Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2015

Open Access 01-12-2015 | Short report

Evaluation of epicardial adipose tissue in familial partial lipodystrophy

Authors: Amélio Fernando Godoy-Matos, Cynthia M Valério, Juliana Bonadiman e Bragança, Ricardo de Andrade Oliveira, Roberto Luis Zagury, Rodolfo de Paula Lustosa, Gabriel Cordeiro Camargo, César Augusto da Silva Nascimento, Rodrigo O Moreira

Published in: Diabetology & Metabolic Syndrome | Issue 1/2015

Login to get access

Abstract

Background

Dunnigan type Familial Partial Lipodystrophy (FPLD) is characterized by loss of subcutaneous fat from the limbs and excessive accumulation on the visceral adipose tissue (VAT). Affected individuals have insulin resistance (IR), diabetes, dyslipidemia and early cardiovascular (CV) events, due to their imbalanced distribution of total body fat (TBF). Epicardial adipose tissue (EAT) is correlated with VAT. Hence, EAT could be a new index of cardiac and visceral adiposity with great potential as a marker of CV risk in FPLD.

Objective

Compare EAT in FPLD patients versus healthy controls. Moreover, we aimed to verify if EFT is related to anthropometrical (ATPM) and Dual-Energy X-ray Absorptiometry (DEXA) measures, as well as laboratory blood findings. We postulated that FPLD patients have enlarged EAT.

Methods

This is an observational, cross-sectional study. Six patients with a confirmed mutation in the LMNA gene for FPLD were enrolled in the study. Six sex, age and BMI-matched healthy controls were also selected. EFT was measured by transthoracic echocardiography (ECHO). All participants had body fat distribution evaluated by ATPM and by DEXA measures. Fasting blood samples were obtained for biochemical profiles and also for leptin measurements.

Results

Median EFT was significantly higher in the FPLD group than in matched controls (6.0 ± 3.6 mm vs. 0.0 ± 2.04 mm; p = 0.0306). Additionally, FPLD patients had lower leptin values. There was no significant correlation between EAT and ATPM and DEXA measurements, nor laboratory findings.

Conclusions

This study demonstrates, for the first time, that EAT measured by ECHO is increased in FPLD patients, compared to healthy controls. However, it failed to prove a significant relation neither between EAT and DEXA, ATPM or laboratory variables analyzed.
Literature
2.
go back to reference Garg A, Peshock R, Fleckenstein J. Adipose Tissue Distribution Pattern in Patients with Familial Partial Lipodystrophy (Dunnigan Variety). J Clin Endocrinol Metab. 1999;84:170–4.PubMed Garg A, Peshock R, Fleckenstein J. Adipose Tissue Distribution Pattern in Patients with Familial Partial Lipodystrophy (Dunnigan Variety). J Clin Endocrinol Metab. 1999;84:170–4.PubMed
3.
go back to reference Capeau J, Magré J, Lascols O, Caron M, Béréziat V, Vigouroux C, et al. Diseases of adipose tissue: genetic and acquired Lipodystrophies. Bioch Soc Trans. 2005;33(5):1073–7.CrossRef Capeau J, Magré J, Lascols O, Caron M, Béréziat V, Vigouroux C, et al. Diseases of adipose tissue: genetic and acquired Lipodystrophies. Bioch Soc Trans. 2005;33(5):1073–7.CrossRef
4.
go back to reference Pandey S, Pungavkar S, Vaidya R, Patkar D, Hegele RA, Sheth FJ, et al. An Imaging Study of Body Composition Including Lipodeposition Pattern in a Patient of Familial Partial Lipodystrophy (Dunnigan Type). J Assoc Physicians India. 2005;53:897–900.PubMed Pandey S, Pungavkar S, Vaidya R, Patkar D, Hegele RA, Sheth FJ, et al. An Imaging Study of Body Composition Including Lipodeposition Pattern in a Patient of Familial Partial Lipodystrophy (Dunnigan Type). J Assoc Physicians India. 2005;53:897–900.PubMed
5.
go back to reference Al-Attar SA, Pollex RL, Robinson JF, Miskie BA, Walcarius R, Rutt BK, et al. Semi-automated segmentation and quantification of adipose tissue in calf and thigh by MRI: a preliminary study in patients with monogenic metabolic syndrome. BMC Medical Imaging. 2006;31:6–11. Al-Attar SA, Pollex RL, Robinson JF, Miskie BA, Walcarius R, Rutt BK, et al. Semi-automated segmentation and quantification of adipose tissue in calf and thigh by MRI: a preliminary study in patients with monogenic metabolic syndrome. BMC Medical Imaging. 2006;31:6–11.
6.
go back to reference Al-Attar SA, Pollex RL, Robinson JF, Miskie BA, Walcarius R, Little CH, et al. Quantitative and qualitative differences in subcutaneous adipose tissue stores across lipodystrophy types shown by magnetic resonance imaging. BMC Med Imaging. 2007;12:7. 3. Al-Attar SA, Pollex RL, Robinson JF, Miskie BA, Walcarius R, Little CH, et al. Quantitative and qualitative differences in subcutaneous adipose tissue stores across lipodystrophy types shown by magnetic resonance imaging. BMC Med Imaging. 2007;12:7. 3.
7.
go back to reference Addeman BT, Kutty S, Perkins TG, Soliman AS, Wiens CN, McCurdy CM, et al. Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation. J Magn Reson Imaging. 2015;41(1):233–41.CrossRefPubMed Addeman BT, Kutty S, Perkins TG, Soliman AS, Wiens CN, McCurdy CM, et al. Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation. J Magn Reson Imaging. 2015;41(1):233–41.CrossRefPubMed
8.
go back to reference Iacobellis G, Assael F, Ribaudo M, Zappaterreno A, Alessi G, Di Mario U, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2013;11:304–10.CrossRef Iacobellis G, Assael F, Ribaudo M, Zappaterreno A, Alessi G, Di Mario U, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2013;11:304–10.CrossRef
9.
go back to reference Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Res. 2007;8:253–61.CrossRef Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Res. 2007;8:253–61.CrossRef
10.
go back to reference Sacks H, Fain J. Human epicardial adipose tissue: A review. Am H J. 2007;153(6):907–17.CrossRef Sacks H, Fain J. Human epicardial adipose tissue: A review. Am H J. 2007;153(6):907–17.CrossRef
11.
go back to reference Saura D, Oliva M, Rodriguez D, Pascual-Figal DA, Hurtado JÁ, Pinar E, et al. Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol. 2010;141(3):311–3.CrossRefPubMed Saura D, Oliva M, Rodriguez D, Pascual-Figal DA, Hurtado JÁ, Pinar E, et al. Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol. 2010;141(3):311–3.CrossRefPubMed
12.
go back to reference Mcgavock J, Victor R, Unger R, Szczepaniak L. Adiposity of the Heart, Revisited. Ann Intern Med. 2006;144:517–24.CrossRefPubMed Mcgavock J, Victor R, Unger R, Szczepaniak L. Adiposity of the Heart, Revisited. Ann Intern Med. 2006;144:517–24.CrossRefPubMed
13.
go back to reference Park JS, Choi SY, Zheng M. Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis. 2013;226:134–9.CrossRefPubMed Park JS, Choi SY, Zheng M. Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis. 2013;226:134–9.CrossRefPubMed
14.
go back to reference Iacobellis G, Sharma AM, Pellicelli AM, Grisorio B, Barbarini G, Barbaro B, et al. Epicardial adipose tissue is related to carotid intima-media thickness and visceral adiposity in HIV-infected patients with highly active antiretroviral therapy-associated metabolic syndrome. Curr HIV Res. 2007;5:275–9.CrossRefPubMed Iacobellis G, Sharma AM, Pellicelli AM, Grisorio B, Barbarini G, Barbaro B, et al. Epicardial adipose tissue is related to carotid intima-media thickness and visceral adiposity in HIV-infected patients with highly active antiretroviral therapy-associated metabolic syndrome. Curr HIV Res. 2007;5:275–9.CrossRefPubMed
15.
go back to reference Balcioglu AS, Durakoglugil ME, Cicek D, Bal UA, Boyaci B, Muderrisoglu H. Epicardial adipose tissue thickness and plasma homocysteine in patients with metabolic syndrome and normal coronary arteries. Diabetol Metabol Syndr. 2014;6:62–9.CrossRef Balcioglu AS, Durakoglugil ME, Cicek D, Bal UA, Boyaci B, Muderrisoglu H. Epicardial adipose tissue thickness and plasma homocysteine in patients with metabolic syndrome and normal coronary arteries. Diabetol Metabol Syndr. 2014;6:62–9.CrossRef
16.
go back to reference Pierdomenico SD, Pierdomenico AM, Cuccurullo F, Iacobellis G. Meta-Analysis of the regulation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am J Cardiol. 2013;111:73–8.CrossRefPubMed Pierdomenico SD, Pierdomenico AM, Cuccurullo F, Iacobellis G. Meta-Analysis of the regulation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am J Cardiol. 2013;111:73–8.CrossRefPubMed
17.
go back to reference Fernandez-Muñoz MJ, BasurtoAcevedo L, Cordoba Perez N, Vazquez Martinez AL, Tepach Gutierrez N, Vega Garcia S, et al. Epicardial adipose tissue is associated with visceral fat, metabolic syndrome, and insulin resistance in menopausal women. Rev Esp Cardiol. 2014;67:436–41.CrossRefPubMed Fernandez-Muñoz MJ, BasurtoAcevedo L, Cordoba Perez N, Vazquez Martinez AL, Tepach Gutierrez N, Vega Garcia S, et al. Epicardial adipose tissue is associated with visceral fat, metabolic syndrome, and insulin resistance in menopausal women. Rev Esp Cardiol. 2014;67:436–41.CrossRefPubMed
18.
go back to reference Freitas P, Santos AC, Carvalho D. Fat mass ratio: an objective tool to define lipodystrophy in HIV-infected patients under antiretroviral therapy. J Clin Densitom. 2010;13(2):197–203.CrossRefPubMed Freitas P, Santos AC, Carvalho D. Fat mass ratio: an objective tool to define lipodystrophy in HIV-infected patients under antiretroviral therapy. J Clin Densitom. 2010;13(2):197–203.CrossRefPubMed
19.
go back to reference Hegele RA, Al-Attar SA, Rutt BK. Obstructive sleep apnea in 2 women with familial partial lipodystrophy due to a heterozygous LMNA R482Q mutation. CMAJ. 2007;177(7):743–45.CrossRefPubMedCentralPubMed Hegele RA, Al-Attar SA, Rutt BK. Obstructive sleep apnea in 2 women with familial partial lipodystrophy due to a heterozygous LMNA R482Q mutation. CMAJ. 2007;177(7):743–45.CrossRefPubMedCentralPubMed
20.
go back to reference Joy T, Kennedy BA, Al-Attar S, Rutt BK, Hegele RA. Predicting abdominal adipose tissue among women with familial partial lipodystrophy. Metabolism. 2009;58(6):828–34.CrossRefPubMed Joy T, Kennedy BA, Al-Attar S, Rutt BK, Hegele RA. Predicting abdominal adipose tissue among women with familial partial lipodystrophy. Metabolism. 2009;58(6):828–34.CrossRefPubMed
21.
go back to reference Shetty R, Vivek G, Naha K, Nayak K, Goyal A, Dias LS. Correlation of epicardial fat and anthropometric measurements in Asian-Indians: A community based study. Avicenna J Med. 2012;2(4):89–93.CrossRefPubMedCentralPubMed Shetty R, Vivek G, Naha K, Nayak K, Goyal A, Dias LS. Correlation of epicardial fat and anthropometric measurements in Asian-Indians: A community based study. Avicenna J Med. 2012;2(4):89–93.CrossRefPubMedCentralPubMed
22.
go back to reference Okyay K, Balcioglu AS, Tavil Y, Tacoy G, Turkoglu S, Abaci A. A relationship between echocardiographic subepicardial adipose tissue and metabolic syndrome. Int J Cardiovasc Imaging. 2008;24:577–83.CrossRefPubMed Okyay K, Balcioglu AS, Tavil Y, Tacoy G, Turkoglu S, Abaci A. A relationship between echocardiographic subepicardial adipose tissue and metabolic syndrome. Int J Cardiovasc Imaging. 2008;24:577–83.CrossRefPubMed
23.
go back to reference Malavazos A, Ermetici F, Cereda E, Coman C, Locati M, Morricone L, et al. Epicardial fat thickness: Relationship with plasma visfatin and plasminogen activator inhibitor-1 levels in visceral obesity. Nutr Metab Cardiovasc Dis. 2008;18(8):523–30.CrossRefPubMed Malavazos A, Ermetici F, Cereda E, Coman C, Locati M, Morricone L, et al. Epicardial fat thickness: Relationship with plasma visfatin and plasminogen activator inhibitor-1 levels in visceral obesity. Nutr Metab Cardiovasc Dis. 2008;18(8):523–30.CrossRefPubMed
24.
go back to reference Iacobellis G, Sharma A. Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Cur Pharm Des. 2007;13(21):2180–4.CrossRef Iacobellis G, Sharma A. Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Cur Pharm Des. 2007;13(21):2180–4.CrossRef
25.
go back to reference Sacks HS, Fain JN, Cheema P. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diab Care. 2011;34:730–3.CrossRef Sacks HS, Fain JN, Cheema P. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diab Care. 2011;34:730–3.CrossRef
26.
go back to reference Park JH, Park YS, Kim YJ. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound. 2010;18:121–6.CrossRefPubMedCentralPubMed Park JH, Park YS, Kim YJ. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound. 2010;18:121–6.CrossRefPubMedCentralPubMed
27.
go back to reference Saura D, Oliva M, Rodrígueza D, Pascual-Figala D, Hurtadoa J, Pinara E, et al. Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol. 2010;141(3):311–3.CrossRefPubMed Saura D, Oliva M, Rodrígueza D, Pascual-Figala D, Hurtadoa J, Pinara E, et al. Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol. 2010;141(3):311–3.CrossRefPubMed
28.
go back to reference Savage D, Murgatroyd P, Chatterjee V, O’rahilly S. Energy Expenditure and Adaptive Responses to an Acute Hypercaloric Fat Load in Humans with Lipodystrophy. J Clin Endocrinol Metab. 2005;90(3):1446–52.CrossRefPubMed Savage D, Murgatroyd P, Chatterjee V, O’rahilly S. Energy Expenditure and Adaptive Responses to an Acute Hypercaloric Fat Load in Humans with Lipodystrophy. J Clin Endocrinol Metab. 2005;90(3):1446–52.CrossRefPubMed
29.
go back to reference Chan JL, Lutz K, Cochran E, Huang W, Peters Y, Weyer C, et al. Clinical effects of long-term metreleptin treatment in patients with lipodystrophy. Endocr Pract. 2011;17(6):922–32.CrossRefPubMedCentralPubMed Chan JL, Lutz K, Cochran E, Huang W, Peters Y, Weyer C, et al. Clinical effects of long-term metreleptin treatment in patients with lipodystrophy. Endocr Pract. 2011;17(6):922–32.CrossRefPubMedCentralPubMed
30.
go back to reference Chehab F. Minireview: Obesity and Lipodystrophy—Where Do the Circles Intersect? Endocrinol. 2008;149(3):925–34.CrossRef Chehab F. Minireview: Obesity and Lipodystrophy—Where Do the Circles Intersect? Endocrinol. 2008;149(3):925–34.CrossRef
Metadata
Title
Evaluation of epicardial adipose tissue in familial partial lipodystrophy
Authors
Amélio Fernando Godoy-Matos
Cynthia M Valério
Juliana Bonadiman e Bragança
Ricardo de Andrade Oliveira
Roberto Luis Zagury
Rodolfo de Paula Lustosa
Gabriel Cordeiro Camargo
César Augusto da Silva Nascimento
Rodrigo O Moreira
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2015
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-015-0024-5

Other articles of this Issue 1/2015

Diabetology & Metabolic Syndrome 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.