Skip to main content
Top
Published in: Gut Pathogens 1/2020

Open Access 01-12-2020 | COVID-19 | Short report

Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics

Authors: Vikram Saini, Kriti Sikri, Sakshi Dhingra Batra, Priya Kalra, Kamini Gautam

Published in: Gut Pathogens | Issue 1/2020

Login to get access

Abstract

Background

Personal Protective Equipment (PPE) is required to safely work with biological agents of bacterial (i.e. Mycobacterium tuberculosis) or viral origin (Ebola and SARS). COVID-19 pandemic especially has created unforeseen public health challenges including a global shortage of PPE needed for the safety of health care workers (HCWs). Although sufficient stocks of PPE are currently available, their critical shortage may develop soon due to increase in demand and depletion of existing supply lines. To empower our HCWs and ensure their continued protection, proactive measures are urgently required to develop procedures to safely decontaminate the PPEs to allow their “selective reuse” during contingency situations.

Methods

Herein, we have successfully developed a decontamination method based on vaporized hydrogen peroxide (VHP). We have used a range of concentration of hydrogen peroxide to disinfect PPE (coveralls, face-shields, and N-95 masks). To ensure a proper disinfection, we have evaluated three biological indicators namely Escherichia coli, Mycobacterium smegmatis and spores of Bacillus stearothermophilus, considered as the gold standard for disinfection processes. We next evaluated the impact of repeated VHP treatment on physical features, permeability, and fabric integrity of coveralls and N-95 masks. Next, we performed Scanning Electron Microscopy (SEM) to evaluate microscopic changes in fiber thickness of N-95 masks, melt blown layer or coverall body suits. Considering the fact that any disinfection procedure should be able to meet local requirements, our study included various regionally procured N-95 masks and coveralls available at our institute All India Institute of Medical Sciences (AIIMS), New Delhi, India. Lastly, the practical utility of VHP method developed herein was ascertained by operationalizing a dedicated research facility disinfecting used PPE during COVID-19.

Results

Our prototype studies show that a single VHP cycle (7–8% Hydrogen peroxide) could disinfect PPE and PPE housing room of about 1200 cubic feet (length10 ft × breadth 10 ft × height 12 ft) in less than 10 min, as noted by a complete loss of B. stearothermophilus spore revival. The results are consistent and reproducible as tested in over 10 cycles in our settings. Further, repeated VHP treatment did not result in any physical tear, deformity or other appreciable change in the coverall and N-95 masks. Our permeation tests evaluating droplet penetration did not reveal any change in permeability post-VHP treatments. Also, SEM analysis indeed revealed no significant change in fiber thickness or damage to fibers of coveralls or melt blown layer of N-95 masks essential for filtration. There was no change in user comfort and experience following VHP treatment of PPE. Based on results of these studies, and parameters developed and optimized, an institutional research facility to disinfect COVID-19 PPE is successfully established and operationalized with more than 80% recovery rate for used PPE post-disinfection.

Conclusions

Our study, therefore, successfully establishes the utility of VHP to effectively disinfect PPE for a possible reuse as per the requirements. VHP treatment did not damage coveralls, cause physical deformity and also did not alter fabric architecture of melt blown layer. We observed that disinfection process was successful consistently and therefore believe that the VHP-based decontamination model will have a universal applicability and utility. This process can be easily and economically scaled up and can be instrumental in easing global PPE shortages in any biosafety facility or in health care settings during pandemic situation such as COVID-19.
Literature
1.
go back to reference Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104:246–51.CrossRef Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104:246–51.CrossRef
2.
go back to reference Rabenau HF, Kampf G, Cinatl J, Doerr HW. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect. 2005;61:107–11.CrossRef Rabenau HF, Kampf G, Cinatl J, Doerr HW. Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect. 2005;61:107–11.CrossRef
3.
go back to reference Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;2005(194):1–6.CrossRef Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;2005(194):1–6.CrossRef
4.
go back to reference Siddharta A, Pfaender S, Vielle NJ, Dijkman R, Friesland M, Becker B, Yang J, Engelmann M, Todt D, Windisch MP, Brill FH. Virucidal Activity of World Health Organization-Recommended Formulations Against Enveloped Viruses, Including Zika, Ebola, and Emerging Coronaviruses. J Infect Dis. 2017;215:902–6.CrossRef Siddharta A, Pfaender S, Vielle NJ, Dijkman R, Friesland M, Becker B, Yang J, Engelmann M, Todt D, Windisch MP, Brill FH. Virucidal Activity of World Health Organization-Recommended Formulations Against Enveloped Viruses, Including Zika, Ebola, and Emerging Coronaviruses. J Infect Dis. 2017;215:902–6.CrossRef
5.
go back to reference Finnegan M, Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrob Chemother. 2010;65:2108–15.CrossRef Finnegan M, Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrob Chemother. 2010;65:2108–15.CrossRef
6.
go back to reference Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother. 2012;67:1589–96.CrossRef Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother. 2012;67:1589–96.CrossRef
7.
go back to reference Krause J, McDonnell G, Riedesel H. Biodecontamination of animal rooms and heat-sensitive equipment with vaporized hydrogen peroxide. J Am Assoc Lab Anim Sci. 2001;40:18–21. Krause J, McDonnell G, Riedesel H. Biodecontamination of animal rooms and heat-sensitive equipment with vaporized hydrogen peroxide. J Am Assoc Lab Anim Sci. 2001;40:18–21.
8.
go back to reference Rogers JV, Choi YW, Richter WR, Stone HJ, Taylor ML. Bacillus anthracis spore inactivation by fumigant decontamination. Appl Biosaf. 2008;13:89–98.CrossRef Rogers JV, Choi YW, Richter WR, Stone HJ, Taylor ML. Bacillus anthracis spore inactivation by fumigant decontamination. Appl Biosaf. 2008;13:89–98.CrossRef
9.
go back to reference Goyal SM, Chander Y, Yezli S, Otter JA. Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect. 2014;86:255–9.CrossRef Goyal SM, Chander Y, Yezli S, Otter JA. Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect. 2014;86:255–9.CrossRef
10.
go back to reference Kokubo M, Inoue T, Akers J. Resistance of common environmental spores of the genus Bacillus to vapor hydrogen peroxide. PDA J Pharm Sci Technol. 1998;52:228–31.PubMed Kokubo M, Inoue T, Akers J. Resistance of common environmental spores of the genus Bacillus to vapor hydrogen peroxide. PDA J Pharm Sci Technol. 1998;52:228–31.PubMed
11.
go back to reference Barbut F, Menuet D, Verachten M, Girou E. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009;30:507–14.CrossRef Barbut F, Menuet D, Verachten M, Girou E. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009;30:507–14.CrossRef
12.
go back to reference McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 2001;14:147–79.CrossRef McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 2001;14:147–79.CrossRef
13.
go back to reference Meszaros JE, Antloga K, Justi C, Plesnicher C, McDonnell G. Area fumigation with hydrogen peroxide vapor. Appl Biosafety. 2005;10:91–100.CrossRef Meszaros JE, Antloga K, Justi C, Plesnicher C, McDonnell G. Area fumigation with hydrogen peroxide vapor. Appl Biosafety. 2005;10:91–100.CrossRef
14.
go back to reference Heckert RA, Best M, Jordan LT, Dulac GC, Ed-dington DL, Sterritt WG. Efficacy of va-porized hydrogen peroxide against exotic animal viruses. Appl Environ Microbiol. 1997;63:3916–8.CrossRef Heckert RA, Best M, Jordan LT, Dulac GC, Ed-dington DL, Sterritt WG. Efficacy of va-porized hydrogen peroxide against exotic animal viruses. Appl Environ Microbiol. 1997;63:3916–8.CrossRef
15.
go back to reference Hall L, Otter JA, Chewins J, Wengenack NL. Use of hydrogen peroxide vapor for deactivation of Mycobacterium tuberculosis in a biological safety cabinet and a room. J Clin Microbiol. 2007;45:810–5.CrossRef Hall L, Otter JA, Chewins J, Wengenack NL. Use of hydrogen peroxide vapor for deactivation of Mycobacterium tuberculosis in a biological safety cabinet and a room. J Clin Microbiol. 2007;45:810–5.CrossRef
16.
go back to reference Mentel R, Shirrmakher R, Kevich A, Dreĭzin RS, Shmidt I. Virus inactivation by hydrogen peroxide. Voprosy virusologi. 1977;6:731. Mentel R, Shirrmakher R, Kevich A, Dreĭzin RS, Shmidt I. Virus inactivation by hydrogen peroxide. Voprosy virusologi. 1977;6:731.
17.
go back to reference Kenney P, Chan BK, Kortright K, Cintron M, Havill N, Russi M, Epright J, Lee L, Balcezak T, Martinello R. Hydrogen Peroxide Vapor sterilization of N95 respirators for reuse. MedRxiv. 2020 . Kenney P, Chan BK, Kortright K, Cintron M, Havill N, Russi M, Epright J, Lee L, Balcezak T, Martinello R. Hydrogen Peroxide Vapor sterilization of N95 respirators for reuse. MedRxiv. 2020 .
18.
go back to reference Martin NL, Bass P, Liss SN. Antibacterial properties and mechanism of activity of a novel silver-stabilized hydrogen peroxide. PLoS ONE. 2015;10:7. Martin NL, Bass P, Liss SN. Antibacterial properties and mechanism of activity of a novel silver-stabilized hydrogen peroxide. PLoS ONE. 2015;10:7.
19.
go back to reference Kelly F, Mckay C, Steed BH. Solutions for stabilizing hydrogen peroxide containing solutions. GB patent no. PCT/GB1990/001968. 1991. Kelly F, Mckay C, Steed BH. Solutions for stabilizing hydrogen peroxide containing solutions. GB patent no. PCT/GB1990/001968. 1991.
20.
go back to reference Pedahzur R, Shuval HI, Ulitzur S. Silver and hydrogen peroxide as potential drinking water disinfectants: their bactericidal effects and possible modes of action. Water Sci Technol. 1997;35:87–93.CrossRef Pedahzur R, Shuval HI, Ulitzur S. Silver and hydrogen peroxide as potential drinking water disinfectants: their bactericidal effects and possible modes of action. Water Sci Technol. 1997;35:87–93.CrossRef
21.
go back to reference Davoudi M, Ehrampoush MH, Vakili T, Absalan A, Ebrahimi A. Antibacterial effects of hydrogen peroxide and silver composition on selected pathogenic enterobacteriaceae. Int J Env Health Eng. 2012;1:23.CrossRef Davoudi M, Ehrampoush MH, Vakili T, Absalan A, Ebrahimi A. Antibacterial effects of hydrogen peroxide and silver composition on selected pathogenic enterobacteriaceae. Int J Env Health Eng. 2012;1:23.CrossRef
22.
go back to reference Hao L, Wu J, Zhang E, Yi Y, Zhang Z, Zhang J, Qi J. Disinfection efficiency of positive pressure respiratory protective hood using fumigation sterilization cabinet. Biosafety Health. 2019;1:46–53.CrossRef Hao L, Wu J, Zhang E, Yi Y, Zhang Z, Zhang J, Qi J. Disinfection efficiency of positive pressure respiratory protective hood using fumigation sterilization cabinet. Biosafety Health. 2019;1:46–53.CrossRef
23.
go back to reference Viscusi DJ, Bergman MS, Eimer BC, Shaffer RE. Evaluation of five decontamination methods for filtering facepiece respirators. Ann Occup Hyg. 2009;53:815–27.PubMedPubMedCentral Viscusi DJ, Bergman MS, Eimer BC, Shaffer RE. Evaluation of five decontamination methods for filtering facepiece respirators. Ann Occup Hyg. 2009;53:815–27.PubMedPubMedCentral
24.
go back to reference Torres AE, Lyons AB, Narla S, Kohli I, Parks-Miller A, Ozog D, Hamzavi IH, Lim HW. Ultraviolet-C and other methods of decontamination of filtering facepiece N-95 respirators during the COVID-19 pandemic. Photochem Photobiol Sci. 2020. Torres AE, Lyons AB, Narla S, Kohli I, Parks-Miller A, Ozog D, Hamzavi IH, Lim HW. Ultraviolet-C and other methods of decontamination of filtering facepiece N-95 respirators during the COVID-19 pandemic. Photochem Photobiol Sci. 2020.
25.
go back to reference Rubio-Romero JC, del Carmen Pardo-Ferreira M, García JA, Calero-Castro S. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic. Saf Sci. 2020;129:104830.CrossRef Rubio-Romero JC, del Carmen Pardo-Ferreira M, García JA, Calero-Castro S. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic. Saf Sci. 2020;129:104830.CrossRef
26.
go back to reference Saini V, Raghuvanshi S, Talwar GP, Ahmed N, Khurana JP, Hasnain SE, Tyagi AK, Tyagi AK. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PLoS ONE. 2009;4:e6263.CrossRef Saini V, Raghuvanshi S, Talwar GP, Ahmed N, Khurana JP, Hasnain SE, Tyagi AK, Tyagi AK. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PLoS ONE. 2009;4:e6263.CrossRef
27.
go back to reference Ahmed N, Saini V, Raghuvanshi S, Khurana JP, Tyagi AK, Tyagi AK, Hasnain SE. Molecular analysis of a leprosy immunotherapeutic bacillus provides insights into Mycobacterium evolution. PLoS ONE. 2007;2:e968.CrossRef Ahmed N, Saini V, Raghuvanshi S, Khurana JP, Tyagi AK, Tyagi AK, Hasnain SE. Molecular analysis of a leprosy immunotherapeutic bacillus provides insights into Mycobacterium evolution. PLoS ONE. 2007;2:e968.CrossRef
28.
go back to reference Rickloff, J, Orelski, P. Resistance of various microorganisms to vapor phase hydrogen peroxide in a prototype dental hand piece/general instrument sterilizer, abstr. Q-59. In Abstr. 89th Annu Meet Am Soc Microbiol. 1989; 339. Rickloff, J, Orelski, P. Resistance of various microorganisms to vapor phase hydrogen peroxide in a prototype dental hand piece/general instrument sterilizer, abstr. Q-59. In Abstr. 89th Annu Meet Am Soc Microbiol. 1989; 339.
29.
go back to reference U.S. Food & Drug Administration. Enforcement Policy for Sterilizers, Disinfectant Devices, and Air Purifiers during the Coronavirus Disease 2019 (COVID-19) Public Health Emergency. Guidance for Industry and Food and Drug Administration Staff. U.S. Department of Health and Human Services, Food and Drug Administration, Centre for Devices and Radiological Health. 2020. U.S. Food & Drug Administration. Enforcement Policy for Sterilizers, Disinfectant Devices, and Air Purifiers during the Coronavirus Disease 2019 (COVID-19) Public Health Emergency. Guidance for Industry and Food and Drug Administration Staff. U.S. Department of Health and Human Services, Food and Drug Administration, Centre for Devices and Radiological Health. 2020.
31.
go back to reference Lindsley WG, Martin SB Jr, Thewlis RE, Sarkisian K, Nwoko JO, Mead KR, Noti JD. Effects of ultraviolet germicidal irradiation (UVGI) on N-95 respirator filtration performance and structural integrity. J Occup Environ Hyg. 2015;12:509–17.CrossRef Lindsley WG, Martin SB Jr, Thewlis RE, Sarkisian K, Nwoko JO, Mead KR, Noti JD. Effects of ultraviolet germicidal irradiation (UVGI) on N-95 respirator filtration performance and structural integrity. J Occup Environ Hyg. 2015;12:509–17.CrossRef
32.
go back to reference Mendes GCC, Brandão TRS, Silva CLM. Ethylene oxide sterilization of medical devices: a review. Am J Infect. 2007;35:574–81. Mendes GCC, Brandão TRS, Silva CLM. Ethylene oxide sterilization of medical devices: a review. Am J Infect. 2007;35:574–81.
33.
go back to reference Jinot J, Fritz JM, Vulimiri SV, Keshava N. Carcinogenicity of ethylene oxide: key findings and scientific issues. Toxicol Mech Method. 2018;28:386–96.CrossRef Jinot J, Fritz JM, Vulimiri SV, Keshava N. Carcinogenicity of ethylene oxide: key findings and scientific issues. Toxicol Mech Method. 2018;28:386–96.CrossRef
Metadata
Title
Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics
Authors
Vikram Saini
Kriti Sikri
Sakshi Dhingra Batra
Priya Kalra
Kamini Gautam
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
COVID-19
Published in
Gut Pathogens / Issue 1/2020
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-020-00367-4

Other articles of this Issue 1/2020

Gut Pathogens 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.