Skip to main content
Top
Published in: Critical Care 1/2019

Open Access 01-12-2019 | Acute Kidney Injury | Research

Early diuretic use and mortality in critically ill patients with vasopressor support: a propensity score-matching analysis

Authors: Yanfei Shen, Weimin Zhang, Yong Shen

Published in: Critical Care | Issue 1/2019

Login to get access

Abstract

Background

The effect of loop diuretic use in critically ill patients on vasopressor support or in shock is unclear. This study aimed to explore the relationship between loop diuretic use and hospital mortality in critically ill patients with vasopressor support.

Methods

Data were extracted from the Medical Information Mart for Intensive Care III database. Adult patients with records of vasopressor use within 48 h after intensive care unit admission were screened. Multivariable logistic regression and propensity score matching was used to investigate any association.

Results

Data on 7828 patients were included. The crude hospital mortality was significantly lower in patients with diuretic use (166/1469 vs. 1171/6359, p <  0.001). In the extended multivariable logistic models, the odds ratio (OR) of diuretic use was consistently significant in all six models (OR range 0.56–0.75, p < 0.05 for all). In the subgroup analysis, an interaction effect was detected between diuretic use and fluid balance (FB). In the positive FB subgroup, diuretic use was significantly associated with decreased mortality (OR 0.64, 95% confidence interval (CI) 0.51–0.78) but was insignificant in the negative FB subgroup. In the other subgroups of mean arterial pressure, maximum sequential organ failure assessment score, and lactate level, the association between diuretic use and mortality remained significant and no interaction was detected. After propensity score matching, 1463 cases from each group were well matched. The mortality remained significantly lower in the diuretic use group (165/1463 vs. 231/1463, p < 0.001).

Conclusions

Although residual confounding cannot be excluded, loop diuretic use is associated with lower mortality.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brotfain E, Koyfman L, Toledano R, Borer A, Fucs L, Galante O, Frenkel A, Kutz R, Klein M. Positive fluid balance as a major predictor of clinical outcome of patients with sepsis/septic shock after discharge from intensive care unit. Am J Emerg Med. 2016;34:2122.CrossRef Brotfain E, Koyfman L, Toledano R, Borer A, Fucs L, Galante O, Frenkel A, Kutz R, Klein M. Positive fluid balance as a major predictor of clinical outcome of patients with sepsis/septic shock after discharge from intensive care unit. Am J Emerg Med. 2016;34:2122.CrossRef
2.
go back to reference Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care (London, England). 2015;19:251.CrossRef Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care (London, England). 2015;19:251.CrossRef
3.
go back to reference Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.CrossRef Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.CrossRef
4.
go back to reference Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care (London, England). 2008;12(3):R74.CrossRef Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care (London, England). 2008;12(3):R74.CrossRef
5.
go back to reference Silbert BI, Ho KM, Lipman J, Roberts JA, Corcoran TB, Morgan DJ, Pavey W, Mas E, Barden AE, Mori TA. Does furosemide increase oxidative stress in acute kidney injury? Antioxid Redox Signal. 2017;26(5):221–6.CrossRef Silbert BI, Ho KM, Lipman J, Roberts JA, Corcoran TB, Morgan DJ, Pavey W, Mas E, Barden AE, Mori TA. Does furosemide increase oxidative stress in acute kidney injury? Antioxid Redox Signal. 2017;26(5):221–6.CrossRef
6.
go back to reference Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333(7565):420.CrossRef Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333(7565):420.CrossRef
7.
go back to reference Bagshaw SM, Gibney RTN, Kruger P, Hassan I, McAlister FA, Bellomo R. The effect of low-dose furosemide in critically ill patients with early acute kidney injury: a pilot randomized blinded controlled trial (the SPARK study). J Crit Care. 2017;42:138–46.CrossRef Bagshaw SM, Gibney RTN, Kruger P, Hassan I, McAlister FA, Bellomo R. The effect of low-dose furosemide in critically ill patients with early acute kidney injury: a pilot randomized blinded controlled trial (the SPARK study). J Crit Care. 2017;42:138–46.CrossRef
8.
go back to reference Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966–73.CrossRef Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966–73.CrossRef
9.
go back to reference de Louw EJ, Sun PO, Lee J, Feng M, Mark RG, Celi LA, Mukamal KJ, Danziger J. Increased incidence of diuretic use in critically ill obese patients. J Crit Care. 2015;30(3):619–23.CrossRef de Louw EJ, Sun PO, Lee J, Feng M, Mark RG, Celi LA, Mukamal KJ, Danziger J. Increased incidence of diuretic use in critically ill obese patients. J Crit Care. 2015;30(3):619–23.CrossRef
10.
go back to reference Jones SL, Martensson J, Glassford NJ, Eastwood GM, Bellomo R. Loop diuretic therapy in the critically ill: a survey. Crit Care Resusc. 2015;17(3):223–6.PubMed Jones SL, Martensson J, Glassford NJ, Eastwood GM, Bellomo R. Loop diuretic therapy in the critically ill: a survey. Crit Care Resusc. 2015;17(3):223–6.PubMed
12.
go back to reference Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care (London, England). 2013;17(1):204.CrossRef Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care (London, England). 2013;17(1):204.CrossRef
13.
go back to reference Lameire N, Kellum JA. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (Part 2). Crit Care (London, England). 2013;17(1):205.CrossRef Lameire N, Kellum JA. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (Part 2). Crit Care (London, England). 2013;17(1):205.CrossRef
14.
go back to reference Zavada J, Hoste E, Cartin-Ceba R, Calzavacca P, Gajic O, Clermont G, Bellomo R, Kellum JA. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant. 2010;25(12):3911–8.CrossRef Zavada J, Hoste E, Cartin-Ceba R, Calzavacca P, Gajic O, Clermont G, Bellomo R, Kellum JA. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant. 2010;25(12):3911–8.CrossRef
15.
go back to reference Zhang Z. Propensity score method: a non-parametric technique to reduce model dependence. Ann Transl Med. 2017;5(1):7.CrossRef Zhang Z. Propensity score method: a non-parametric technique to reduce model dependence. Ann Transl Med. 2017;5(1):7.CrossRef
16.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.CrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.CrossRef
17.
go back to reference Butler FK, Holcomb JB, Schreiber MA, Kotwal RS, Jenkins DA, Champion HR, Bowling F, Cap AP, Dubose JJ, Dorlac WC, et al. Fluid resuscitation for hemorrhagic shock in tactical combat casualty care: TCCC guidelines change 14-01—2 June 2014. J Spec Oper Med. 2014;14(3):13–38.PubMed Butler FK, Holcomb JB, Schreiber MA, Kotwal RS, Jenkins DA, Champion HR, Bowling F, Cap AP, Dubose JJ, Dorlac WC, et al. Fluid resuscitation for hemorrhagic shock in tactical combat casualty care: TCCC guidelines change 14-01—2 June 2014. J Spec Oper Med. 2014;14(3):13–38.PubMed
18.
go back to reference Silva JM Jr, de Oliveira AM, Nogueira FA, Vianna PM, Pereira Filho MC, Dias LF, Maia VP, Neucamp Cde S, Amendola CP, Carmona MJ, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care (London, England). 2013;17(6):R288.CrossRef Silva JM Jr, de Oliveira AM, Nogueira FA, Vianna PM, Pereira Filho MC, Dias LF, Maia VP, Neucamp Cde S, Amendola CP, Carmona MJ, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care (London, England). 2013;17(6):R288.CrossRef
19.
go back to reference Balogh Z, Moore FA, Moore EE, Biffl WL. Secondary abdominal compartment syndrome: a potential threat for all trauma clinicians. Injury. 2007;38(3):272–9.CrossRef Balogh Z, Moore FA, Moore EE, Biffl WL. Secondary abdominal compartment syndrome: a potential threat for all trauma clinicians. Injury. 2007;38(3):272–9.CrossRef
20.
go back to reference Coats TJ, Brazil E, Heron M, MacCallum PK. Impairment of coagulation by commonly used resuscitation fluids in human volunteers. Emerg Med J. 2006;23(11):846–9.CrossRef Coats TJ, Brazil E, Heron M, MacCallum PK. Impairment of coagulation by commonly used resuscitation fluids in human volunteers. Emerg Med J. 2006;23(11):846–9.CrossRef
21.
go back to reference Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.CrossRef Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.CrossRef
22.
go back to reference Wang CH, Hsieh WH, Chou HC, Huang YS, Shen JH, Yeo YH, Chang HE, Chen SC, Lee CC. Liberal versus restricted fluid resuscitation strategies in trauma patients: a systematic review and meta-analysis of randomized controlled trials and observational studies. Crit Care Med. 2014;42(4):954–61.CrossRef Wang CH, Hsieh WH, Chou HC, Huang YS, Shen JH, Yeo YH, Chang HE, Chen SC, Lee CC. Liberal versus restricted fluid resuscitation strategies in trauma patients: a systematic review and meta-analysis of randomized controlled trials and observational studies. Crit Care Med. 2014;42(4):954–61.CrossRef
23.
go back to reference Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, Blackwood B, Fan E. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70.CrossRef Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, Blackwood B, Fan E. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70.CrossRef
24.
go back to reference Slater MB, Gruneir A, Rochon PA, Howard AW, Koren G, Parshuram CS. Identifying high-risk medications associated with acute kidney injury in critically ill patients: a pharmacoepidemiologic evaluation. Paediatr Drugs. 2017;19(1):59–67.CrossRef Slater MB, Gruneir A, Rochon PA, Howard AW, Koren G, Parshuram CS. Identifying high-risk medications associated with acute kidney injury in critically ill patients: a pharmacoepidemiologic evaluation. Paediatr Drugs. 2017;19(1):59–67.CrossRef
25.
go back to reference Mehta RL, Pascual MT, Soroko S, Chertow GM. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–53.CrossRef Mehta RL, Pascual MT, Soroko S, Chertow GM. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–53.CrossRef
26.
go back to reference Wu VC, Lai CF, Shiao CC, Lin YF, Wu PC, Chao CT, Hu FC, Huang TM, Yeh YC, Tsai IJ, et al. Effect of diuretic use on 30-day postdialysis mortality in critically ill patients receiving acute dialysis. PLoS One. 2012;7(3):e30836.CrossRef Wu VC, Lai CF, Shiao CC, Lin YF, Wu PC, Chao CT, Hu FC, Huang TM, Yeh YC, Tsai IJ, et al. Effect of diuretic use on 30-day postdialysis mortality in critically ill patients receiving acute dialysis. PLoS One. 2012;7(3):e30836.CrossRef
27.
go back to reference Uchino S, Doig GS, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Nacedo E, Gibney N, et al. Diuretics and mortality in acute renal failure. Crit Care Med. 2004;32(8):1669–77.CrossRef Uchino S, Doig GS, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Nacedo E, Gibney N, et al. Diuretics and mortality in acute renal failure. Crit Care Med. 2004;32(8):1669–77.CrossRef
28.
go back to reference Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17–60.CrossRef Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17–60.CrossRef
29.
go back to reference Shen Y, Huang X, Zhang W. Association between fluid intake and mortality in critically ill patients with negative fluid balance: a retrospective cohort study. Crit Care (London, England). 2017;21(1):104.CrossRef Shen Y, Huang X, Zhang W. Association between fluid intake and mortality in critically ill patients with negative fluid balance: a retrospective cohort study. Crit Care (London, England). 2017;21(1):104.CrossRef
30.
go back to reference Yeh DD, Tang JF, Chang Y. The use of furosemide in critically ill trauma patients: a retrospective review. J Emerg Trauma Shock. 2014;7(2):83–7.CrossRef Yeh DD, Tang JF, Chang Y. The use of furosemide in critically ill trauma patients: a retrospective review. J Emerg Trauma Shock. 2014;7(2):83–7.CrossRef
31.
go back to reference Shann F. Pharmacodynamics of intravenous frusemide bolus in critically ill patients. Crit Care Resusc. 2017;19(4):355.PubMed Shann F. Pharmacodynamics of intravenous frusemide bolus in critically ill patients. Crit Care Resusc. 2017;19(4):355.PubMed
Metadata
Title
Early diuretic use and mortality in critically ill patients with vasopressor support: a propensity score-matching analysis
Authors
Yanfei Shen
Weimin Zhang
Yong Shen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2019
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2309-9

Other articles of this Issue 1/2019

Critical Care 1/2019 Go to the issue