Skip to main content
Top
Published in: Gut Pathogens 1/2020

01-12-2020 | Helicobacter Pylori | Research

CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells

Authors: Shaohan Xu, Xiaoqian Wu, Xiaoyan Zhang, Chu Chen, Hao Chen, Feifei She

Published in: Gut Pathogens | Issue 1/2020

Login to get access

Abstract

Background

Helicobacter pylori colonises the stomach of approximately 50% of the global population. Cytotoxin-associated gene A protein (CagA) is one of the important virulent factors responsible for the increased inflammation and increases the risk of developing peptic ulcers and gastric carcinoma. The cytokine interleukin-6 (IL-6) has particularly important roles in the malignant transformation of gastric and intestinal epithelial cells as it is upregulated in H. pylori-infected gastric mucosa. In this study, we investigated the underlying mechanisms of CagA-induced IL-6 up-regulation during H. pylori infection. AGS cells, a human gastric adenocarcinoma cell line, lacking eEF1A1 were infected with CagA+H. pylori (NCTC11637), CagAH. pylori (NCTC11637ΔcagA), or transduced by Ad-cagA/Ad-GFP. The expression and production of IL-6 were measured by quantitative real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The interactions among CagA, eukaryotic translation elongation factor 1-alpha 1 (eEF1A1), protein kinase Cδ (PKCδ), and signal transducer and activator of transcription 3 (STAT3) were determined by western blot or co-immunoprecipitation.

Results

During H. pylori infection, CagA-M (residues 256‒871aa) was found to interact with eEF1A1-I (residues 1‒240aa). NCTC11637 increased the expression of IL-6 in AGS cells compared with NCTC11637ΔcagA whereas knockdown of eEF1A1 in AGS cells completely abrogated these effects. Moreover, the CagA-eEF1A1 complex promoted the expression of IL-6 in AGS cells. CagA and eEF1A1 cooperated to mediate the expression of IL-6 by affecting the activity of p-STATS727 in the nucleus. Further, CagA-eEF1A1 affected the activity of STAT3 by recruiting PKCδ. However, blocking PKCδ inhibited the phosphorylation of STAT3S727 and induction of IL-6 by CagA.

Conclusions

CagA promotes the expression of IL-6 in AGS cells by recruiting PKCδ through eEF1A1 in the cytoplasm to increase the phosphorylation of STAT3S727 in the nucleus. These findings provide new insights into the function of CagA-eEF1A1 interaction in gastric adenocarcinoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ishibashi F, et al. Influence of Helicobacter pylori infection on endoscopic findings of gastric adenocarcinoma of the fundic gland type. J Gastric Cancer. 2019;19(2):225–33.PubMedPubMedCentral Ishibashi F, et al. Influence of Helicobacter pylori infection on endoscopic findings of gastric adenocarcinoma of the fundic gland type. J Gastric Cancer. 2019;19(2):225–33.PubMedPubMedCentral
2.
go back to reference Das P, Strong VE, Ajani JA. Adjuvant and neoadjuvant therapy for gastric cancer: taking stock of the options. Gastrointest Cancer Res. 2012;5(6):203–4.PubMedPubMedCentral Das P, Strong VE, Ajani JA. Adjuvant and neoadjuvant therapy for gastric cancer: taking stock of the options. Gastrointest Cancer Res. 2012;5(6):203–4.PubMedPubMedCentral
3.
go back to reference Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010;7(11):629–41.PubMedPubMedCentral Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010;7(11):629–41.PubMedPubMedCentral
4.
go back to reference Ghosh N, et al. Attenuation of Helicobacter pylori-induced gastric inflammation by prior cag(-) strain (AM1) infection in C57BL/6 mice. Gut Pathog. 2017;9:14.PubMedPubMedCentral Ghosh N, et al. Attenuation of Helicobacter pylori-induced gastric inflammation by prior cag(-) strain (AM1) infection in C57BL/6 mice. Gut Pathog. 2017;9:14.PubMedPubMedCentral
5.
go back to reference Neal JT, et al. H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. Dis Model Mech. 2013;6(3):802–10.PubMedPubMedCentral Neal JT, et al. H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. Dis Model Mech. 2013;6(3):802–10.PubMedPubMedCentral
6.
go back to reference Loh JT, et al. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129(8):2717–29.PubMedPubMedCentral Loh JT, et al. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129(8):2717–29.PubMedPubMedCentral
7.
go back to reference Oliveira MJ, et al. CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J Infect Dis. 2009;200(5):745–55.PubMed Oliveira MJ, et al. CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J Infect Dis. 2009;200(5):745–55.PubMed
8.
go back to reference Hatakeyama M. Helicobacter pylori CagA as a potential bacterial oncoprotein in gastric carcinogenesis. Pathol Biol. 2003;51(7):393–4.PubMed Hatakeyama M. Helicobacter pylori CagA as a potential bacterial oncoprotein in gastric carcinogenesis. Pathol Biol. 2003;51(7):393–4.PubMed
9.
go back to reference Perez-Cantero A, et al. Increased efficacy of oral fixed-dose combination of amphotericin B and AHCC((R)) natural adjuvant against Aspergillosis. Pharmaceutics. 2019;11(9):456.PubMedCentral Perez-Cantero A, et al. Increased efficacy of oral fixed-dose combination of amphotericin B and AHCC((R)) natural adjuvant against Aspergillosis. Pharmaceutics. 2019;11(9):456.PubMedCentral
10.
go back to reference Ataie-Kachoie P, et al. Gene of the month: interleukin 6 (IL-6). J Clin Pathol. 2014;67(11):932–7.PubMed Ataie-Kachoie P, et al. Gene of the month: interleukin 6 (IL-6). J Clin Pathol. 2014;67(11):932–7.PubMed
11.
go back to reference Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2(4):288–94.PubMed Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2(4):288–94.PubMed
12.
go back to reference Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26(1):54–74.PubMed Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26(1):54–74.PubMed
13.
go back to reference Kanda K, et al. Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-alpha. EMBO Mol Med. 2012;4(5):396–411.PubMedPubMedCentral Kanda K, et al. Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-alpha. EMBO Mol Med. 2012;4(5):396–411.PubMedPubMedCentral
14.
go back to reference Kim SY, et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 2013;25(4):961–9.PubMedPubMedCentral Kim SY, et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 2013;25(4):961–9.PubMedPubMedCentral
15.
go back to reference Murni AW, et al. Analyzing determinant factors for pathophysiology of functional dyspepsia based on plasma cortisol levels, IL-6 and IL-8 expressions and H. pylori Activity. Acta Med Indones. 2018;50(1):38–45.PubMed Murni AW, et al. Analyzing determinant factors for pathophysiology of functional dyspepsia based on plasma cortisol levels, IL-6 and IL-8 expressions and H. pylori Activity. Acta Med Indones. 2018;50(1):38–45.PubMed
16.
go back to reference Zhang JZ, et al. Association of genetic variations in IL-6/IL-6R pathway genes with gastric cancer risk in a Chinese population. Gene. 2017;623:1–4.PubMed Zhang JZ, et al. Association of genetic variations in IL-6/IL-6R pathway genes with gastric cancer risk in a Chinese population. Gene. 2017;623:1–4.PubMed
17.
go back to reference Piao JY, et al. Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: potential roles for reactive oxygen species. Helicobacter. 2016;21(5):405–16.PubMed Piao JY, et al. Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: potential roles for reactive oxygen species. Helicobacter. 2016;21(5):405–16.PubMed
18.
go back to reference Ding SZ, Cho CH, Lam SK. Regulation of interleukin 6 production in a human gastric epithelial cell line MKN-28. Cytokine. 2000;12(7):1129–35.PubMed Ding SZ, Cho CH, Lam SK. Regulation of interleukin 6 production in a human gastric epithelial cell line MKN-28. Cytokine. 2000;12(7):1129–35.PubMed
19.
go back to reference Zhang W, Lu H, Graham DY. An update on Helicobacter pylori as the cause of gastric cancer. Gastrointest Tumors. 2014;1(3):155–65.PubMedPubMedCentral Zhang W, Lu H, Graham DY. An update on Helicobacter pylori as the cause of gastric cancer. Gastrointest Tumors. 2014;1(3):155–65.PubMedPubMedCentral
20.
go back to reference Dahl LD, et al. An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus. Cancer Cell Int. 2014;14(1):17.PubMedPubMedCentral Dahl LD, et al. An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus. Cancer Cell Int. 2014;14(1):17.PubMedPubMedCentral
21.
go back to reference Leclercq TM, et al. Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem. 2008;283(15):9606–14.PubMedPubMedCentral Leclercq TM, et al. Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem. 2008;283(15):9606–14.PubMedPubMedCentral
22.
go back to reference Burglova K, et al. Identification of eukaryotic translation elongation factor 1-alpha 1 gamendazole-binding site for binding of 3-hydroxy-4(1 H)-quinolinones as Novel Ligands with anticancer activity. J Med Chem. 2018;61(7):3027–36.PubMed Burglova K, et al. Identification of eukaryotic translation elongation factor 1-alpha 1 gamendazole-binding site for binding of 3-hydroxy-4(1 H)-quinolinones as Novel Ligands with anticancer activity. J Med Chem. 2018;61(7):3027–36.PubMed
23.
go back to reference Schulz I, et al. A non-canonical function of eukaryotic elongation factor 1A1: regulation of interleukin-6 expression. Biochim Biophys Acta. 2014;1843(5):965–75.PubMed Schulz I, et al. A non-canonical function of eukaryotic elongation factor 1A1: regulation of interleukin-6 expression. Biochim Biophys Acta. 2014;1843(5):965–75.PubMed
24.
go back to reference Perdikouri EIA, et al. Infections due to multidrug-resistant bacteria in oncological patients: insights from a five-year epidemiological and clinical analysis. Microorganisms. 2019;7(9):277.PubMedCentral Perdikouri EIA, et al. Infections due to multidrug-resistant bacteria in oncological patients: insights from a five-year epidemiological and clinical analysis. Microorganisms. 2019;7(9):277.PubMedCentral
25.
go back to reference Yong X, et al. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways. Cell Commun Signal. 2015;13:30.PubMedPubMedCentral Yong X, et al. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways. Cell Commun Signal. 2015;13:30.PubMedPubMedCentral
26.
go back to reference Chatelon, J., et al., Choosing the Right Antifungal Agent in ICU Patients. Adv Ther, 2019. Chatelon, J., et al., Choosing the Right Antifungal Agent in ICU Patients. Adv Ther, 2019.
27.
go back to reference Murata-Kamiya N, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26(32):4617–26.PubMed Murata-Kamiya N, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26(32):4617–26.PubMed
28.
go back to reference Hayashi T, et al. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe. 2012;12(1):20–33.PubMed Hayashi T, et al. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe. 2012;12(1):20–33.PubMed
29.
go back to reference von Lilienfeld-Toal M, et al. Invasive Fungal Infection. Dtsch Arztebl Int. 2019;116(16):271–8. von Lilienfeld-Toal M, et al. Invasive Fungal Infection. Dtsch Arztebl Int. 2019;116(16):271–8.
30.
go back to reference Hasannejad-Bibalan M, et al. Antibacterial activity of tedizolid, a novel oxazolidinone against methicillin-resistant Staphylococcus aureus: a systematic review and meta-analysis. Microb Drug Resist. 2019;25(9):1330–7.PubMed Hasannejad-Bibalan M, et al. Antibacterial activity of tedizolid, a novel oxazolidinone against methicillin-resistant Staphylococcus aureus: a systematic review and meta-analysis. Microb Drug Resist. 2019;25(9):1330–7.PubMed
31.
go back to reference Asay GR, et al. Absenteeism and employer costs associated with chronic diseases and health risk factors in the US workforce. Prev Chronic Dis. 2016;13:E141.PubMedPubMedCentral Asay GR, et al. Absenteeism and employer costs associated with chronic diseases and health risk factors in the US workforce. Prev Chronic Dis. 2016;13:E141.PubMedPubMedCentral
32.
go back to reference Novotny-Diermayr V, et al. Protein kinase C delta associates with the interleukin-6 receptor subunit glycoprotein (gp) 130 via Stat3 and enhances Stat3-gp130 interaction. J Biol Chem. 2002;277(51):49134–42.PubMed Novotny-Diermayr V, et al. Protein kinase C delta associates with the interleukin-6 receptor subunit glycoprotein (gp) 130 via Stat3 and enhances Stat3-gp130 interaction. J Biol Chem. 2002;277(51):49134–42.PubMed
33.
go back to reference Kielbassa K, et al. Protein kinase C delta-specific phosphorylation of the elongation factor eEF-alpha and an eEF-1 alpha peptide at threonine 431. J Biol Chem. 1995;270(11):6156–62.PubMed Kielbassa K, et al. Protein kinase C delta-specific phosphorylation of the elongation factor eEF-alpha and an eEF-1 alpha peptide at threonine 431. J Biol Chem. 1995;270(11):6156–62.PubMed
34.
go back to reference Yu H, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.PubMed Yu H, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–46.PubMed
35.
go back to reference Ranjbar R, Karampoor S, Jalilian FA. The protective effect of Helicobacter Pylori infection on the susceptibility of multiple sclerosis. J Neuroimmunol. 2019;337:577069.PubMed Ranjbar R, Karampoor S, Jalilian FA. The protective effect of Helicobacter Pylori infection on the susceptibility of multiple sclerosis. J Neuroimmunol. 2019;337:577069.PubMed
36.
go back to reference Hagihara K, et al. Essential role of STAT3 in cytokine-driven NF-kappaB-mediated serum amyloid A gene expression. Genes Cells. 2005;10(11):1051–63.PubMed Hagihara K, et al. Essential role of STAT3 in cytokine-driven NF-kappaB-mediated serum amyloid A gene expression. Genes Cells. 2005;10(11):1051–63.PubMed
37.
go back to reference Sokolova O, et al. Helicobacter pylori induces type 4 secretion system-dependent, but CagA-independent activation of IkappaBs and NF-kappaB/RelA at early time points. Int J Med Microbiol. 2013;303(8):548–52.PubMed Sokolova O, et al. Helicobacter pylori induces type 4 secretion system-dependent, but CagA-independent activation of IkappaBs and NF-kappaB/RelA at early time points. Int J Med Microbiol. 2013;303(8):548–52.PubMed
38.
go back to reference Alfarouk KO, et al. The possible role of Helicobacter pylori in gastric cancer and its management. Front Oncol. 2019;9:75.PubMedPubMedCentral Alfarouk KO, et al. The possible role of Helicobacter pylori in gastric cancer and its management. Front Oncol. 2019;9:75.PubMedPubMedCentral
39.
go back to reference Jain N, et al. Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem. 1999;274(34):24392–400.PubMed Jain N, et al. Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem. 1999;274(34):24392–400.PubMed
41.
go back to reference Abraham T, Sistla S. Decoding the molecular epidemiology of group A streptococcus –an Indian perspective. J Med Microbiol. 2019;68(7):1059–71.PubMed Abraham T, Sistla S. Decoding the molecular epidemiology of group A streptococcus –an Indian perspective. J Med Microbiol. 2019;68(7):1059–71.PubMed
42.
go back to reference Soltoff SP. Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol Sci. 2007;28(9):453–8.PubMed Soltoff SP. Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol Sci. 2007;28(9):453–8.PubMed
43.
go back to reference Suzuki M, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5(1):23–34.PubMed Suzuki M, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5(1):23–34.PubMed
Metadata
Title
CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells
Authors
Shaohan Xu
Xiaoqian Wu
Xiaoyan Zhang
Chu Chen
Hao Chen
Feifei She
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2020
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-020-00368-3

Other articles of this Issue 1/2020

Gut Pathogens 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.