Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials

Authors: Claude Guérin, Laurent Papazian, Jean Reignier, Louis Ayzac, Anderson Loundou, Jean-Marie Forel, on behalf of the investigators of the Acurasys and Proseva trials

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

Driving pressure (ΔPrs) across the respiratory system is suggested as the strongest predictor of hospital mortality in patients with acute respiratory distress syndrome (ARDS). We wonder whether this result is related to the range of tidal volume (VT). Therefore, we investigated ΔPrs in two trials in which strict lung-protective mechanical ventilation was applied in ARDS. Our working hypothesis was that ΔPrs is a risk factor for mortality just like compliance (Crs) or plateau pressure (Pplat,rs) of the respiratory system.

Methods

We performed secondary analysis of data from 787 ARDS patients enrolled in two independent randomized controlled trials evaluating distinct adjunctive techniques while they were ventilated as in the low VT arm of the ARDSnet trial. For this study, we used VT, positive end-expiratory pressure (PEEP), Pplat,rs, Crs, ΔPrs, and respiratory rate recorded 24 hours after randomization, and compared them between survivors and nonsurvivors at day 90. Patients were followed for 90 days after inclusion. Cox proportional hazard modeling was used for mortality at day 90. If colinearity between ΔPrs, Crs, and Pplat,rs was verified, specific Cox models were used for each of them.

Results

Both trials enrolled 805 patients of whom 787 had day-1 data available, and 533 of these survived. In the univariate analysis, ΔPrs averaged 13.7 ± 3.7 and 12.8 ± 3.7 cmH2O (P = 0.002) in nonsurvivors and survivors, respectively. Colinearity between ΔPrs, Crs and Pplat,rs, which was expected as these variables are mathematically coupled, was statistically significant. Hazard ratios from the Cox models for day-90 mortality were 1.05 (1.02–1.08) (P = 0.005), 1.05 (1.01–1.08) (P = 0.008) and 0.985 (0.972–0.985) (P = 0.029) for ΔPrs, Pplat,rs and Crs, respectively. PEEP and VT were not associated with death in any model.

Conclusions

When ventilating patients with low VT, ΔPrs is a risk factor for death in ARDS patients, as is Pplat,rs or Crs. As our data originated from trials from which most ARDS patients were excluded due to strict inclusion and exclusion criteria, these findings must be validated in independent observational studies in patients ventilated with a lung protective strategy.

Trial registration

Clinicaltrials.gov NCT00299650. Registered 6 March 2006 for the Acurasys trial.
Clinicaltrials.gov NCT00527813. Registered 10 September 2007 for the Proseva trial.
Appendix
Available only for authorised users
Literature
1.
go back to reference ARDSnet. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.CrossRef ARDSnet. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.CrossRef
2.
go back to reference Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.CrossRefPubMed Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.CrossRefPubMed
3.
go back to reference Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.CrossRefPubMed Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.CrossRefPubMed
4.
go back to reference Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.CrossRefPubMed Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.CrossRefPubMed
5.
go back to reference Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefPubMed Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefPubMed
6.
go back to reference Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818–24.CrossRefPubMed Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818–24.CrossRefPubMed
7.
go back to reference Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100–8.CrossRefPubMed Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100–8.CrossRefPubMed
8.
go back to reference Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRefPubMed Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRefPubMed
9.
11.
go back to reference Mekontso Dessap A, Boissier F, Charron C, Begot E, Repesse X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862–70.CrossRefPubMed Mekontso Dessap A, Boissier F, Charron C, Begot E, Repesse X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862–70.CrossRefPubMed
12.
go back to reference Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med. 2016;42(8):1206–13.CrossRefPubMed Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med. 2016;42(8):1206–13.CrossRefPubMed
13.
go back to reference Beitler JR, Guerin C, Ayzac L, Mancebo J, Bates DM, Malhotra A, Talmor D. PEEP titration during prone positioning for acute respiratory distress syndrome. Crit Care. 2015;19:436.CrossRefPubMedPubMedCentral Beitler JR, Guerin C, Ayzac L, Mancebo J, Bates DM, Malhotra A, Talmor D. PEEP titration during prone positioning for acute respiratory distress syndrome. Crit Care. 2015;19:436.CrossRefPubMedPubMedCentral
14.
go back to reference Gattinoni L, Carlesso E, Santini A. Physiology versus evidence-based guidance for critical care practice. Crit Care. 2015;19 Suppl 3:S7.PubMedPubMedCentral Gattinoni L, Carlesso E, Santini A. Physiology versus evidence-based guidance for critical care practice. Crit Care. 2015;19 Suppl 3:S7.PubMedPubMedCentral
15.
go back to reference Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016. Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016.
16.
go back to reference Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, Protti A, Gotti M, Chiurazzi C, Carlesso E, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRefPubMed Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, Protti A, Gotti M, Chiurazzi C, Carlesso E, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRefPubMed
18.
go back to reference Beitler JR, Goligher EC, Schmidt M, Spieth PM, Zanella A, Martin-Loeches I, Calfee CS, Cavalcanti AB. Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med. 2016;42(5):756–67.CrossRefPubMed Beitler JR, Goligher EC, Schmidt M, Spieth PM, Zanella A, Martin-Loeches I, Calfee CS, Cavalcanti AB. Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med. 2016;42(5):756–67.CrossRefPubMed
19.
go back to reference Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, Caironi P, Lazzerini M, Moerer O, Quintel M, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–64.CrossRefPubMed Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, Caironi P, Lazzerini M, Moerer O, Quintel M, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–64.CrossRefPubMed
20.
go back to reference Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, Lundin S, Stenqvist O, Gattinoni L. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670–8.CrossRefPubMed Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, Lundin S, Stenqvist O, Gattinoni L. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670–8.CrossRefPubMed
21.
go back to reference Chiumello D, Guerin C. Understanding the setting of PEEP from esophageal pressure in patients with ARDS. Intensive Care Med. 2015. Chiumello D, Guerin C. Understanding the setting of PEEP from esophageal pressure in patients with ARDS. Intensive Care Med. 2015.
22.
go back to reference Chiumello D, Marino A, Brioni M, Cigada I, Menga F, Colombo A, Crimella F, Algieri I, Cressoni M, Carlesso E, et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship? Am J Respir Crit Care Med. 2016;193(11):1254–63.CrossRefPubMed Chiumello D, Marino A, Brioni M, Cigada I, Menga F, Colombo A, Crimella F, Algieri I, Cressoni M, Carlesso E, et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship? Am J Respir Crit Care Med. 2016;193(11):1254–63.CrossRefPubMed
23.
go back to reference Cressoni M, Chiumello D, Carlesso E, Chiurazzi C, Amini M, Brioni M, Cadringher P, Quintel M, Gattinoni L. Compressive forces and computed tomography-derived positive end-expiratory pressure in acute respiratory distress syndrome. Anesthesiology. 2014;121(3):572–81.CrossRefPubMed Cressoni M, Chiumello D, Carlesso E, Chiurazzi C, Amini M, Brioni M, Cadringher P, Quintel M, Gattinoni L. Compressive forces and computed tomography-derived positive end-expiratory pressure in acute respiratory distress syndrome. Anesthesiology. 2014;121(3):572–81.CrossRefPubMed
Metadata
Title
Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials
Authors
Claude Guérin
Laurent Papazian
Jean Reignier
Louis Ayzac
Anderson Loundou
Jean-Marie Forel
on behalf of the investigators of the Acurasys and Proseva trials
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1556-2

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue