B, Torres-Yaghi Y, Hebron ML, Mulki S, Ferrante D, et al. Long-Term Safety and Clinical Effects of Nilotinib in Parkinson’s Disease. Mov Disord. 2021;36:740–9.
52.
go back to reference Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, Caspell-Garcia C, et al. Efficacy of Nilotinib in Patients With Moderately Advanced Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2021;78:312–20. Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, Caspell-Garcia C, et al. Efficacy of Nilotinib in Patients With Moderately Advanced Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2021;78:312–20.
53.
go back to reference Turner RS, Hebron ML, Lawler A, Mundel EE, Yusuf N, Starr JN, et al. Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease. Ann Neurol. 2020;88:183–94.PubMedPubMedCentralCrossRef Turner RS, Hebron ML, Lawler A, Mundel EE, Yusuf N, Starr JN, et al. Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease. Ann Neurol. 2020;88:183–94.PubMedPubMedCentralCrossRef
54.
go back to reference Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, et al. Nilotinib effects in Parkinson’s disease and dementia with Lewy bodies. J Parkinsons Dis. 2016;6:503–17.PubMedPubMedCentralCrossRef Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, et al. Nilotinib effects in Parkinson’s disease and dementia with Lewy bodies. J Parkinsons Dis. 2016;6:503–17.PubMedPubMedCentralCrossRef
55.
go back to reference Fowler AJ, Hebron M, Balaraman K, Shi W, Missner AA, Greenzaid JD, et al. Discoidin domain receptor 1 is a therapeutic target for neurodegenerative diseases. Hum Mol Genet. 2020;29:2882–98.PubMedPubMedCentralCrossRef Fowler AJ, Hebron M, Balaraman K, Shi W, Missner AA, Greenzaid JD, et al. Discoidin domain receptor 1 is a therapeutic target for neurodegenerative diseases. Hum Mol Genet. 2020;29:2882–98.PubMedPubMedCentralCrossRef
56.
go back to reference Pagan FL, Torres-Yaghi Y, Hebron ML, Wilmarth B, Turner RS, Matar S, et al. Safety, target engagement, and biomarker effects of bosutinib in dementia with Lewy bodies. Alzheimers Dement. 2022;8:e12296. Pagan FL, Torres-Yaghi Y, Hebron ML, Wilmarth B, Turner RS, Matar S, et al. Safety, target engagement, and biomarker effects of bosutinib in dementia with Lewy bodies. Alzheimers Dement. 2022;8:e12296.
58.
go back to reference MD FP. A randomized, double blind, placebo-controlled study to evaluate the impact of nilotinib treatment on safety, tolerability, pharmacokinetics and biomarkers in dementia with Lewy bodies (DLB). clinicaltrials.gov; 2021. Report no.: NCT04002674. Available from: https://clinicaltrials.gov/ct2/show/NCT04002674. MD FP. A randomized, double blind, placebo-controlled study to evaluate the impact of nilotinib treatment on safety, tolerability, pharmacokinetics and biomarkers in dementia with Lewy bodies (DLB). clinicaltrials.gov; 2021. Report no.: NCT04002674. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT04002674.
59.
go back to reference Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther Adv Endocrinol. 2021;12:2042018821997320 SAGE Publications. Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther Adv Endocrinol. 2021;12:2042018821997320 SAGE Publications.
60.
go back to reference Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–75.PubMedPubMedCentralCrossRef Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–75.PubMedPubMedCentralCrossRef
61.
go back to reference Wang X, Wang L, Xu Y, Yu Q, Li L, Guo Y. Intranasal administration of Exendin-4 antagonizes Aβ31-35-induced disruption of circadian rhythm and impairment of learning and memory. Aging Clin Exp Res. 2016;28:1259–66.PubMedCrossRef Wang X, Wang L, Xu Y, Yu Q, Li L, Guo Y. Intranasal administration of Exendin-4 antagonizes Aβ31-35-induced disruption of circadian rhythm and impairment of learning and memory. Aging Clin Exp Res. 2016;28:1259–66.PubMedCrossRef
62.
go back to reference Daniele G, Iozzo P, Molina-Carrion M, Lancaster J, Ciociaro D, Cersosimo E, et al. Exenatide regulates cerebral glucose metabolism in brain areas associated with glucose homeostasis and reward system. Diabetes. 2015;64:3406–12.PubMedPubMedCentralCrossRef Daniele G, Iozzo P, Molina-Carrion M, Lancaster J, Ciociaro D, Cersosimo E, et al. Exenatide regulates cerebral glucose metabolism in brain areas associated with glucose homeostasis and reward system. Diabetes. 2015;64:3406–12.PubMedPubMedCentralCrossRef
63.
go back to reference Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of Tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res. 2017;42:2326–35.PubMedCrossRef Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of Tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res. 2017;42:2326–35.PubMedCrossRef
64.
go back to reference Jalewa J, Sharma MK, Hölscher C. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells. J Neurochem. 2016;139(1):55–67.PubMedCrossRef Jalewa J, Sharma MK, Hölscher C. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells. J Neurochem. 2016;139(1):55–67.PubMedCrossRef
65.
go back to reference Bianchi M, D’Oria V, Braghini MR, Petrini S, Manco M. Liraglutide treatment ameliorates neurotoxicity induced by stable silencing of Pin1. Int J Mol Sci. 2019;20(20):5064.PubMedCentralCrossRef Bianchi M, D’Oria V, Braghini MR, Petrini S, Manco M. Liraglutide treatment ameliorates neurotoxicity induced by stable silencing of Pin1. Int J Mol Sci. 2019;20(20):5064.PubMedCentralCrossRef
66.
go back to reference Zhang J, Wu J, Zeng W, Zhao Y, Zu H. Exendin-4, a glucagon-like peptide-1 receptor agonist, inhibits Aβ25-35-induced apoptosis in PC12 cells by suppressing the expression of endoplasmic reticulum stress-related proteins. Int J Clin Exp Pathol. 2015;8(10):12784–92.PubMedPubMedCentral Zhang J, Wu J, Zeng W, Zhao Y, Zu H. Exendin-4, a glucagon-like peptide-1 receptor agonist, inhibits Aβ25-35-induced apoptosis in PC12 cells by suppressing the expression of endoplasmic reticulum stress-related proteins. Int J Clin Exp Pathol. 2015;8(10):12784–92.PubMedPubMedCentral
67.
go back to reference Zheng C, Zhou M, Sun J, Xiong H, Peng P, Gu Z, et al. The protective effects of liraglutide on AD-like neurodegeneration induced by oxidative stress in human neuroblastoma SH-SY5Y cells. Chem Biol Interact. 2019;310:108688.PubMedCrossRef Zheng C, Zhou M, Sun J, Xiong H, Peng P, Gu Z, et al. The protective effects of liraglutide on AD-like neurodegeneration induced by oxidative stress in human neuroblastoma SH-SY5Y cells. Chem Biol Interact. 2019;310:108688.PubMedCrossRef
68.
go back to reference Panagaki T, Michael M, Hölscher C. Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Sci Rep. 2017;7(1):16158.PubMedPubMedCentralCrossRef Panagaki T, Michael M, Hölscher C. Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Sci Rep. 2017;7(1):16158.PubMedPubMedCentralCrossRef
69.
go back to reference Dekeryte R, Hull C, Plucińska K, Khan S, Kamli-Salino S, Mody N, et al. Effects of Liraglutide and Fenretinide treatments on the diabetic phenotype of neuronal human BACE1 knock-in mice. Biochem Pharmacol. 2019;166:222–30.PubMedCrossRef Dekeryte R, Hull C, Plucińska K, Khan S, Kamli-Salino S, Mody N, et al. Effects of Liraglutide and Fenretinide treatments on the diabetic phenotype of neuronal human BACE1 knock-in mice. Biochem Pharmacol. 2019;166:222–30.PubMedCrossRef
70.
go back to reference Hansen HH, Fabricius K, Barkholt P, Mikkelsen JD, Jelsing J, Pyke C, et al. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson’s disease. Brain Res. 2016;1646:354–65.PubMedCrossRef Hansen HH, Fabricius K, Barkholt P, Mikkelsen JD, Jelsing J, Pyke C, et al. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson’s disease. Brain Res. 2016;1646:354–65.PubMedCrossRef
71.
go back to reference Kelly P, McClean PL, Ackermann M, Konerding MA, Hölscher C, Mitchell CA. Restoration of cerebral and systemic microvascular architecture in APP/PS1 transgenic mice following treatment with LiraglutideTM. Microcirculation. 2015;22(2):133–45.PubMedCrossRef Kelly P, McClean PL, Ackermann M, Konerding MA, Hölscher C, Mitchell CA. Restoration of cerebral and systemic microvascular architecture in APP/PS1 transgenic mice following treatment with LiraglutideTM. Microcirculation. 2015;22(2):133–45.PubMedCrossRef
72.
go back to reference Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X, et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol Metab. 2021;47:101180.PubMedPubMedCentralCrossRef Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X, et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol Metab. 2021;47:101180.PubMedPubMedCentralCrossRef
73.
go back to reference Abd el-Rady NM, Ahmed A, Abdel-Rady MM, Ismail OI. Glucagon-like peptide-1 analog improves neuronal and behavioral impairment and promotes neuroprotection in a rat model of aluminum-induced dementia. Physiol Rep. 2020;8:e14651.PubMedCentral Abd el-Rady NM, Ahmed A, Abdel-Rady MM, Ismail OI. Glucagon-like peptide-1 analog improves neuronal and behavioral impairment and promotes neuroprotection in a rat model of aluminum-induced dementia. Physiol Rep. 2020;8:e14651.PubMedCentral
74.
go back to reference Paladugu L, Gharaibeh A, Kolli N, Learman C, Hall TC, Li L, et al. Liraglutide has anti-inflammatory and anti-amyloid properties in streptozotocin-induced and 5xFAD mouse models of Alzheimer’s disease. Int J Mol Sci. 2021;22:E860.PubMedCrossRef Paladugu L, Gharaibeh A, Kolli N, Learman C, Hall TC, Li L, et al. Liraglutide has anti-inflammatory and anti-amyloid properties in streptozotocin-induced and 5xFAD mouse models of Alzheimer’s disease. Int J Mol Sci. 2021;22:E860.PubMedCrossRef
75.
go back to reference Yu CJ, Ma D, Song LL, Zhai ZN, Tao Y, Zhang Y, et al. The role of GLP-1/GIP receptor agonists in Alzheimer’s disease. Adv Clin Exp Med. 2020;29:661–8.PubMedCrossRef Yu CJ, Ma D, Song LL, Zhai ZN, Tao Y, Zhang Y, et al. The role of GLP-1/GIP receptor agonists in Alzheimer’s disease. Adv Clin Exp Med. 2020;29:661–8.PubMedCrossRef
76.
go back to reference Maskery M, Goulding EM, Gengler S, Melchiorsen JU, Rosenkilde MM, Hölscher C. The dual GLP-1/GIP receptor agonist DA4-JC shows superior protective properties compared to the GLP-1 analogue liraglutide in the APP/PS1 mouse model of Alzheimer’s disease. Am J Alzheimers Dis Other Dement. 2020;35:1533317520953041 SAGE Publications Inc.CrossRef Maskery M, Goulding EM, Gengler S, Melchiorsen JU, Rosenkilde MM, Hölscher C. The dual GLP-1/GIP receptor agonist DA4-JC shows superior protective properties compared to the GLP-1 analogue liraglutide in the APP/PS1 mouse model of Alzheimer’s disease. Am J Alzheimers Dis Other Dement. 2020;35:1533317520953041 SAGE Publications Inc.CrossRef
77.
go back to reference Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol. 2009;202:431–9.PubMedCrossRef Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J Endocrinol. 2009;202:431–9.PubMedCrossRef
78.
go back to reference Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial. JAMA Neurol. 2019;76(4):420–9.PubMedPubMedCentralCrossRef Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, et al. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial. JAMA Neurol. 2019;76(4):420–9.PubMedPubMedCentralCrossRef
79.
go back to reference Khalilnezhad A, Taskiran D. The investigation of protective effects of glucagon-like peptide-1 (GLP-1) analogue exenatide against glucose and fructose-induced neurotoxicity. Int J Neurosci. 2019;129(5):481–91.PubMedCrossRef Khalilnezhad A, Taskiran D. The investigation of protective effects of glucagon-like peptide-1 (GLP-1) analogue exenatide against glucose and fructose-induced neurotoxicity. Int J Neurosci. 2019;129(5):481–91.PubMedCrossRef
80.
go back to reference Bomba M, Ciavardelli D, Silvestri E, Canzoniero LM, Lattanzio R, Chiappini P, et al. Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals. Cell Death Dis. 2013;4(5):e612.PubMedPubMedCentralCrossRef Bomba M, Ciavardelli D, Silvestri E, Canzoniero LM, Lattanzio R, Chiappini P, et al. Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals. Cell Death Dis. 2013;4(5):e612.PubMedPubMedCentralCrossRef
81.
go back to reference Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, Egan JM, et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res. 2003;72(5):603–12.PubMedCrossRef Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, Egan JM, et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res. 2003;72(5):603–12.PubMedCrossRef
82.
go back to reference Bomba M, Granzotto A, Castelli V, Onofrj M, Lattanzio R, Cimini A, et al. Exenatide reverts the high-fat-diet-induced impairment of BDNF signaling and inflammatory response in an animal model of Alzheimer’s disease. J Alzheimers Dis. 2019;70:793–810.PubMedCrossRef Bomba M, Granzotto A, Castelli V, Onofrj M, Lattanzio R, Cimini A, et al. Exenatide reverts the high-fat-diet-induced impairment of BDNF signaling and inflammatory response in an animal model of Alzheimer’s disease. J Alzheimers Dis. 2019;70:793–810.PubMedCrossRef
83.
go back to reference Zhao L, Li Z, Vong JSL, Chen X, Lai H-M, Yan LYC, et al. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat Commun. 2020;11:4413.PubMedPubMedCentralCrossRef Zhao L, Li Z, Vong JSL, Chen X, Lai H-M, Yan LYC, et al. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat Commun. 2020;11:4413.PubMedPubMedCentralCrossRef
84.
go back to reference Bergkvist L, Johnson ME, Mercado G, Steiner JA, Meyerdirk L, Schulz E, et al. An extended release GLP-1 analogue increases α-synuclein accumulation in a mouse model of prodromal Parkinson’s disease. Exp Neurol. 2021;341:113693.PubMedCrossRef Bergkvist L, Johnson ME, Mercado G, Steiner JA, Meyerdirk L, Schulz E, et al. An extended release GLP-1 analogue increases α-synuclein accumulation in a mouse model of prodromal Parkinson’s disease. Exp Neurol. 2021;341:113693.PubMedCrossRef
85.
go back to reference Athauda D, Maclagan K, Budnik N, Zampedri L, Hibbert S, Skene SS, et al. What effects might exenatide have on non-motor symptoms in Parkinson’s disease: a post hoc analysis. J Parkinsons Dis. 2018;8:247–58.PubMedCrossRef Athauda D, Maclagan K, Budnik N, Zampedri L, Hibbert S, Skene SS, et al. What effects might exenatide have on non-motor symptoms in Parkinson’s disease: a post hoc analysis. J Parkinsons Dis. 2018;8:247–58.PubMedCrossRef
86.
go back to reference Athauda D, Maclagan K, Budnik N, Zampedri L, Hibbert S, Aviles-Olmos I, et al. Post hoc analysis of the exenatide-PD trial-factors that predict response. Eur J Neurosci. 2019a;49(3):410–21.PubMedCrossRef Athauda D, Maclagan K, Budnik N, Zampedri L, Hibbert S, Aviles-Olmos I, et al. Post hoc analysis of the exenatide-PD trial-factors that predict response. Eur J Neurosci. 2019a;49(3):410–21.PubMedCrossRef
87.
go back to reference Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, Soderlund T, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–6.PubMedPubMedCentralCrossRef Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, Soderlund T, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–6.PubMedPubMedCentralCrossRef
88.
go back to reference Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, Ell P, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinsons Dis. 2014;4:337–44.PubMedCrossRef Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, Ell P, et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J Parkinsons Dis. 2014;4:337–44.PubMedCrossRef
89.
go back to reference Wang S-Y, Wu S-L, Chen T-C, Chuang C-S. Antidiabetic agents for treatment of Parkinson’s disease: a meta-analysis. Int J Environ Res Public Health. 2020;17:4805.PubMedCentralCrossRef Wang S-Y, Wu S-L, Chen T-C, Chuang C-S. Antidiabetic agents for treatment of Parkinson’s disease: a meta-analysis. Int J Environ Res Public Health. 2020;17:4805.PubMedCentralCrossRef
90.
go back to reference Watson KT, Wroolie TE, Tong G, Foland-Ross LC, Frangou S, Singh M, et al. Neural correlates of liraglutide effects in persons at risk for Alzheimer’s disease. Behav Brain Res. 2019;356:271–8.PubMedCrossRef Watson KT, Wroolie TE, Tong G, Foland-Ross LC, Frangou S, Singh M, et al. Neural correlates of liraglutide effects in persons at risk for Alzheimer’s disease. Behav Brain Res. 2019;356:271–8.PubMedCrossRef
91.
go back to reference Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, et al. 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8:108.PubMedPubMedCentralCrossRef Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, et al. 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8:108.PubMedPubMedCentralCrossRef
92.
go back to reference Mullins RJ, Mustapic M, Chia CW, Carlson O, Gulyani S, Tran J, et al. A pilot study of exenatide actions in Alzheimer’s disease. Curr Alzheimer Res. 2019;16:741–52.PubMedPubMedCentralCrossRef Mullins RJ, Mustapic M, Chia CW, Carlson O, Gulyani S, Tran J, et al. A pilot study of exenatide actions in Alzheimer’s disease. Curr Alzheimer Res. 2019;16:741–52.PubMedPubMedCentralCrossRef
93.
go back to reference Svenningsson P, Wirdefeldt K, Yin L, Fang F, Markaki I, Efendic S, et al. Reduced incidence of Parkinson’s disease after dipeptidyl peptidase-4 inhibitors-a nationwide case-control study. Mov Disord. 2016;31:1422–3.PubMedCrossRef Svenningsson P, Wirdefeldt K, Yin L, Fang F, Markaki I, Efendic S, et al. Reduced incidence of Parkinson’s disease after dipeptidyl peptidase-4 inhibitors-a nationwide case-control study. Mov Disord. 2016;31:1422–3.PubMedCrossRef
94.
go back to reference Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143:3067–76.PubMedPubMedCentralCrossRef Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143:3067–76.PubMedPubMedCentralCrossRef
95.
go back to reference Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery. Bioinformatics. 2020;36:i436–44.PubMedPubMedCentralCrossRef Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery. Bioinformatics. 2020;36:i436–44.PubMedPubMedCentralCrossRef
96.
go back to reference Akimoto H, Negishi A, Oshima S, Wakiyama H, Okita M, Horii N, et al. Antidiabetic drugs for the risk of Alzheimer disease in patients with type 2 DM using FAERS. Am J Alzheimers Dis Other Dement. 2020;35:1533317519899546.CrossRef Akimoto H, Negishi A, Oshima S, Wakiyama H, Okita M, Horii N, et al. Antidiabetic drugs for the risk of Alzheimer disease in patients with type 2 DM using FAERS. Am J Alzheimers Dis Other Dement. 2020;35:1533317519899546.CrossRef
97.
go back to reference Femminella GD, Frangou E, Love SB, Busza G, Holmes C, Ritchie C, et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20:191.PubMedPubMedCentralCrossRef Femminella GD, Frangou E, Love SB, Busza G, Holmes C, Ritchie C, et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20:191.PubMedPubMedCentralCrossRef
98.
go back to reference Egefjord L, Gejl M, Møller A, Brændgaard H, Gottrup H, Antropova O, et al. Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer’s disease - protocol for a controlled, randomized double-blinded trial. Dan Med J. 2012;59:A4519.PubMed Egefjord L, Gejl M, Møller A, Brændgaard H, Gottrup H, Antropova O, et al. Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer’s disease - protocol for a controlled, randomized double-blinded trial. Dan Med J. 2012;59:A4519.PubMed
99.
go back to reference University College, London. A randomised, double blind, parallel group, placebo controlled, phase 3 trial of exenatide once weekly over 2 years as a potential disease modifying treatment for Parkinson’s disease: clinicaltrials.gov; 2021. Report no.: NCT04232969. Available from: https://clinicaltrials.gov/ct2/show/NCT04232969. University College, London. A randomised, double blind, parallel group, placebo controlled, phase 3 trial of exenatide once weekly over 2 years as a potential disease modifying treatment for Parkinson’s disease: clinicaltrials.gov; 2021. Report no.: NCT04232969. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT04232969.
100.
go back to reference Dasu MR, Riosvelasco AC, Jialal I. Candesartan inhibits Toll-like receptor expression and activity both in vitro and in vivo. Atherosclerosis. 2009;202:76–83.PubMedCrossRef Dasu MR, Riosvelasco AC, Jialal I. Candesartan inhibits Toll-like receptor expression and activity both in vitro and in vivo. Atherosclerosis. 2009;202:76–83.PubMedCrossRef
101.
go back to reference Kouli A, Horne CB, Williams-Gray CH. Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-synucleinopathies. Brain Behav Immun. 2019;81:41–51.PubMedCrossRef Kouli A, Horne CB, Williams-Gray CH. Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-synucleinopathies. Brain Behav Immun. 2019;81:41–51.PubMedCrossRef
102.
go back to reference Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal. 2015;8(376):ra45.PubMedPubMedCentralCrossRef Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal. 2015;8(376):ra45.PubMedPubMedCentralCrossRef
103.
go back to reference Borrajo A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Microglial TNF-α mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia. 2014;62(1):145–57.PubMedCrossRef Borrajo A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Microglial TNF-α mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia. 2014;62(1):145–57.PubMedCrossRef
104.
go back to reference Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, et al. Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics. 2018;15(4):1063–81.PubMedPubMedCentralCrossRef Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, et al. Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics. 2018;15(4):1063–81.PubMedPubMedCentralCrossRef
105.
go back to reference Tong Q, Wu L, Jiang T, Ou Z, Zhang Y, Zhu D. Inhibition of endoplasmic reticulum stress-activated IRE1α-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson’s disease. Eur J Pharmacol. 2016;776:106–15.PubMedCrossRef Tong Q, Wu L, Jiang T, Ou Z, Zhang Y, Zhu D. Inhibition of endoplasmic reticulum stress-activated IRE1α-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson’s disease. Eur J Pharmacol. 2016;776:106–15.PubMedCrossRef
106.
go back to reference Sathiya S, Ranju V, Kalaivani P, Priya RJ, Sumathy H, Sunil AG, et al. Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of α-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice. Neuropharmacology. 2013;73:98–110.PubMedCrossRef Sathiya S, Ranju V, Kalaivani P, Priya RJ, Sumathy H, Sunil AG, et al. Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of α-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice. Neuropharmacology. 2013;73:98–110.PubMedCrossRef
107.
go back to reference Sekar S, Mani S, Rajamani B, Manivasagam T, Thenmozhi AJ, Bhat A, et al. Telmisartan ameliorates astroglial and dopaminergic functions in a mouse model of chronic parkinsonism. Neurotox Res. 2018;34(3):597–612.PubMedCrossRef Sekar S, Mani S, Rajamani B, Manivasagam T, Thenmozhi AJ, Bhat A, et al. Telmisartan ameliorates astroglial and dopaminergic functions in a mouse model of chronic parkinsonism. Neurotox Res. 2018;34(3):597–612.PubMedCrossRef
108.
go back to reference Wu L, Tian YY, Shi JP, Xie W, Shi JQ, Lu J, et al. Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effects of candesartan cilexitil in the rotenone rat model of Parkinson’s disease. Neurosci Lett. 2013;548:50–5.PubMedCrossRef Wu L, Tian YY, Shi JP, Xie W, Shi JQ, Lu J, et al. Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effects of candesartan cilexitil in the rotenone rat model of Parkinson’s disease. Neurosci Lett. 2013;548:50–5.PubMedCrossRef
109.
go back to reference Singh B, Sharma B, Jaggi AS, Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: possible involvement of PPAR-γ agonistic property. J Renin-Angiotensin-Aldosterone Syst. 2013;14(2):124–36.PubMedCrossRef Singh B, Sharma B, Jaggi AS, Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: possible involvement of PPAR-γ agonistic property. J Renin-Angiotensin-Aldosterone Syst. 2013;14(2):124–36.PubMedCrossRef
110.
go back to reference Torika N, Asraf K, Apte RN, Fleisher-Berkovich S. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci Ther. 2018;24(3):231–42.PubMedPubMedCentralCrossRef Torika N, Asraf K, Apte RN, Fleisher-Berkovich S. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci Ther. 2018;24(3):231–42.PubMedPubMedCentralCrossRef
111.
go back to reference Zhao W, Wang J, Ho L, Ono K, Teplow DB, Pasinetti GM. Identification of antihypertensive drugs which inhibit amyloid-beta protein oligomerization. J Alzheimers Dis. 2009;16:49–57.PubMedCrossRef Zhao W, Wang J, Ho L, Ono K, Teplow DB, Pasinetti GM. Identification of antihypertensive drugs which inhibit amyloid-beta protein oligomerization. J Alzheimers Dis. 2009;16:49–57.PubMedCrossRef
112.
go back to reference Abdelkader NF, Abd El-Latif AM, Khattab MM. Telmisartan/17β-estradiol mitigated cognitive deficit in an ovariectomized rat model of Alzheimer’s disease: modulation of ACE1/ACE2 and AT1/AT2 ratio. Life Sci. 2020;245:117388.PubMedCrossRef Abdelkader NF, Abd El-Latif AM, Khattab MM. Telmisartan/17β-estradiol mitigated cognitive deficit in an ovariectomized rat model of Alzheimer’s disease: modulation of ACE1/ACE2 and AT1/AT2 ratio. Life Sci. 2020;245:117388.PubMedCrossRef
113.
go back to reference Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A, et al. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun. 2008;375(3):446–9.PubMedCrossRef Mogi M, Li JM, Tsukuda K, Iwanami J, Min LJ, Sakata A, et al. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem Biophys Res Commun. 2008;375(3):446–9.PubMedCrossRef
114.
go back to reference Wang ZF, Li J, Ma C, Huang C, Li ZQ. Telmisartan ameliorates Aβ oligomer-induced inflammation via PPARγ/PTEN pathway in BV2 microglial cells. Biochem Pharmacol. 2020;171:113674.PubMedCrossRef Wang ZF, Li J, Ma C, Huang C, Li ZQ. Telmisartan ameliorates Aβ oligomer-induced inflammation via PPARγ/PTEN pathway in BV2 microglial cells. Biochem Pharmacol. 2020;171:113674.PubMedCrossRef
115.
go back to reference Dominguez-Meijide A, Villar-Cheda B, Garrido-Gil P, Sierrra-Paredes G, Guerra MJ, Labandeira-Garcia JL. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson’s disease treated with L-DOPA. Neuropharmacology. 2014;76 Pt A:156–68.PubMedCrossRef Dominguez-Meijide A, Villar-Cheda B, Garrido-Gil P, Sierrra-Paredes G, Guerra MJ, Labandeira-Garcia JL. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson’s disease treated with L-DOPA. Neuropharmacology. 2014;76 Pt A:156–68.PubMedCrossRef
116.
go back to reference Trigiani LJ, Royea J, Lacalle-Aurioles M, Tong XK, Hamel E. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension. 2018;72(5):1217–26.PubMedCrossRef Trigiani LJ, Royea J, Lacalle-Aurioles M, Tong XK, Hamel E. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension. 2018;72(5):1217–26.PubMedCrossRef
117.
go back to reference Kikuchi K, Fujita Y, Shen X, Liu J, Terakawa T, Nishikata D, et al. Interaction between angiotensin receptor and β-adrenergic receptor regulates the production of amyloid β-protein. Biol Pharm Bull. 2020;43:731–5.PubMedCrossRef Kikuchi K, Fujita Y, Shen X, Liu J, Terakawa T, Nishikata D, et al. Interaction between angiotensin receptor and β-adrenergic receptor regulates the production of amyloid β-protein. Biol Pharm Bull. 2020;43:731–5.PubMedCrossRef
118.
go back to reference Hajjar I, Hart M, Chen Y-L, Mack W, Milberg W, Chui H, et al. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: a double-blind randomized clinical trial. Arch Intern Med. 2012;172:442–4.PubMedPubMedCentralCrossRef Hajjar I, Hart M, Chen Y-L, Mack W, Milberg W, Chui H, et al. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: a double-blind randomized clinical trial. Arch Intern Med. 2012;172:442–4.PubMedPubMedCentralCrossRef
119.
go back to reference Hajjar I, Hart M, Chen Y-L, Mack W, Novak V, Chui HC, et al. Antihypertensive therapy and cerebral hemodynamics in executive mild cognitive impairment: results of a pilot randomized clinical trial. J Am Geriatr Soc. 2013;61:194–201.PubMedCrossRef Hajjar I, Hart M, Chen Y-L, Mack W, Novak V, Chui HC, et al. Antihypertensive therapy and cerebral hemodynamics in executive mild cognitive impairment: results of a pilot randomized clinical trial. J Am Geriatr Soc. 2013;61:194–201.PubMedCrossRef
120.
go back to reference Hajjar I, Okafor M, McDaniel D, Obideen M, Dee E, Shokouhi M, et al. Effects of candesartan vs lisinopril on neurocognitive function in older adults with executive mild cognitive impairment: a randomized clinical trial. JAMA Netw Open. 2020;3:e2012252.PubMedPubMedCentralCrossRef Hajjar I, Okafor M, McDaniel D, Obideen M, Dee E, Shokouhi M, et al. Effects of candesartan vs lisinopril on neurocognitive function in older adults with executive mild cognitive impairment: a randomized clinical trial. JAMA Netw Open. 2020;3:e2012252.PubMedPubMedCentralCrossRef
121.
go back to reference Saxby BK, Harrington F, Wesnes KA, McKeith IG, Ford GA. Candesartan and cognitive decline in older patients with hypertension: a substudy of the SCOPE trial. Neurology. 2008;70:1858–66.PubMedCrossRef Saxby BK, Harrington F, Wesnes KA, McKeith IG, Ford GA. Candesartan and cognitive decline in older patients with hypertension: a substudy of the SCOPE trial. Neurology. 2008;70:1858–66.PubMedCrossRef
122.
go back to reference Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21:875–86.PubMedCrossRef Lithell H, Hansson L, Skoog I, Elmfeldt D, Hofman A, Olofsson B, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21:875–86.PubMedCrossRef
123.
go back to reference Li N-C, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.PubMedPubMedCentralCrossRef Li N-C, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.PubMedPubMedCentralCrossRef
128.
go back to reference Saewanee N, Praputpittaya T, Malaiwong N, Chalorak P, Meemon K. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson’s disease. Neurosci Res. 2021;162:13–21. Saewanee N, Praputpittaya T, Malaiwong N, Chalorak P, Meemon K. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson’s disease. Neurosci Res. 2021;162:13–21.
129.
go back to reference Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, et al. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2017;125:396–407.PubMedCrossRef Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, et al. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2017;125:396–407.PubMedCrossRef
130.
go back to reference Tayara K, Espinosa-Oliva AM, García-Domínguez I, Ismaiel AA, Boza-Serrano A, Deierborg T, et al. Divergent effects of metformin on an inflammatory model of Parkinson’s disease. Front Cell Neurosci. 2018;12:440.PubMedPubMedCentralCrossRef Tayara K, Espinosa-Oliva AM, García-Domínguez I, Ismaiel AA, Boza-Serrano A, Deierborg T, et al. Divergent effects of metformin on an inflammatory model of Parkinson’s disease. Front Cell Neurosci. 2018;12:440.PubMedPubMedCentralCrossRef
131.
go back to reference Ozbey G, Nemutlu-Samur D, Parlak H, Yildirim S, Aslan M, Tanriover G, et al. Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation. Pharmacol Rep. 2020;72:1397–406.PubMedCrossRef Ozbey G, Nemutlu-Samur D, Parlak H, Yildirim S, Aslan M, Tanriover G, et al. Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation. Pharmacol Rep. 2020;72:1397–406.PubMedCrossRef
132.
go back to reference Chen Y, Zhao S, Fan Z, Li Z, Zhu Y, Shen T, et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice. Alzheimers Res Ther. 2021;13:40.PubMedPubMedCentralCrossRef Chen Y, Zhao S, Fan Z, Li Z, Zhu Y, Shen T, et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice. Alzheimers Res Ther. 2021;13:40.PubMedPubMedCentralCrossRef
133.
go back to reference Pérez-Revuelta BI, Hettich MM, Ciociaro A, Rotermund C, Kahle PJ, Krauss S, et al. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis. 2014;5(5):e1209.PubMedPubMedCentralCrossRef Pérez-Revuelta BI, Hettich MM, Ciociaro A, Rotermund C, Kahle PJ, Krauss S, et al. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis. 2014;5(5):e1209.PubMedPubMedCentralCrossRef
134.
go back to reference Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, et al. The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis. 2014;63:1–11.PubMedCrossRef Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, et al. The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis. 2014;63:1–11.PubMedCrossRef
135.
go back to reference Yan Q, Han C, Wang G, Waddington JL, Zheng L, Zhen X. Activation of AMPK/mTORC1-mediated autophagy by metformin reverses Clk1 deficiency-sensitized dopaminergic neuronal death. Mol Pharmacol. 2017;92(6):640–52.PubMedCrossRef Yan Q, Han C, Wang G, Waddington JL, Zheng L, Zhen X. Activation of AMPK/mTORC1-mediated autophagy by metformin reverses Clk1 deficiency-sensitized dopaminergic neuronal death. Mol Pharmacol. 2017;92(6):640–52.PubMedCrossRef
136.
go back to reference Wang D-X, Chen A-D, Wang Q-J, Xin Y-Y, Yin J, Jing Y-H. Protective effect of metformin against rotenone-induced parkinsonism in mice. Toxicol Mech Methods. 2020;30:350–7.PubMedCrossRef Wang D-X, Chen A-D, Wang Q-J, Xin Y-Y, Yin J, Jing Y-H. Protective effect of metformin against rotenone-induced parkinsonism in mice. Toxicol Mech Methods. 2020;30:350–7.PubMedCrossRef
137.
go back to reference Adedeji HA, Ishola IO, Adeyemi OO. Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: potential in the treatment of Parkinson’s disease? Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:245–51.CrossRef Adedeji HA, Ishola IO, Adeyemi OO. Novel action of metformin in the prevention of haloperidol-induced catalepsy in mice: potential in the treatment of Parkinson’s disease? Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:245–51.CrossRef
138.
go back to reference Chanthammachat P, Dharmasaroja P. Metformin restores the mitochondrial membrane potentials in association with a reduction in TIMM23 and NDUFS3 in MPP+-induced neurotoxicity in SH-SY5Y cells. EXCLI J. 2019;18:812–23.PubMedPubMedCentral Chanthammachat P, Dharmasaroja P. Metformin restores the mitochondrial membrane potentials in association with a reduction in TIMM23 and NDUFS3 in MPP+-induced neurotoxicity in SH-SY5Y cells. EXCLI J. 2019;18:812–23.PubMedPubMedCentral
139.
go back to reference Saffari PM, Alijanpour S, Takzaree N, Sahebgharani M, Etemad-Moghadam S, Noorbakhsh F, et al. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer’s disease model. Life Sci. 2020;255:117861.PubMedCrossRef Saffari PM, Alijanpour S, Takzaree N, Sahebgharani M, Etemad-Moghadam S, Noorbakhsh F, et al. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer’s disease model. Life Sci. 2020;255:117861.PubMedCrossRef
140.
go back to reference Lu X-Y, Huang S, Chen Q-B, Zhang D, Li W, Ao R, et al. Metformin ameliorates Aβ pathology by insulin-degrading enzyme in a transgenic mouse model of Alzheimer’s disease. Oxidative Med Cell Longev. 2020;2020:2315106.CrossRef Lu X-Y, Huang S, Chen Q-B, Zhang D, Li W, Ao R, et al. Metformin ameliorates Aβ pathology by insulin-degrading enzyme in a transgenic mouse model of Alzheimer’s disease. Oxidative Med Cell Longev. 2020;2020:2315106.CrossRef
141.
go back to reference Jinawong K, Apaijai N, Wongsuchai S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Necrostatin-1 mitigates cognitive dysfunction in prediabetic rats with no alteration in insulin sensitivity. Diabetes. 2020;69:1411–23.PubMedCrossRef Jinawong K, Apaijai N, Wongsuchai S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Necrostatin-1 mitigates cognitive dysfunction in prediabetic rats with no alteration in insulin sensitivity. Diabetes. 2020;69:1411–23.PubMedCrossRef
142.
go back to reference Nie J, J iang L-S, Zhang Y, Tian Y, Li L-S, Lu Y-L, et al. Dendrobium nobile Lindl. Alkaloids Decreases the Level of Intracellular β-Amyloid by Improving Impaired Autolysosomal Proteolysis in APP/PS1 Mice. Front Pharmacol. 2018;9:1479. Nie J, J iang L-S, Zhang Y, Tian Y, Li L-S, Lu Y-L, et al. Dendrobium nobile Lindl. Alkaloids Decreases the Level of Intracellular β-Amyloid by Improving Impaired Autolysosomal Proteolysis in APP/PS1 Mice. Front Pharmacol. 2018;9:1479.
143.
go back to reference Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. 2018;69:351–63.PubMedCrossRef Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. 2018;69:351–63.PubMedCrossRef
144.
go back to reference Lv L-L, Liu B, Liu J, Li L-S, Jin F, Xu Y-Y, et al. Dendrobium nobile Lindl. Alkaloids ameliorate cognitive dysfunction in senescence accelerated SAMP8 mice by decreasing Amyloid-β aggregation and enhancing autophagy activity. J Alzheimers Dis. 2020;76:657–69.PubMedCrossRef Lv L-L, Liu B, Liu J, Li L-S, Jin F, Xu Y-Y, et al. Dendrobium nobile Lindl. Alkaloids ameliorate cognitive dysfunction in senescence accelerated SAMP8 mice by decreasing Amyloid-β aggregation and enhancing autophagy activity. J Alzheimers Dis. 2020;76:657–69.PubMedCrossRef
145.
go back to reference Kuhla A, Brichmann E, Rühlmann C, Thiele R, Meuth L, Vollmar B. Metformin therapy aggravates neurodegenerative processes in ApoE-/- mice. J Alzheimers Dis. 2019;68:1415–27.PubMedCrossRef Kuhla A, Brichmann E, Rühlmann C, Thiele R, Meuth L, Vollmar B. Metformin therapy aggravates neurodegenerative processes in ApoE-/- mice. J Alzheimers Dis. 2019;68:1415–27.PubMedCrossRef
146.
go back to reference Kang H, Khang R, Ham S, Jeong GR, Kim H, Jo M, et al. Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. Oncotarget. 2017;8(30):48603–18.PubMedPubMedCentralCrossRef Kang H, Khang R, Ham S, Jeong GR, Kim H, Jo M, et al. Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. Oncotarget. 2017;8(30):48603–18.PubMedPubMedCentralCrossRef
147.
go back to reference Ismaiel AA, Espinosa-Oliva AM, Santiago M, García-Quintanilla A, Oliva-Martín MJ, Herrera AJ, et al. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicol Appl Pharmacol. 2016;298:19–30.PubMedCrossRef Ismaiel AA, Espinosa-Oliva AM, Santiago M, García-Quintanilla A, Oliva-Martín MJ, Herrera AJ, et al. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicol Appl Pharmacol. 2016;298:19–30.PubMedCrossRef
148.
go back to reference Karki R, Kodamullil AT, Hofmann-Apitius M. Comorbidity analysis between Alzheimer’s disease and type 2 diabetes mellitus (T2DM) based on shared pathways and the role of T2DM drugs. J Alzheimers Dis. 2017;60:721–31.PubMedPubMedCentralCrossRef Karki R, Kodamullil AT, Hofmann-Apitius M. Comorbidity analysis between Alzheimer’s disease and type 2 diabetes mellitus (T2DM) based on shared pathways and the role of T2DM drugs. J Alzheimers Dis. 2017;60:721–31.PubMedPubMedCentralCrossRef
149.
go back to reference Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study. Alzheimer Dis Assoc Disord. 2017;31:107–13. Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a Randomized Placebo-controlled Crossover Study. Alzheimer Dis Assoc Disord. 2017;31:107–13.
150.
go back to reference Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomised placebo controlled clinical trial. J Alzheimers Dis. 2016;51:501–14.PubMedPubMedCentralCrossRef Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomised placebo controlled clinical trial. J Alzheimers Dis. 2016;51:501–14.PubMedPubMedCentralCrossRef
151.
go back to reference Lin Y, Wang K, Ma C, Wang X, Gong Z, Zhang R, et al. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front Aging Neurosci. 2018;10:227.PubMedPubMedCentralCrossRef Lin Y, Wang K, Ma C, Wang X, Gong Z, Zhang R, et al. Evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front Aging Neurosci. 2018;10:227.PubMedPubMedCentralCrossRef
152.
go back to reference Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, Tsai HN. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord. 2012;18(6):753–8.PubMedCrossRef Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, Tsai HN. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord. 2012;18(6):753–8.PubMedCrossRef
153.
go back to reference Sluggett JK, Koponen M, Bell JS, Taipale H, Tanskanen A, Tiihonen J, et al. Metformin and Risk of Alzheimer’s Disease Among Community-Dwelling People With Diabetes: A National Case-Control Study. J Clin Endocrinol Metab. 2020;105:dgz234. Sluggett JK, Koponen M, Bell JS, Taipale H, Tanskanen A, Tiihonen J, et al. Metformin and Risk of Alzheimer’s Disease Among Community-Dwelling People With Diabetes: A National Case-Control Study. J Clin Endocrinol Metab. 2020;105:dgz234.
154.
go back to reference Heneka MT, Fink A, Doblhammer G. Effect of pioglitazone medication on the incidence of dementia. Ann Neurol. 2015;78(2):284–94.PubMedCrossRef Heneka MT, Fink A, Doblhammer G. Effect of pioglitazone medication on the incidence of dementia. Ann Neurol. 2015;78(2):284–94.PubMedCrossRef
155.
go back to reference Samaras K, Makkar S, Crawford JD, Kochan NA, Wen W, Draper B, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study. Diabetes Care. 2020;43:2691–701.PubMedCrossRef Samaras K, Makkar S, Crawford JD, Kochan NA, Wen W, Draper B, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: the Sydney Memory and Ageing Study. Diabetes Care. 2020;43:2691–701.PubMedCrossRef
156.
go back to reference Zhou J-B, Tang X, Han M, Yang J, Simó R. Impact of antidiabetic agents on dementia risk: a Bayesian network meta-analysis. Metabolism. 2020;109:154265.PubMedCrossRef Zhou J-B, Tang X, Han M, Yang J, Simó R. Impact of antidiabetic agents on dementia risk: a Bayesian network meta-analysis. Metabolism. 2020;109:154265.PubMedCrossRef
157.
go back to reference Kim Y, Kim H-S, Lee J-W, Kim Y-S, You H-S, Bae Y-J, et al. Metformin use in elderly population with diabetes reduced the risk of dementia in a dose-dependent manner, based on the Korean NHIS-HEALS cohort. Diabetes Res Clin Pract. 2020;170:108496.PubMedCrossRef Kim Y, Kim H-S, Lee J-W, Kim Y-S, You H-S, Bae Y-J, et al. Metformin use in elderly population with diabetes reduced the risk of dementia in a dose-dependent manner, based on the Korean NHIS-HEALS cohort. Diabetes Res Clin Pract. 2020;170:108496.PubMedCrossRef
158.
go back to reference Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc. 2012;60(5):916–21.PubMedCrossRef Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc. 2012;60(5):916–21.PubMedCrossRef
159.
go back to reference Zhang Y, Vitry A, Caughey G, Roughead EE, Ryan P, Gilbert A, et al. The association between co-morbidity and the use of antidiabetics or adjunctive cardiovascular medicines in Australian veterans with diabetes. Diabetes Res Clin Pract. 2011;91(1):115–20.PubMedCrossRef Zhang Y, Vitry A, Caughey G, Roughead EE, Ryan P, Gilbert A, et al. The association between co-morbidity and the use of antidiabetics or adjunctive cardiovascular medicines in Australian veterans with diabetes. Diabetes Res Clin Pract. 2011;91(1):115–20.PubMedCrossRef
160.
go back to reference Salas J, Morley JE, Scherrer JF, Floyd JS, Farr SA, Zubatsky M, et al. Risk of incident dementia following metformin initiation compared with noninitiation or delay of antidiabetic medication therapy. Pharmacoepidemiol Drug Saf. 2020;29:623–34.PubMedPubMedCentralCrossRef Salas J, Morley JE, Scherrer JF, Floyd JS, Farr SA, Zubatsky M, et al. Risk of incident dementia following metformin initiation compared with noninitiation or delay of antidiabetic medication therapy. Pharmacoepidemiol Drug Saf. 2020;29:623–34.PubMedPubMedCentralCrossRef
161.
go back to reference Wu C-Y, Ouk M, Wong YY, Anita NZ, Edwards JD, Yang P, et al. Relationships between memory decline and the use of metformin or DPP4 inhibitors in people with type 2 diabetes with normal cognition or Alzheimer’s disease, and the role APOE carrier status. Alzheimers Dement. 2020;16:1663–73.PubMedPubMedCentralCrossRef Wu C-Y, Ouk M, Wong YY, Anita NZ, Edwards JD, Yang P, et al. Relationships between memory decline and the use of metformin or DPP4 inhibitors in people with type 2 diabetes with normal cognition or Alzheimer’s disease, and the role APOE carrier status. Alzheimers Dement. 2020;16:1663–73.PubMedPubMedCentralCrossRef
162.
go back to reference Ping F, Jiang N, Li Y. Association between metformin and neurodegenerative diseases of observational studies: systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2020;8:e001370.PubMedPubMedCentralCrossRef Ping F, Jiang N, Li Y. Association between metformin and neurodegenerative diseases of observational studies: systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2020;8:e001370.PubMedPubMedCentralCrossRef
165.
go back to reference University of Pennsylvania. A phase II trial to study the effect of metformin on AD biomarkers: a randomized placebo controlled crossover pilot study of metformin effects on cognitive, physiological and biochemical biomarkers of MCI and dementia due to AD. clinicaltrials.gov; 2017. Report no.: NCT01965756. Available from: https://clinicaltrials.gov/ct2/show/NCT01965756. University of Pennsylvania. A phase II trial to study the effect of metformin on AD biomarkers: a randomized placebo controlled crossover pilot study of metformin effects on cognitive, physiological and biochemical biomarkers of MCI and dementia due to AD. clinicaltrials.gov; 2017. Report no.: NCT01965756. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT01965756.
167.
go back to reference Han AWK. Insulin resistance and mild cognitive impairment (MCI) in older Chinese adults with pre-diabetes and diabetes: cognitive effects of lifestyle intervention and metformin treatment in a randomized controlled trial. clinicaltrials.gov; 2016. Report no.: NCT02409238. Available from: https://clinicaltrials.gov/ct2/show/NCT02409238. Han AWK. Insulin resistance and mild cognitive impairment (MCI) in older Chinese adults with pre-diabetes and diabetes: cognitive effects of lifestyle intervention and metformin treatment in a randomized controlled trial. clinicaltrials.gov; 2016. Report no.: NCT02409238. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT02409238.
169.
go back to reference Hanada Y, Kudo H, Kohmura E. Chronologic changes of fasudil hydrochloride and hydroxyfasudil in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2005;14(2):47–9.PubMedCrossRef Hanada Y, Kudo H, Kohmura E. Chronologic changes of fasudil hydrochloride and hydroxyfasudil in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2005;14(2):47–9.PubMedCrossRef
170.
go back to reference Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov. 2005;4(5):387–98.PubMedCrossRef Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov. 2005;4(5):387–98.PubMedCrossRef
171.
go back to reference Takanashi Y, Ishida T, Meguro T, Kiwada H, Zhang JH, Yamamoto I. Efficacy of intrathecal liposomal fasudil for experimental cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 2001;48(4):894–900:900–1.PubMed Takanashi Y, Ishida T, Meguro T, Kiwada H, Zhang JH, Yamamoto I. Efficacy of intrathecal liposomal fasudil for experimental cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 2001;48(4):894–900:900–1.PubMed
172.
go back to reference Ishida T, Takanashi Y, Doi H, Yamamoto I, Kiwada H. Encapsulation of an antivasospastic drug, fasudil, into liposomes, and in vitro stability of the fasudil-loaded liposomes. Int J Pharm. 2002;232:59–67.PubMedCrossRef Ishida T, Takanashi Y, Doi H, Yamamoto I, Kiwada H. Encapsulation of an antivasospastic drug, fasudil, into liposomes, and in vitro stability of the fasudil-loaded liposomes. Int J Pharm. 2002;232:59–67.PubMedCrossRef
173.
go back to reference Liu FT, Yang YJ, Wu JJ, Li S, Tang YL, Zhao J, et al. Fasudil, a Rho kinase inhibitor, promotes the autophagic degradation of A53T α-synuclein by activating the JNK 1/Bcl-2/beclin 1 pathway. Brain Res. 2016;1632:9–18.PubMedCrossRef Liu FT, Yang YJ, Wu JJ, Li S, Tang YL, Zhao J, et al. Fasudil, a Rho kinase inhibitor, promotes the autophagic degradation of A53T α-synuclein by activating the JNK 1/Bcl-2/beclin 1 pathway. Brain Res. 2016;1632:9–18.PubMedCrossRef
174.
go back to reference Zhao Y, Zhang Q, Xi J, Xiao B, Li Y, Ma C. Neuroprotective effect of fasudil on inflammation through PI3K/Akt and Wnt/β-catenin dependent pathways in a mice model of Parkinson’s disease. Int J Clin Exp Pathol. 2015;8(3):2354–64.PubMedPubMedCentral Zhao Y, Zhang Q, Xi J, Xiao B, Li Y, Ma C. Neuroprotective effect of fasudil on inflammation through PI3K/Akt and Wnt/β-catenin dependent pathways in a mice model of Parkinson’s disease. Int J Clin Exp Pathol. 2015;8(3):2354–64.PubMedPubMedCentral
175.
go back to reference Tatenhorst L, Eckermann K, Dambeck V, Fonseca-Ornelas L, Walle H, Fonseca T, et al. Fasudil attenuates aggregation of α-synuclein in models of Parkinson’s disease. Acta Neuropathol Commun. 2016;4:39.PubMedPubMedCentralCrossRef Tatenhorst L, Eckermann K, Dambeck V, Fonseca-Ornelas L, Walle H, Fonseca T, et al. Fasudil attenuates aggregation of α-synuclein in models of Parkinson’s disease. Acta Neuropathol Commun. 2016;4:39.PubMedPubMedCentralCrossRef
176.
go back to reference He Q, Li YH, Guo SS, Wang Y, Lin W, Zhang Q, et al. Inhibition of Rho-kinase by Fasudil protects dopamine neurons and attenuates inflammatory response in an intranasal lipopolysaccharide-mediated Parkinson’s model. Eur J Neurosci. 2016;43(1):41–52.PubMedCrossRef He Q, Li YH, Guo SS, Wang Y, Lin W, Zhang Q, et al. Inhibition of Rho-kinase by Fasudil protects dopamine neurons and attenuates inflammatory response in an intranasal lipopolysaccharide-mediated Parkinson’s model. Eur J Neurosci. 2016;43(1):41–52.PubMedCrossRef
177.
go back to reference Elliott C, Rojo AI, Ribe E, Broadstock M, Xia W, Morin P, et al. A role for APP in Wnt signalling links synapse loss with β-amyloid production. Transl Psychiatry. 2018;8(1):1–3.CrossRef Elliott C, Rojo AI, Ribe E, Broadstock M, Xia W, Morin P, et al. A role for APP in Wnt signalling links synapse loss with β-amyloid production. Transl Psychiatry. 2018;8(1):1–3.CrossRef
178.
go back to reference Kumar M, Bansal N. Fasudil hydrochloride ameliorates memory deficits in rat model of streptozotocin-induced Alzheimer’s disease: involvement of PI3-kinase, eNOS and NFκB. Behav Brain Res. 2018;351:4–16.PubMedCrossRef Kumar M, Bansal N. Fasudil hydrochloride ameliorates memory deficits in rat model of streptozotocin-induced Alzheimer’s disease: involvement of PI3-kinase, eNOS and NFκB. Behav Brain Res. 2018;351:4–16.PubMedCrossRef
179.
go back to reference Rush T, Martinez-Hernandez J, Dollmeyer M, Frandemiche ML, Borel E, Boisseau S, et al. Synaptotoxicity in Alzheimer’s disease involved a dysregulation of actin cytoskeleton dynamics through cofilin 1 phosphorylation. J Neurosci. 2018;38(48):10349–61.PubMedPubMedCentralCrossRef Rush T, Martinez-Hernandez J, Dollmeyer M, Frandemiche ML, Borel E, Boisseau S, et al. Synaptotoxicity in Alzheimer’s disease involved a dysregulation of actin cytoskeleton dynamics through cofilin 1 phosphorylation. J Neurosci. 2018;38(48):10349–61.PubMedPubMedCentralCrossRef
180.
go back to reference Yu J, Yan Y, Gu Q, Kumar G, Yu H, Zhao Y, et al. Fasudil in combination with bone marrow stromal cells (BMSCs) attenuates Alzheimer’s disease-related changes through the regulation of the peripheral immune system. Front Aging Neurosci. 2018;10:216.PubMedPubMedCentralCrossRef Yu J, Yan Y, Gu Q, Kumar G, Yu H, Zhao Y, et al. Fasudil in combination with bone marrow stromal cells (BMSCs) attenuates Alzheimer’s disease-related changes through the regulation of the peripheral immune system. Front Aging Neurosci. 2018;10:216.PubMedPubMedCentralCrossRef
181.
go back to reference Yan Y, Yu J, Gao Y, Kumar G, Guo M, Zhao Y, et al. Therapeutic potentials of the Rho kinase inhibitor Fasudil in experimental autoimmune encephalomyelitis and the related mechanisms. Metab Brain Dis. 2019;34(2):377–84.PubMedCrossRef Yan Y, Yu J, Gao Y, Kumar G, Guo M, Zhao Y, et al. Therapeutic potentials of the Rho kinase inhibitor Fasudil in experimental autoimmune encephalomyelitis and the related mechanisms. Metab Brain Dis. 2019;34(2):377–84.PubMedCrossRef
182.
go back to reference Koch JC, Tatenhorst L, Roser AE, Saal KA, Tönges L, Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther. 2018;189:1–21.PubMedCrossRef Koch JC, Tatenhorst L, Roser AE, Saal KA, Tönges L, Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther. 2018;189:1–21.PubMedCrossRef
183.
go back to reference Bobo-Jiménez V, Delgado-Esteban M, Angibaud J, Sánchez-Morán I, Fuente A, Yajeya J, et al. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory. Proc Natl Acad Sci U S A. 2017;114(17):4513–8.PubMedPubMedCentralCrossRef Bobo-Jiménez V, Delgado-Esteban M, Angibaud J, Sánchez-Morán I, Fuente A, Yajeya J, et al. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory. Proc Natl Acad Sci U S A. 2017;114(17):4513–8.PubMedPubMedCentralCrossRef
185.
go back to reference Woolsey Pharmaceuticals. A phase 2a open-label preliminary safety, tolerability, and biomarker study of oral fasudil in patients with the 4-repeat tauopathies of progressive supranuclear Palsy-Richardson Syndrome or Corticobasal Syndrome. clinicaltrials.gov; 2021. Report no.: NCT04734379. Available from: https://clinicaltrials.gov/ct2/show/NCT04734379. Woolsey Pharmaceuticals. A phase 2a open-label preliminary safety, tolerability, and biomarker study of oral fasudil in patients with the 4-repeat tauopathies of progressive supranuclear Palsy-Richardson Syndrome or Corticobasal Syndrome. clinicaltrials.gov; 2021. Report no.: NCT04734379. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT04734379.
186.
go back to reference Frakey LL, Friedman JH. Cognitive effects of rasagiline in mild-to-moderate stage Parkinson’s disease without dementia. J Neuropsychiatr Clin Neurosci. 2017;29(1):22–5.CrossRef Frakey LL, Friedman JH. Cognitive effects of rasagiline in mild-to-moderate stage Parkinson’s disease without dementia. J Neuropsychiatr Clin Neurosci. 2017;29(1):22–5.CrossRef
187.
go back to reference Poewe W, Hauser RA, Lang A, Investigators ADAGIO. Effects of rasagiline on the progression of nonmotor scores of the MDS-UPDRS. Mov Disord. 2015;30(4):589–92.PubMedCrossRef Poewe W, Hauser RA, Lang A, Investigators ADAGIO. Effects of rasagiline on the progression of nonmotor scores of the MDS-UPDRS. Mov Disord. 2015;30(4):589–92.PubMedCrossRef
188.
go back to reference Barone P, Santangelo G, Morgante L, Onofrj M, Meco G, Abbruzzese G, et al. A randomized clinical trial to evaluate the effects of rasagiline on depressive symptoms in non-demented Parkinson’s disease patients. Eur J Neurol. 2015;22(8):1184–91.PubMedPubMedCentralCrossRef Barone P, Santangelo G, Morgante L, Onofrj M, Meco G, Abbruzzese G, et al. A randomized clinical trial to evaluate the effects of rasagiline on depressive symptoms in non-demented Parkinson’s disease patients. Eur J Neurol. 2015;22(8):1184–91.PubMedPubMedCentralCrossRef
189.
go back to reference Elmer L, Schwid S, Eberly S, Goetz C, Fahn S, Kieburtz K, et al. Rasagiline-associated motor improvement in PD occurs without worsening of cognitive and behavioral symptoms. J Neurol Sci. 2006;248(1-2):78–83.PubMedCrossRef Elmer L, Schwid S, Eberly S, Goetz C, Fahn S, Kieburtz K, et al. Rasagiline-associated motor improvement in PD occurs without worsening of cognitive and behavioral symptoms. J Neurol Sci. 2006;248(1-2):78–83.PubMedCrossRef
190.
go back to reference Hanagasi HA, Gurvit H, Unsalan P, Horozoglu H, Tuncer N, Feyzioglu A, et al. The effects of rasagiline on cognitive deficits in Parkinson’s disease patients without dementia: a randomized, double-blind, placebo-controlled, multicenter study. Mov Disord. 2011;26(10):1851–8.PubMedCrossRef Hanagasi HA, Gurvit H, Unsalan P, Horozoglu H, Tuncer N, Feyzioglu A, et al. The effects of rasagiline on cognitive deficits in Parkinson’s disease patients without dementia: a randomized, double-blind, placebo-controlled, multicenter study. Mov Disord. 2011;26(10):1851–8.PubMedCrossRef
191.
go back to reference Matthews DC, Ritter A, Thomas RG, Andrews RD, Lukic AS, Revta C, et al. Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer’s dementia. Alzheimers Dement. 2021;7:e12106. Matthews DC, Ritter A, Thomas RG, Andrews RD, Lukic AS, Revta C, et al. Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer’s dementia. Alzheimers Dement. 2021;7:e12106.
192.
go back to reference Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, et al. Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem. 2002a Aug;82(4):913–23.PubMedCrossRef Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, et al. Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem. 2002a Aug;82(4):913–23.PubMedCrossRef
193.
go back to reference Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MB. Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J. 2004;18(12):1471–3.PubMedCrossRef Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MB. Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J. 2004;18(12):1471–3.PubMedCrossRef
194.
go back to reference Sagi Y, Mandel S, Amit T, Youdim MB. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis. 2007;25(1):35–44.PubMedCrossRef Sagi Y, Mandel S, Amit T, Youdim MB. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis. 2007;25(1):35–44.PubMedCrossRef
195.
go back to reference Gordon R, Anantharam V, Kanthasamy AG, Kanthasamy A. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J Neuroinflammation. 2012;9:82.PubMedPubMedCentralCrossRef Gordon R, Anantharam V, Kanthasamy AG, Kanthasamy A. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J Neuroinflammation. 2012;9:82.PubMedPubMedCentralCrossRef
196.
go back to reference Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol. 2018;175(20):3859–75.PubMedPubMedCentralCrossRef Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol. 2018;175(20):3859–75.PubMedPubMedCentralCrossRef
197.
go back to reference Qi Y, Klyubin I, Cuello AC, Rowan MJ. NLRP3-dependent synaptic plasticity deficit in an Alzheimer’s disease amyloidosis model in vivo. Neurobiol Dis. 2018;114:24–30.PubMedCrossRef Qi Y, Klyubin I, Cuello AC, Rowan MJ. NLRP3-dependent synaptic plasticity deficit in an Alzheimer’s disease amyloidosis model in vivo. Neurobiol Dis. 2018;114:24–30.PubMedCrossRef
198.
go back to reference Ho DH, Seol W, Eun JH, Son IH. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity. Biochem Biophys Res Commun. 2017;482(4):1088–94.PubMedCrossRef Ho DH, Seol W, Eun JH, Son IH. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity. Biochem Biophys Res Commun. 2017;482(4):1088–94.PubMedCrossRef
199.
go back to reference Butchart J, Brook L, Hopkins V, Teeling J, Püntener U, Culliford D, et al. Etanercept in Alzheimer disease: a randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84(21):2161–8.PubMedPubMedCentralCrossRef Butchart J, Brook L, Hopkins V, Teeling J, Püntener U, Culliford D, et al. Etanercept in Alzheimer disease: a randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84(21):2161–8.PubMedPubMedCentralCrossRef
200.
go back to reference Camargo CHF, Justus FF, Retzlaff G, Blood MRY, Schafranski MD. Action of anti-TNF-α drugs on the progression of Alzheimer’s disease: A case report. Dement Neuropsychol. 2015;9:196–200. Camargo CHF, Justus FF, Retzlaff G, Blood MRY, Schafranski MD. Action of anti-TNF-α drugs on the progression of Alzheimer’s disease: A case report. Dement Neuropsychol. 2015;9:196–200.
201.
go back to reference Tobinick E, Gross H. Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflammation. 2008;5:2.PubMedPubMedCentralCrossRef Tobinick E, Gross H. Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflammation. 2008;5:2.PubMedPubMedCentralCrossRef
202.
go back to reference Butkovich LM, Houser MC, Tansey MG. α-Synuclein and noradrenergic modulation of immune cells in Parkinson’s disease pathogenesis. Front Neurosci. 2018;12:626.PubMedPubMedCentralCrossRef Butkovich LM, Houser MC, Tansey MG. α-Synuclein and noradrenergic modulation of immune cells in Parkinson’s disease pathogenesis. Front Neurosci. 2018;12:626.PubMedPubMedCentralCrossRef
203.
go back to reference Ciprés-Flores FJ, Segura-Uribe JJ, Orozco-Suárez S, Guerra-Araiza C, Guevara-Salazar JA, Castillo-García EL, et al. Beta-blockers and salbutamol limited emotional memory disturbance and damage induced by orchiectomy in the rat hippocampus. Life Sci. 2019;224:128–37.PubMedCrossRef Ciprés-Flores FJ, Segura-Uribe JJ, Orozco-Suárez S, Guerra-Araiza C, Guevara-Salazar JA, Castillo-García EL, et al. Beta-blockers and salbutamol limited emotional memory disturbance and damage induced by orchiectomy in the rat hippocampus. Life Sci. 2019;224:128–37.PubMedCrossRef
204.
go back to reference Fletcher EJR, Jamieson AD, Williams G, Doherty P, Duty S. Targeted repositioning identifies drugs that increase fibroblast growth factor 20 production and protect against 6-hydroxydopamine-induced nigral cell loss in rats. Sci Rep. 2019;9(1):8336.PubMedPubMedCentralCrossRef Fletcher EJR, Jamieson AD, Williams G, Doherty P, Duty S. Targeted repositioning identifies drugs that increase fibroblast growth factor 20 production and protect against 6-hydroxydopamine-induced nigral cell loss in rats. Sci Rep. 2019;9(1):8336.PubMedPubMedCentralCrossRef
205.
go back to reference Bozek A, Krajewska J, Jarzab J. The improvement of cognitive functions in patients with bronchial asthma after therapy. J Asthma. 2010;47(10):1148–52.PubMedCrossRef Bozek A, Krajewska J, Jarzab J. The improvement of cognitive functions in patients with bronchial asthma after therapy. J Asthma. 2010;47(10):1148–52.PubMedCrossRef
206.
go back to reference Uc EY, Lambert CP, Harik SI, Rodnitzky RL, Evans WJ. Albuterol improves response to levodopa and increases skeletal muscle mass in patients with fluctuating Parkinson disease. Clin Neuropharmacol. 2003;26(4):207–12.PubMedCrossRef Uc EY, Lambert CP, Harik SI, Rodnitzky RL, Evans WJ. Albuterol improves response to levodopa and increases skeletal muscle mass in patients with fluctuating Parkinson disease. Clin Neuropharmacol. 2003;26(4):207–12.PubMedCrossRef
207.
go back to reference Alexander GM, Schwartzman RJ, Nukes TA, Grothusen JR, Hooker MD. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson’s disease. Neurology. 1994;44(8):1511–3.PubMedCrossRef Alexander GM, Schwartzman RJ, Nukes TA, Grothusen JR, Hooker MD. Beta 2-adrenergic agonist as adjunct therapy to levodopa in Parkinson’s disease. Neurology. 1994;44(8):1511–3.PubMedCrossRef
208.
go back to reference Hishida R, Kurahashi K, Narita S, Baba T, Matsunaga M. “Wearing-off” and beta 2-adrenoceptor agonist in Parkinson’s disease. Lancet. 1992;339(8797):870.PubMedCrossRef Hishida R, Kurahashi K, Narita S, Baba T, Matsunaga M. “Wearing-off” and beta 2-adrenoceptor agonist in Parkinson’s disease. Lancet. 1992;339(8797):870.PubMedCrossRef
209.
go back to reference Cepeda MS, Kern DM, Seabrook GR, Lovestone S. Comprehensive real-world assessment of marketed medications to guide Parkinson’s drug discovery. Clin Drug Investig. 2019;39(11):1067–75.PubMedPubMedCentralCrossRef Cepeda MS, Kern DM, Seabrook GR, Lovestone S. Comprehensive real-world assessment of marketed medications to guide Parkinson’s drug discovery. Clin Drug Investig. 2019;39(11):1067–75.PubMedPubMedCentralCrossRef
210.
go back to reference Gronich N, Abernethy DR, Auriel E, Lavi I, Rennert G, Saliba W. β2-adrenoceptor agonists and antagonists and risk of Parkinson’s disease. Mov Disord. 2018;33(9):1465–71.PubMedCrossRef Gronich N, Abernethy DR, Auriel E, Lavi I, Rennert G, Saliba W. β2-adrenoceptor agonists and antagonists and risk of Parkinson’s disease. Mov Disord. 2018;33(9):1465–71.PubMedCrossRef
211.
go back to reference Searles Nielsen S, Gross A, Camacho‐Soto A, Willis AW, Racette BA. β2-adrenoreceptor medications and risk of Parkinson disease. Ann Neurol. 2018;84(5):683–93.PubMedCrossRef Searles Nielsen S, Gross A, Camacho‐Soto A, Willis AW, Racette BA. β2-adrenoreceptor medications and risk of Parkinson disease. Ann Neurol. 2018;84(5):683–93.PubMedCrossRef
212.
go back to reference Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science. 2017;357(6354):891–8.PubMedPubMedCentralCrossRef Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science. 2017;357(6354):891–8.PubMedPubMedCentralCrossRef
213.
go back to reference Pearson S, Kietsiriroje N, Ajjan RA. Oral semaglutide in the management of type 2 diabetes: a report on the evidence to date. Diabetes Metab Syndr Obes. 2019;12:2515–29.PubMedPubMedCentralCrossRef Pearson S, Kietsiriroje N, Ajjan RA. Oral semaglutide in the management of type 2 diabetes: a report on the evidence to date. Diabetes Metab Syndr Obes. 2019;12:2515–29.PubMedPubMedCentralCrossRef
Metadata
Title
RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia—an international Delphi consensus
Authors
John T. O’Brien
Leonidas Chouliaras
Janet Sultana
John-Paul Taylor
Clive Ballard
on behalf of the RENEWAL Study Group
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2022
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-022-01103-7

Other articles of this Issue 1/2022

Alzheimer's Research & Therapy 1/2022 Go to the issue