Skip to main content
Top
Published in: Trials 1/2023

Open Access 01-12-2023 | Muscle Relaxant | Research

Routine administration of neostigmine after recovery of spontaneous breathing versus neuromuscular monitor-guided administration of neostigmine in pediatric patients: a parallel, randomized, controlled study

Authors: Lei Yang, Na Hu, Hong Chang, Di Yang, Yunxia Zuo

Published in: Trials | Issue 1/2023

Login to get access

Abstract

Background

Neostigmine used to reverse the muscle relaxants should be guided by neuromuscular monitoring, as the degree of spontaneous pre-reversal recovery is the key to success to reverse the neuromuscular block. But neuromuscular monitoring is not always available for some patients during anesthesia and, in consequence, we need to use other clinical judgment to guide the use of neostigmine to reverse the neuromuscular block. In this trial, we aimed to evaluate the incidence of residual neuromuscular blockade (rNMB) in pediatric patients with routine use of neostigmine after recovery of spontaneous breathing compared with the patients with the use of neostigmine guided by neuromuscular monitoring.

Methods

A parallel, randomized, controlled noninferiority study was conducted. We enrolled aged 3 months to 12 years old patients who underwent inguinal hernia repair under general anesthesia. The enrolled patients were randomly divided into experimental and control groups. After surgery, children in the experimental group were given 0.02 mg/kg neostigmine after recovery of spontaneous breathing. Children in the control group were given 0.02 mg/kg neostigmine when the train-of-four (TOF) ratio was between 0.4 and 0.9. However, no neostigmine was administered if the TOF ratio was higher than 0.9. The primary outcome was the incidence of rNMB after extubation (TOF ratio < 0.9). Secondary outcomes included the incidence of neostigmine-induced muscle paralysis, end of surgery – extubation interval, end of surgery – exit OR interval, the length of stay in the PACU, the incidence of hypoxia in the PACU, the number of children who required assisted ventilation during the PACU stay, and neostigmine-related adverse events.

Results

A total of 120 children were included in this study, with 60 in the experimental group and 60 in the control group. There was no significant difference in the incidence of rNMB after extubation between the groups (45/60 vs 44/60, RR 1.02 [95% CI, 0.83 to 1.26], p = 0.84). There was no neostigmine-induced muscle paralysis in either group. Adverse events were similar occurred in both groups. However, time from end of the surgery to leaving the operating room was earlier in the experimental group than in the control group (13.6 ± 5.2 vs 15.7 ± 5.6 min, MD −2.10 min [95% CI, −3.70 to −0.50], p = 0.04). The risk ratio of the incidence of TOF ratio < 0.3 for the experimental group was 31.12 (95%CI, 1.89 to 512.61) compared with the control group (12/60 vs 0/60, p = 0.00) in exploratory analysis.

Conclusions

Recovery of spontaneous breathing could be used as a substitute of neuromuscular monitoring to guide neostigmine use in pediatric patients following minor surgeries. However, care should be taken for the residual neuromuscular block.

Trial registration

Chinese Clinical Trial Registry ChiCTR-IOR-17012890. Registered on 5 October 2017
Literature
1.
go back to reference Meretoja OA. Neuromuscular block and current treatment strategies for its reversal in children. Paediatr Anaesth. 2010;20(7):591–604.CrossRef Meretoja OA. Neuromuscular block and current treatment strategies for its reversal in children. Paediatr Anaesth. 2010;20(7):591–604.CrossRef
2.
go back to reference Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010;111(1):120–8.CrossRef Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010;111(1):120–8.CrossRef
3.
go back to reference Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107(1):130–7.CrossRef Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107(1):130–7.CrossRef
4.
go back to reference Baykara N, Woelfel S, Fine GF, Solak M, Toker K, Brandom BW. Predicting recovery from deep neuromuscular block by rocuronium in children and adults. J Clin Anesth. 2002;14(3):214–7.CrossRef Baykara N, Woelfel S, Fine GF, Solak M, Toker K, Brandom BW. Predicting recovery from deep neuromuscular block by rocuronium in children and adults. J Clin Anesth. 2002;14(3):214–7.CrossRef
5.
go back to reference Ledowski T, O'Dea B, Meyerkort L, Hegarty M, von Ungern-Sternberg BS. Postoperative Residual Neuromuscular Paralysis at an Australian Tertiary Children's Hospital. Anesthesiol Res Pract. 2015;2015:410248. Ledowski T, O'Dea B, Meyerkort L, Hegarty M, von Ungern-Sternberg BS. Postoperative Residual Neuromuscular Paralysis at an Australian Tertiary Children's Hospital. Anesthesiol Res Pract. 2015;2015:410248.
6.
go back to reference Caldwell JE. Reversal of residual neuromuscular block with neostigmine at one to four hours after a single intubating dose of vecuronium. Anesth Analg. 1995;80(6):1168–74. Caldwell JE. Reversal of residual neuromuscular block with neostigmine at one to four hours after a single intubating dose of vecuronium. Anesth Analg. 1995;80(6):1168–74.
7.
go back to reference Watcha MF, Safavi FZ, McCulloch DA, Tan TS, White PF. Effect of antagonism of mivacurium-induced neuromuscular block on postoperative emesis in children. Anesth Analg. 1995;80(4):713–7. Watcha MF, Safavi FZ, McCulloch DA, Tan TS, White PF. Effect of antagonism of mivacurium-induced neuromuscular block on postoperative emesis in children. Anesth Analg. 1995;80(4):713–7.
8.
go back to reference McLean DJ, Diaz-Gil D, Farhan HN, Ladha KS, Kurth T, Eikermann M. Dose-dependent Association between Intermediate-acting Neuromuscular-blocking Agents and Postoperative Respiratory Complications. Anesthesiology. 2015;122(6):1201–13.CrossRef McLean DJ, Diaz-Gil D, Farhan HN, Ladha KS, Kurth T, Eikermann M. Dose-dependent Association between Intermediate-acting Neuromuscular-blocking Agents and Postoperative Respiratory Complications. Anesthesiology. 2015;122(6):1201–13.CrossRef
9.
go back to reference Herbstreit F, Zigrahn D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010;113(6):1280–8.CrossRef Herbstreit F, Zigrahn D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010;113(6):1280–8.CrossRef
10.
go back to reference Plaud B, Debaene B, Donati F, Marty J. Residual paralysis after emergence from anesthesia. Anesthesiology. 2010;112(4):1013–22.CrossRef Plaud B, Debaene B, Donati F, Marty J. Residual paralysis after emergence from anesthesia. Anesthesiology. 2010;112(4):1013–22.CrossRef
11.
go back to reference Checketts MR, Alladi R, Ferguson K, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2016;71(1):85–93.CrossRef Checketts MR, Alladi R, Ferguson K, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2016;71(1):85–93.CrossRef
12.
go back to reference Brull SJ, Kopman AF. Current Status of Neuromuscular Reversal and Monitoring: Challenges and Opportunities. Anesthesiology. 2017;126(1):173–90.CrossRef Brull SJ, Kopman AF. Current Status of Neuromuscular Reversal and Monitoring: Challenges and Opportunities. Anesthesiology. 2017;126(1):173–90.CrossRef
13.
go back to reference Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111(1):110–9.CrossRef Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111(1):110–9.CrossRef
14.
go back to reference Phillips S, Stewart PA, Bilgin AB. A survey of the management of neuromuscular blockade monitoring in Australia and New Zealand. Anaesth Intensive Care. 2013;41(3):374–9.CrossRef Phillips S, Stewart PA, Bilgin AB. A survey of the management of neuromuscular blockade monitoring in Australia and New Zealand. Anaesth Intensive Care. 2013;41(3):374–9.CrossRef
15.
go back to reference Fuchs-Buder T. Neostigmine: Timing and dosing in 2016. Anaesth Crit Care Pain Med. 2016;35(4):245–7.CrossRef Fuchs-Buder T. Neostigmine: Timing and dosing in 2016. Anaesth Crit Care Pain Med. 2016;35(4):245–7.CrossRef
16.
go back to reference de Souza CM, Romero FE, Tardelli MA. Assessment of neuromuscular blockade in children at the time of block reversal and the removal of the endotracheal tube. Rev Bras Anestesiol. 2011;61(2):145–83.CrossRef de Souza CM, Romero FE, Tardelli MA. Assessment of neuromuscular blockade in children at the time of block reversal and the removal of the endotracheal tube. Rev Bras Anestesiol. 2011;61(2):145–83.CrossRef
17.
go back to reference Feltracco P, Tonetti T, Barbieri S, Frigo AC, Ori C. Cisatracurium- and rocuronium-associated residual neuromuscular dysfunction under intraoperative neuromuscular monitoring and postoperative neostigmine reversal: a single-blind randomized trial. J Clin Anesth. 2016 Dec;35:198–204.CrossRef Feltracco P, Tonetti T, Barbieri S, Frigo AC, Ori C. Cisatracurium- and rocuronium-associated residual neuromuscular dysfunction under intraoperative neuromuscular monitoring and postoperative neostigmine reversal: a single-blind randomized trial. J Clin Anesth. 2016 Dec;35:198–204.CrossRef
18.
go back to reference Saager L, Maiese EM, Bash LD, et al. Incidence, risk factors, and consequences of residual neuromuscular block in the United States: The prospective, observational, multicenter RECITE-US study. J Clin Anesth. 2019;55:33–41.CrossRef Saager L, Maiese EM, Bash LD, et al. Incidence, risk factors, and consequences of residual neuromuscular block in the United States: The prospective, observational, multicenter RECITE-US study. J Clin Anesth. 2019;55:33–41.CrossRef
19.
go back to reference Arbous MS, Meursing AE, van Kleef JW, et al. Impact of anesthesia management characteristics on severe morbidity and mortality. Anesthesiology. 2005;102(2):257–492.CrossRef Arbous MS, Meursing AE, van Kleef JW, et al. Impact of anesthesia management characteristics on severe morbidity and mortality. Anesthesiology. 2005;102(2):257–492.CrossRef
20.
go back to reference Yang L, Yang D, Li Q, Zuo Y, Lu D. Neostigmine for reversal of neuromuscular block in paediatric patients. Cochrane Database Syst Rev. 2014;(5):CD010110. Yang L, Yang D, Li Q, Zuo Y, Lu D. Neostigmine for reversal of neuromuscular block in paediatric patients. Cochrane Database Syst Rev. 2014;(5):CD010110.
21.
go back to reference Murphy GS, Szokol JW, Avram MJ, et al. Neostigmine Administration after Spontaneous Recovery to a Train-of-Four Ratio of 0.9 to 1.0: A Randomized Controlled Trial of the Effect on Neuromuscular and Clinical Recovery. Anesthesiology. 2018;128(1):27–37.CrossRef Murphy GS, Szokol JW, Avram MJ, et al. Neostigmine Administration after Spontaneous Recovery to a Train-of-Four Ratio of 0.9 to 1.0: A Randomized Controlled Trial of the Effect on Neuromuscular and Clinical Recovery. Anesthesiology. 2018;128(1):27–37.CrossRef
Metadata
Title
Routine administration of neostigmine after recovery of spontaneous breathing versus neuromuscular monitor-guided administration of neostigmine in pediatric patients: a parallel, randomized, controlled study
Authors
Lei Yang
Na Hu
Hong Chang
Di Yang
Yunxia Zuo
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Trials / Issue 1/2023
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-023-07066-w

Other articles of this Issue 1/2023

Trials 1/2023 Go to the issue