Skip to main content
Top
Published in: Breast Cancer Research 1/2016

Open Access 01-12-2016 | Review

Raised mammographic density: causative mechanisms and biological consequences

Authors: Michael J. Sherratt, James C. McConnell, Charles H. Streuli

Published in: Breast Cancer Research | Issue 1/2016

Login to get access

Abstract

High mammographic density is the most important risk factor for breast cancer, after ageing. However, the composition, architecture, and mechanical properties of high X-ray density soft tissues, and the causative mechanisms resulting in different mammographic densities, are not well described. Moreover, it is not known how high breast density leads to increased susceptibility for cancer, or the extent to which it causes the genomic changes that characterise the disease. An understanding of these principals may lead to new diagnostic tools and therapeutic interventions.
Literature
2.
4.
go back to reference Metcalfe AD, Hickman JA, Streuli CH. Programmed cell death and the mammary gland--the involvement of the Bcl-2 family members in the control of epithelial apoptosis. Biochem Soc Trans. 1996;24:347S.CrossRefPubMed Metcalfe AD, Hickman JA, Streuli CH. Programmed cell death and the mammary gland--the involvement of the Bcl-2 family members in the control of epithelial apoptosis. Biochem Soc Trans. 1996;24:347S.CrossRefPubMed
5.
go back to reference Benusiglio PR et al. Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study. Breast Cancer Res BCR. 2005;7:R204–9.CrossRefPubMed Benusiglio PR et al. Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study. Breast Cancer Res BCR. 2005;7:R204–9.CrossRefPubMed
7.
go back to reference Slamon DJ et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.CrossRefPubMed Slamon DJ et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.CrossRefPubMed
11.
go back to reference Yaffe MJ. Mammographic density. Measurement of mammographic density. Breast Cancer Res. 2008;10(209). Yaffe MJ. Mammographic density. Measurement of mammographic density. Breast Cancer Res. 2008;10(209).
13.
14.
go back to reference Highnam R, Brady M, Yaffe MJ, et al. Robust Breast Composition Measurement -Volpara (TM). In: Marti J, Oliver A, Freixenet J, et al, editors. Lecture Notes in Computer Science, vol. 6136. Girona, SPAIN: Conference: 10th International Workshop on Digital Mammography, Univ Girona, Comp Vision & Robot Grp. 2010. p. 342-9. Highnam R, Brady M, Yaffe MJ, et al. Robust Breast Composition Measurement -Volpara (TM). In: Marti J, Oliver A, Freixenet J, et al, editors. Lecture Notes in Computer Science, vol. 6136. Girona, SPAIN: Conference: 10th International Workshop on Digital Mammography, Univ Girona, Comp Vision & Robot Grp. 2010. p. 342-9.
16.
go back to reference Lubomir M, Hadjiiski GD. Medical Imaging 2015: Computer-Aided Diagnosis. Tourassi: Proc. of SPIE Vol. 9414, 941417. SPIE · CCC code: 1605-7422/15/$18. 2015. doi:10.1117/12.2082691. Lubomir M, Hadjiiski GD. Medical Imaging 2015: Computer-Aided Diagnosis. Tourassi: Proc. of SPIE Vol. 9414, 941417. SPIE · CCC code: 1605-7422/15/$18. 2015. doi:10.​1117/​12.​2082691.
17.
go back to reference Yaghjyan L, Colditz GA, Rosner B, Tamimi RM. Mammographic breast density and breast cancer risk: interactions of percent density, absolute dense, and non-dense areas with breast cancer risk factors. Breast Cancer Res Treat. 2015;150:181–9.CrossRefPubMedPubMedCentral Yaghjyan L, Colditz GA, Rosner B, Tamimi RM. Mammographic breast density and breast cancer risk: interactions of percent density, absolute dense, and non-dense areas with breast cancer risk factors. Breast Cancer Res Treat. 2015;150:181–9.CrossRefPubMedPubMedCentral
18.
go back to reference Huo CW et al. Mammographic density—a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144:479–502.CrossRefPubMed Huo CW et al. Mammographic density—a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144:479–502.CrossRefPubMed
19.
go back to reference Wolfe JN. Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer. 1976;37:2486–92.CrossRefPubMed Wolfe JN. Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer. 1976;37:2486–92.CrossRefPubMed
20.
21.
go back to reference Barker HE et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 2011;71:1561–72.CrossRefPubMed Barker HE et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 2011;71:1561–72.CrossRefPubMed
23.
go back to reference Warwick J et al. Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res. 2014;16:451.CrossRefPubMedPubMedCentral Warwick J et al. Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res. 2014;16:451.CrossRefPubMedPubMedCentral
24.
go back to reference Harvey JA et al. Histologic changes in the breast with menopausal hormone therapy use: correlation with breast density, estrogen receptor, progesterone receptor, and proliferation indices. Menopause N Y N. 2008;15:67–73. Harvey JA et al. Histologic changes in the breast with menopausal hormone therapy use: correlation with breast density, estrogen receptor, progesterone receptor, and proliferation indices. Menopause N Y N. 2008;15:67–73.
25.
go back to reference Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH. Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003;5:R129–35.CrossRefPubMedPubMedCentral Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH. Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003;5:R129–35.CrossRefPubMedPubMedCentral
26.
go back to reference Skandalis SS et al. Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas. BMC Cancer. 2011;11:314.CrossRefPubMedPubMedCentral Skandalis SS et al. Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas. BMC Cancer. 2011;11:314.CrossRefPubMedPubMedCentral
27.
go back to reference Guo YP et al. Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomark Prev. 2001;10:243–8. Guo YP et al. Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomark Prev. 2001;10:243–8.
28.
go back to reference Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235:3222–9.CrossRefPubMed Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235:3222–9.CrossRefPubMed
29.
go back to reference Britt K, Ingman W, Huo C, Chew G, Thompson E. The pathobiology of mammographic density. J Cancer Biol Res. 2014;2:1021. Britt K, Ingman W, Huo C, Chew G, Thompson E. The pathobiology of mammographic density. J Cancer Biol Res. 2014;2:1021.
30.
go back to reference DeFilippis RA et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov. 2012;2:826–39.CrossRefPubMedPubMedCentral DeFilippis RA et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov. 2012;2:826–39.CrossRefPubMedPubMedCentral
31.
go back to reference Huo CW et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79.CrossRefPubMedPubMedCentral Huo CW et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79.CrossRefPubMedPubMedCentral
32.
go back to reference Acerbi I et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol Quant Biosci Nano Macro. 2015;7:1120–34. Acerbi I et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol Quant Biosci Nano Macro. 2015;7:1120–34.
34.
go back to reference Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife. 2014;3:e01308.CrossRefPubMedPubMedCentral Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife. 2014;3:e01308.CrossRefPubMedPubMedCentral
35.
go back to reference O’Brien JH, Vanderlinden LA, Schedin PJ, Hansen KC. Rat mammary extracellular matrix composition and response to ibuprofen treatment during postpartum involution by differential GeLC-MS/MS analysis. J Proteome Res. 2012;11:4894–905.CrossRefPubMedPubMedCentral O’Brien JH, Vanderlinden LA, Schedin PJ, Hansen KC. Rat mammary extracellular matrix composition and response to ibuprofen treatment during postpartum involution by differential GeLC-MS/MS analysis. J Proteome Res. 2012;11:4894–905.CrossRefPubMedPubMedCentral
36.
go back to reference Norris RA et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem. 2007;101:695–711.CrossRefPubMedPubMedCentral Norris RA et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem. 2007;101:695–711.CrossRefPubMedPubMedCentral
37.
go back to reference Wang Z, Ouyang G. Periostin: a bridge between cancer stem cells and their metastatic niche. Cell Stem Cell. 2012;10:111–2.CrossRefPubMed Wang Z, Ouyang G. Periostin: a bridge between cancer stem cells and their metastatic niche. Cell Stem Cell. 2012;10:111–2.CrossRefPubMed
38.
go back to reference Grässel S, Bauer RJ. Collagen XVI in health and disease. Matrix Biol J Int Soc Matrix Biol. 2013;32:64–73.CrossRef Grässel S, Bauer RJ. Collagen XVI in health and disease. Matrix Biol J Int Soc Matrix Biol. 2013;32:64–73.CrossRef
39.
go back to reference Ratzinger S, Grässel S, Dowejko A, Reichert TE, Bauer RJ. Induction of type XVI collagen expression facilitates proliferation of oral cancer cells. Matrix Biol. 2011;30(2):118–25. doi:10.1016/j.matbio.2011.01.001. Epub 2011 Jan 18. PMID:21251976. Ratzinger S, Grässel S, Dowejko A, Reichert TE, Bauer RJ. Induction of type XVI collagen expression facilitates proliferation of oral cancer cells. Matrix Biol. 2011;30(2):118–25. doi:10.​1016/​j.​matbio.​2011.​01.​001. Epub 2011 Jan 18. PMID:21251976.
40.
go back to reference Pankow JS et al. Genetic analysis of mammographic breast density in adult women: evidence of a gene effect. J Natl Cancer Inst. 1997;89:549–56.CrossRefPubMed Pankow JS et al. Genetic analysis of mammographic breast density in adult women: evidence of a gene effect. J Natl Cancer Inst. 1997;89:549–56.CrossRefPubMed
41.
go back to reference Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG, Cawson JN, Hegele RA, Chiarelli AM, Yaffe MJ, Boyd NF, Hopper JL. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Biomarkers Prev. 2006;15(4):612–7.CrossRefPubMed Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG, Cawson JN, Hegele RA, Chiarelli AM, Yaffe MJ, Boyd NF, Hopper JL. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Biomarkers Prev. 2006;15(4):612–7.CrossRefPubMed
42.
go back to reference Odefrey F et al. Common genetic variants associated with breast cancer and mammographic density measures that predict disease. Cancer Res. 2010;70:1449–58.CrossRefPubMed Odefrey F et al. Common genetic variants associated with breast cancer and mammographic density measures that predict disease. Cancer Res. 2010;70:1449–58.CrossRefPubMed
44.
go back to reference Vachon CM et al. Common breast cancer susceptibility variants in LSP1 and RAD51L1 are associated with mammographic density measures that predict breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2012;21:1156–66.CrossRefPubMedPubMedCentral Vachon CM et al. Common breast cancer susceptibility variants in LSP1 and RAD51L1 are associated with mammographic density measures that predict breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2012;21:1156–66.CrossRefPubMedPubMedCentral
45.
46.
go back to reference Fernandez-Navarro P et al. Genome wide association study identifies a novel putative mammographic density locus at 1q12-q21. Int J Cancer J Int Cancer. 2015;136:2427–36.CrossRef Fernandez-Navarro P et al. Genome wide association study identifies a novel putative mammographic density locus at 1q12-q21. Int J Cancer J Int Cancer. 2015;136:2427–36.CrossRef
47.
go back to reference Stone J et al. Novel associations between common breast cancer susceptibility variants and risk-predicting mammographic density measures. Cancer Res. 2015;75:2457–67.CrossRefPubMedPubMedCentral Stone J et al. Novel associations between common breast cancer susceptibility variants and risk-predicting mammographic density measures. Cancer Res. 2015;75:2457–67.CrossRefPubMedPubMedCentral
49.
go back to reference Ramón Y, Cajal T, et al. Mammographic density and breast cancer in women from high risk families. Breast Cancer Res. 2015;17:93.CrossRef Ramón Y, Cajal T, et al. Mammographic density and breast cancer in women from high risk families. Breast Cancer Res. 2015;17:93.CrossRef
50.
go back to reference Sun X et al. Relationship of mammographic density and gene expression: analysis of normal breast tissue surrounding breast cancer. Clin Cancer Res. 2013;19:4972–82.CrossRefPubMedPubMedCentral Sun X et al. Relationship of mammographic density and gene expression: analysis of normal breast tissue surrounding breast cancer. Clin Cancer Res. 2013;19:4972–82.CrossRefPubMedPubMedCentral
52.
go back to reference Pardo I et al. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res. 2014;16:R26.CrossRefPubMedPubMedCentral Pardo I et al. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res. 2014;16:R26.CrossRefPubMedPubMedCentral
53.
go back to reference Förnvik D et al. No evidence for shedding of circulating tumor cells to the peripheral venous blood as a result of mammographic breast compression. Breast Cancer Res Treat. 2013;141:187–95.CrossRefPubMedPubMedCentral Förnvik D et al. No evidence for shedding of circulating tumor cells to the peripheral venous blood as a result of mammographic breast compression. Breast Cancer Res Treat. 2013;141:187–95.CrossRefPubMedPubMedCentral
54.
go back to reference Lorenzen J et al. MR elastography of the breast: preliminary clinical results. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl. 2002;174:830–4.CrossRef Lorenzen J et al. MR elastography of the breast: preliminary clinical results. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl. 2002;174:830–4.CrossRef
56.
go back to reference Akhtar R, Sherratt MJ, Cruickshank JK, Derby B. Characterizing the elastic properties of tissues. Mater Today Kidlington Engl. 2011;14:96–105.CrossRef Akhtar R, Sherratt MJ, Cruickshank JK, Derby B. Characterizing the elastic properties of tissues. Mater Today Kidlington Engl. 2011;14:96–105.CrossRef
57.
58.
59.
go back to reference El-Domyati M et al. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol. 2002;11:398–405.CrossRefPubMed El-Domyati M et al. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol. 2002;11:398–405.CrossRefPubMed
60.
61.
go back to reference Sherratt MJ. Tissue elasticity and the ageing elastic fibre. Age Dordr Neth. 2009;31:305–25.CrossRef Sherratt MJ. Tissue elasticity and the ageing elastic fibre. Age Dordr Neth. 2009;31:305–25.CrossRef
62.
go back to reference Bailey AJ. Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001;122:735–55.CrossRefPubMed Bailey AJ. Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001;122:735–55.CrossRefPubMed
63.
go back to reference Sharaf H et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim Biophys Acta. 1852;2015:429–41. Sharaf H et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim Biophys Acta. 1852;2015:429–41.
64.
go back to reference Morgan MP, Cooke MM, McCarthy GM. Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J Mammary Gland Biol Neoplasia. 2005;10:181–7.CrossRefPubMed Morgan MP, Cooke MM, McCarthy GM. Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J Mammary Gland Biol Neoplasia. 2005;10:181–7.CrossRefPubMed
68.
70.
go back to reference Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94:1287–312.CrossRefPubMed Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94:1287–312.CrossRefPubMed
71.
73.
go back to reference Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10:75–82.CrossRefPubMed Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10:75–82.CrossRefPubMed
74.
go back to reference Maya-Mendoza A, Bartek J, Jackson DA, Streuli C. Cellular microenvironment controls the nuclear architecture of breast epithelia through β1-integrin. Cell Cycle. 2016;15:345.CrossRefPubMedPubMedCentral Maya-Mendoza A, Bartek J, Jackson DA, Streuli C. Cellular microenvironment controls the nuclear architecture of breast epithelia through β1-integrin. Cell Cycle. 2016;15:345.CrossRefPubMedPubMedCentral
76.
go back to reference Chew GL et al. High and low mammographic density human breast tissues maintain histological differential in murine tissue engineering chambers. Breast Cancer Res Treat. 2012;135:177–87.CrossRefPubMed Chew GL et al. High and low mammographic density human breast tissues maintain histological differential in murine tissue engineering chambers. Breast Cancer Res Treat. 2012;135:177–87.CrossRefPubMed
77.
go back to reference Cuzick J et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst. 2011;103:744–52.CrossRefPubMed Cuzick J et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case-control study. J Natl Cancer Inst. 2011;103:744–52.CrossRefPubMed
78.
go back to reference Brisson J, Brisson B, Coté G, Maunsell E, Bérubé S, Robert J. Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev. 2000;9(9):911-5. Brisson J, Brisson B, Coté G, Maunsell E, Bérubé S, Robert J. Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev. 2000;9(9):911-5.
79.
go back to reference Chen J-H et al. Reduction of breast density following tamoxifen treatment evaluated by 3-D MRI: preliminary study. Magn Reson Imaging. 2011;29:91–8.CrossRefPubMed Chen J-H et al. Reduction of breast density following tamoxifen treatment evaluated by 3-D MRI: preliminary study. Magn Reson Imaging. 2011;29:91–8.CrossRefPubMed
80.
go back to reference Lasco A et al. Effect of long-term treatment with raloxifene on mammary density in postmenopausal women. Menopause N Y N. 2006;13:787–92.CrossRef Lasco A et al. Effect of long-term treatment with raloxifene on mammary density in postmenopausal women. Menopause N Y N. 2006;13:787–92.CrossRef
81.
82.
go back to reference Li J et al. Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer. J Clin Oncol. 2013;31:2249–56.CrossRefPubMedPubMedCentral Li J et al. Mammographic density reduction is a prognostic marker of response to adjuvant tamoxifen therapy in postmenopausal patients with breast cancer. J Clin Oncol. 2013;31:2249–56.CrossRefPubMedPubMedCentral
84.
go back to reference Vachon CM, Kushi LH, Cerhan JR, Kuni CC, Sellers TA. Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev. 2000;9(2):151-60. PMID:10698475. Vachon CM, Kushi LH, Cerhan JR, Kuni CC, Sellers TA. Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev. 2000;9(2):151-60. PMID:10698475.
85.
go back to reference Greendale GA et al. Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst. 2003;95:30–7.CrossRefPubMed Greendale GA et al. Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst. 2003;95:30–7.CrossRefPubMed
86.
go back to reference Yan S et al. Let-7f inhibits glioma cell proliferation, migration, and invasion by targeting periostin. J Cell Biochem. 2015;116:1680–92.CrossRefPubMed Yan S et al. Let-7f inhibits glioma cell proliferation, migration, and invasion by targeting periostin. J Cell Biochem. 2015;116:1680–92.CrossRefPubMed
87.
go back to reference Boyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011;13:223.CrossRefPubMedPubMedCentral Boyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011;13:223.CrossRefPubMedPubMedCentral
Metadata
Title
Raised mammographic density: causative mechanisms and biological consequences
Authors
Michael J. Sherratt
James C. McConnell
Charles H. Streuli
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2016
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-016-0701-9

Other articles of this Issue 1/2016

Breast Cancer Research 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine