Skip to main content
Top
Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020

01-12-2020 | Artificial Intelligence | Original research

Development of machine learning models to predict RT-PCR results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with influenza-like symptoms using only basic clinical data

Authors: Thomas Langer, Martina Favarato, Riccardo Giudici, Gabriele Bassi, Roberta Garberi, Fabiana Villa, Hedwige Gay, Anna Zeduri, Sara Bragagnolo, Alberto Molteni, Andrea Beretta, Matteo Corradin, Mauro Moreno, Chiara Vismara, Carlo Federico Perno, Massimo Buscema, Enzo Grossi, Roberto Fumagalli

Published in: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | Issue 1/2020

Login to get access

Abstract

Background

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) diagnosis currently requires quite a long time span. A quicker and more efficient diagnostic tool in emergency departments could improve management during this global crisis. Our main goal was assessing the accuracy of artificial intelligence in predicting the results of RT-PCR for SARS-COV-2, using basic information at hand in all emergency departments.

Methods

This is a retrospective study carried out between February 22, 2020 and March 16, 2020 in one of the main hospitals in Milan, Italy. We screened for eligibility all patients admitted with influenza-like symptoms tested for SARS-COV-2. Patients under 12 years old and patients in whom the leukocyte formula was not performed in the ED were excluded. Input data through artificial intelligence were made up of a combination of clinical, radiological and routine laboratory data upon hospital admission. Different Machine Learning algorithms available on WEKA data mining software and on Semeion Research Centre depository were trained using both the Training and Testing and the K-fold cross-validation protocol.

Results

Among 199 patients subject to study (median [interquartile range] age 65 [46–78] years; 127 [63.8%] men), 124 [62.3%] resulted positive to SARS-COV-2. The best Machine Learning System reached an accuracy of 91.4% with 94.1% sensitivity and 88.7% specificity.

Conclusion

Our study suggests that properly trained artificial intelligence algorithms may be able to predict correct results in RT-PCR for SARS-COV-2, using basic clinical data. If confirmed, on a larger-scale study, this approach could have important clinical and organizational implications.
Appendix
Available only for authorised users
Literature
2.
go back to reference Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. Italy JAMA. 2020;323(16):1574–81.PubMedCrossRef Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. Italy JAMA. 2020;323(16):1574–81.PubMedCrossRef
3.
go back to reference Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy. Italy JAMA Intern Med. 2020;180(10):1345–55.PubMedCrossRef Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy. Italy JAMA Intern Med. 2020;180(10):1345–55.PubMedCrossRef
4.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentralCrossRef Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentralCrossRef
6.
go back to reference Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.PubMedPubMedCentralCrossRef Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207.PubMedPubMedCentralCrossRef
7.
go back to reference Guo L, Ren L, Yang S, Xiao M, Chang YF, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020;71(15):778–85.PubMedCrossRef Guo L, Ren L, Yang S, Xiao M, Chang YF, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020;71(15):778–85.PubMedCrossRef
8.
go back to reference Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020;58(7):1070–6.PubMedCrossRef Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020;58(7):1070–6.PubMedCrossRef
10.
go back to reference Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.PubMedPubMedCentralCrossRef Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.PubMedPubMedCentralCrossRef
11.
go back to reference Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–76.PubMedCrossRef Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–76.PubMedCrossRef
12.
go back to reference Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.CrossRefPubMed Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.CrossRefPubMed
13.
go back to reference Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;200642. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;200642.
14.
go back to reference Mei X, Lee H-C, Diao K-Y, Huang M, Lin B, Liu C, et al. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224–8.PubMedPubMedCentralCrossRef Mei X, Lee H-C, Diao K-Y, Huang M, Lin B, Liu C, et al. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224–8.PubMedPubMedCentralCrossRef
15.
go back to reference Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393(10181):1577–9.PubMedCrossRef Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393(10181):1577–9.PubMedCrossRef
16.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ (Clinical research ed). 2015;350:g7594. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ (Clinical research ed). 2015;350:g7594.
17.
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I. The WEKA data mining software: an update. SIGKDD Explor Newsl. 2008;11:10–8.CrossRef Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I. The WEKA data mining software: an update. SIGKDD Explor Newsl. 2008;11:10–8.CrossRef
18.
go back to reference Buscema M, Grossi E, Intraligi M, Garbagna N, Andriulli A, Breda M. An optimized experimental protocol based on neuro-evolutionary algorithms application to the classification of dyspeptic patients and to the prediction of the effectiveness of their treatment. Artif Intell Med. 2005;34(3):279–305.PubMedCrossRef Buscema M, Grossi E, Intraligi M, Garbagna N, Andriulli A, Breda M. An optimized experimental protocol based on neuro-evolutionary algorithms application to the classification of dyspeptic patients and to the prediction of the effectiveness of their treatment. Artif Intell Med. 2005;34(3):279–305.PubMedCrossRef
19.
go back to reference Buscema M. Genetic doping algorithm (GenD): theory and applications. Expert Syst. 2004;21(2):63–79.CrossRef Buscema M. Genetic doping algorithm (GenD): theory and applications. Expert Syst. 2004;21(2):63–79.CrossRef
20.
go back to reference Hosmer DW, Lemeshow S. Applied Logistic Regression. New York, NY: Wiley & Sons; 1989. Hosmer DW, Lemeshow S. Applied Logistic Regression. New York, NY: Wiley & Sons; 1989.
21.
go back to reference Quinlan JR. C4.5: Programs for Machine Learning: Morgan Kaufmann Publishers Inc.; 1993. Quinlan JR. C4.5: Programs for Machine Learning: Morgan Kaufmann Publishers Inc.; 1993.
22.
go back to reference Collobert R, Bengio S. Links between Perceptrons, MLPs and SVMs. Icml ‘04; 2004. p. 23. Collobert R, Bengio S. Links between Perceptrons, MLPs and SVMs. Icml ‘04; 2004. p. 23.
23.
go back to reference John GH, Langley P. Estimating Continuous Distributions in Bayesian Classifiers; 2013. John GH, Langley P. Estimating Continuous Distributions in Bayesian Classifiers; 2013.
24.
go back to reference F L. Implementing Breiman’s Random Forest Algorithm into Weka 2005. F L. Implementing Breiman’s Random Forest Algorithm into Weka 2005.
25.
go back to reference Rodriguez JJ, Kuncheva LI, Alonso CJ. Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell. 2006;28(10):1619–30.PubMedCrossRef Rodriguez JJ, Kuncheva LI, Alonso CJ. Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell. 2006;28(10):1619–30.PubMedCrossRef
27.
go back to reference Wang J, Zucker J-D. Solving the multiple-instance problem: A lazy learning approach; 2000. p. 1119–26. Wang J, Zucker J-D. Solving the multiple-instance problem: A lazy learning approach; 2000. p. 1119–26.
28.
go back to reference Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. 2000;28:337–407. Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. 2000;28:337–407.
30.
go back to reference Buscema M, Terzi S, Breda M. Using sinusoidal modulated weights improve feed-forward neural network performances in classification and functional approximation problems. WSEAS Transactions on information science and applications. 2006;3:885–93. Buscema M, Terzi S, Breda M. Using sinusoidal modulated weights improve feed-forward neural network performances in classification and functional approximation problems. WSEAS Transactions on information science and applications. 2006;3:885–93.
31.
go back to reference Buscema PM, Massini G, Fabrizi M, Breda M, Della TF. The ANNS approach to DEM reconstruction. Comput Intell. 2018;34(1):310–44.CrossRef Buscema PM, Massini G, Fabrizi M, Breda M, Della TF. The ANNS approach to DEM reconstruction. Comput Intell. 2018;34(1):310–44.CrossRef
32.
go back to reference Buscema M, Terzi S, Breda M. Improve feed-forward neural network performances in classification and functional approximation problems. WSEAS Transactions Inform Sci Appl. 2006;3(5):885–93. Buscema M, Terzi S, Breda M. Improve feed-forward neural network performances in classification and functional approximation problems. WSEAS Transactions Inform Sci Appl. 2006;3(5):885–93.
33.
go back to reference Buscema M. InventorSine Net : an artificial neural network; 2003. Buscema M. InventorSine Net : an artificial neural network; 2003.
34.
go back to reference Buscema M, Terzi S, Breda M, editors. A feed Forward sine based neural network for functional approximation of a waste incinerator emissions. 8th WSEAS Int Conference on Automatic Control, Modeling and Simulation 2006 March 12 th −14 th, 2006.; Praga. Buscema M, Terzi S, Breda M, editors. A feed Forward sine based neural network for functional approximation of a waste incinerator emissions. 8th WSEAS Int Conference on Automatic Control, Modeling and Simulation 2006 March 12 th −14 th, 2006.; Praga.
36.
go back to reference Buscema PM. Gauss Net Equations. Pre print Mimeo, Semeion Archives. Rome, Italy, 2015 (available for academic work on demand). Buscema PM. Gauss Net Equations. Pre print Mimeo, Semeion Archives. Rome, Italy, 2015 (available for academic work on demand).
37.
go back to reference Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of Bias and applicability of prediction model studies. Ann Intern Med. 2019;170(1):51–8.PubMedCrossRef Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of Bias and applicability of prediction model studies. Ann Intern Med. 2019;170(1):51–8.PubMedCrossRef
38.
go back to reference Buscema M, Breda M, Lodwick W. Training with input selection and testing (TWIST) algorithm: a significant advance in pattern recognition performance of machine learning. J Intell Learn Syst Appl. 2013;5:29–38. Buscema M, Breda M, Lodwick W. Training with input selection and testing (TWIST) algorithm: a significant advance in pattern recognition performance of machine learning. J Intell Learn Syst Appl. 2013;5:29–38.
39.
go back to reference Pace F, Riegler G, de Leone A, Pace M, Cestari R, Dominici P, et al. Is it possible to clinically differentiate erosive from nonerosive reflux disease patients? A study using an artificial neural networks-assisted algorithm. Eur J Gastroenterol Hepatol. 2010;22(10):1163–8.PubMedCrossRef Pace F, Riegler G, de Leone A, Pace M, Cestari R, Dominici P, et al. Is it possible to clinically differentiate erosive from nonerosive reflux disease patients? A study using an artificial neural networks-assisted algorithm. Eur J Gastroenterol Hepatol. 2010;22(10):1163–8.PubMedCrossRef
40.
go back to reference Coppede F, Grossi E, Migheli F, Migliore L. Polymorphisms in folate-metabolizing genes, chromosome damage, and risk of Down syndrome in Italian women: identification of key factors using artificial neural networks. BMC Med Genet. 2010;3:42. Coppede F, Grossi E, Migheli F, Migliore L. Polymorphisms in folate-metabolizing genes, chromosome damage, and risk of Down syndrome in Italian women: identification of key factors using artificial neural networks. BMC Med Genet. 2010;3:42.
41.
go back to reference Lahner E, Intraligi M, Buscema M, Centanni M, Vannella L, Grossi E, et al. Artificial neural networks in the recognition of the presence of thyroid disease in patients with atrophic body gastritis. World J Gastroenterol. 2008;14(4):563–8.PubMedPubMedCentralCrossRef Lahner E, Intraligi M, Buscema M, Centanni M, Vannella L, Grossi E, et al. Artificial neural networks in the recognition of the presence of thyroid disease in patients with atrophic body gastritis. World J Gastroenterol. 2008;14(4):563–8.PubMedPubMedCentralCrossRef
42.
go back to reference Buri L, Hassan C, Bersani G, Anti M, Bianco MA, Cipolletta L, et al. Appropriateness guidelines and predictive rules to select patients for upper endoscopy: a nationwide multicenter study. Am J Gastroenterol. 2010;105(6):1327–37.PubMedCrossRef Buri L, Hassan C, Bersani G, Anti M, Bianco MA, Cipolletta L, et al. Appropriateness guidelines and predictive rules to select patients for upper endoscopy: a nationwide multicenter study. Am J Gastroenterol. 2010;105(6):1327–37.PubMedCrossRef
43.
go back to reference Street ME, Grossi E, Volta C, Faleschini E, Bernasconi S. Placental determinants of fetal growth: identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks. BMC Pediatr. 2008;8:24.PubMedPubMedCentralCrossRef Street ME, Grossi E, Volta C, Faleschini E, Bernasconi S. Placental determinants of fetal growth: identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks. BMC Pediatr. 2008;8:24.PubMedPubMedCentralCrossRef
44.
go back to reference Buscema M, Grossi E, Capriotti M, Babiloni C, Rossini P. The I.F.a.S.T. model allows the prediction of conversion to Alzheimer disease in patients with mild cognitive impairment with high degree of accuracy. Curr Alzheimer Res. 2010;7(2):173–87.PubMedCrossRef Buscema M, Grossi E, Capriotti M, Babiloni C, Rossini P. The I.F.a.S.T. model allows the prediction of conversion to Alzheimer disease in patients with mild cognitive impairment with high degree of accuracy. Curr Alzheimer Res. 2010;7(2):173–87.PubMedCrossRef
45.
go back to reference Little M, Varoquaux G, Saeb S, Lonini L, Jayaraman A, Mohr D, et al. Using and understanding cross-validation strategies. Perspectives on Saeb et al GigaScience. 2017;6. Little M, Varoquaux G, Saeb S, Lonini L, Jayaraman A, Mohr D, et al. Using and understanding cross-validation strategies. Perspectives on Saeb et al GigaScience. 2017;6.
46.
go back to reference Drummond C, Holte RC. Cost curves: an improved method for visualizing classifier performance. Mach Learn. 2006;65(1):95–130.CrossRef Drummond C, Holte RC. Cost curves: an improved method for visualizing classifier performance. Mach Learn. 2006;65(1):95–130.CrossRef
49.
go back to reference Li YX, Wu W, Yang T, Zhou W, Fu YM, Feng QM, et al. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. Zhonghua nei ke za zhi. 2020;59(0):E003.PubMed Li YX, Wu W, Yang T, Zhou W, Fu YM, Feng QM, et al. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. Zhonghua nei ke za zhi. 2020;59(0):E003.PubMed
50.
go back to reference Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–41.PubMedCrossRef Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–41.PubMedCrossRef
51.
go back to reference Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, et al. Clinical Features and Treatment of COVID-19 Patients in Northeast Chongqing. J Med Virol.n/a(n/a). Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, et al. Clinical Features and Treatment of COVID-19 Patients in Northeast Chongqing. J Med Virol.n/a(n/a).
52.
go back to reference Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel coronavirus-infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061–9.PubMedPubMedCentralCrossRef Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel coronavirus-infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061–9.PubMedPubMedCentralCrossRef
53.
go back to reference Liu F, Xu A, Zhang Y, Xuan W, Yan T, Pan K, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183–91.PubMedPubMedCentralCrossRef Liu F, Xu A, Zhang Y, Xuan W, Yan T, Pan K, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183–91.PubMedPubMedCentralCrossRef
54.
go back to reference Vomweg TW, Buscema M, Kauczor HU, Teifke A, Intraligi M, Terzi S, et al. Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys. 2003;30(9):2350–9.PubMedCrossRef Vomweg TW, Buscema M, Kauczor HU, Teifke A, Intraligi M, Terzi S, et al. Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography. Med Phys. 2003;30(9):2350–9.PubMedCrossRef
55.
go back to reference Penco S, Grossi E, Cheng S, Intraligi M, Maurelli G, Patrosso MC, et al. Assessment of the role of genetic polymorphism in venous thrombosis through artificial neural networks. Ann Hum Genet. 2005;69(Pt 6):693–706.PubMedCrossRef Penco S, Grossi E, Cheng S, Intraligi M, Maurelli G, Patrosso MC, et al. Assessment of the role of genetic polymorphism in venous thrombosis through artificial neural networks. Ann Hum Genet. 2005;69(Pt 6):693–706.PubMedCrossRef
56.
go back to reference Andriulli A, Grossi E, Buscema M, Festa V, Intraligi NM, Dominici P, et al. Contribution of artificial neural networks to the classification and treatment of patients with uninvestigated dyspepsia. Dig Liver Dis. 2003;35(4):222–31.PubMedCrossRef Andriulli A, Grossi E, Buscema M, Festa V, Intraligi NM, Dominici P, et al. Contribution of artificial neural networks to the classification and treatment of patients with uninvestigated dyspepsia. Dig Liver Dis. 2003;35(4):222–31.PubMedCrossRef
57.
go back to reference Mecocci P, Grossi E, Buscema M, Intraligi M, Savare R, Rinaldi P, et al. Use of artificial networks in clinical trials: a pilot study to predict responsiveness to donepezil in Alzheimer's disease. J Am Geriatr Soc. 2002;50(11):1857–60.PubMedCrossRef Mecocci P, Grossi E, Buscema M, Intraligi M, Savare R, Rinaldi P, et al. Use of artificial networks in clinical trials: a pilot study to predict responsiveness to donepezil in Alzheimer's disease. J Am Geriatr Soc. 2002;50(11):1857–60.PubMedCrossRef
58.
go back to reference Cosmi V, Mazzocchi A, Milani GP, Calderini E, Scaglioni S, Bettocchi S, et al. Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy? J Clin Med. 2020;9(4):1026.PubMedCentralCrossRef Cosmi V, Mazzocchi A, Milani GP, Calderini E, Scaglioni S, Bettocchi S, et al. Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy? J Clin Med. 2020;9(4):1026.PubMedCentralCrossRef
59.
go back to reference Podda GM, Grossi E, Palmerini T, Buscema M, Femia EA, Della Riva D, et al. Prediction of high on-treatment platelet reactivity in clopidogrel-treated patients with acute coronary syndromes. Int J Cardiol. 2017;240:60–5.PubMedCrossRef Podda GM, Grossi E, Palmerini T, Buscema M, Femia EA, Della Riva D, et al. Prediction of high on-treatment platelet reactivity in clopidogrel-treated patients with acute coronary syndromes. Int J Cardiol. 2017;240:60–5.PubMedCrossRef
60.
go back to reference Rao A, Vazquez JA. Identification of COVID-19 can be quicker through artificial intelligence framework using a Mobile phone-based survey in the populations when cities/towns are under quarantine. Infect Control Hosp Epidemiol. 2020;41(7):826–30.CrossRef Rao A, Vazquez JA. Identification of COVID-19 can be quicker through artificial intelligence framework using a Mobile phone-based survey in the populations when cities/towns are under quarantine. Infect Control Hosp Epidemiol. 2020;41(7):826–30.CrossRef
61.
go back to reference Xiong Z, Fu L, Zhou H, Liu JK, Wang AM, Huang Y, et al. Construction and evaluation of a novel diagnosis process for 2019-Corona Virus Disease. Zhonghua Yi Xue Za Zhi. 2020;100(0):E019. Xiong Z, Fu L, Zhou H, Liu JK, Wang AM, Huang Y, et al. Construction and evaluation of a novel diagnosis process for 2019-Corona Virus Disease. Zhonghua Yi Xue Za Zhi. 2020;100(0):E019.
62.
go back to reference Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020;296(2):E65–71.PubMedCrossRef Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020;296(2):E65–71.PubMedCrossRef
64.
go back to reference Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early Experience and Forecast During an Emergency Response. Jama. 2020;323(16):1545–6.PubMedCrossRef Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early Experience and Forecast During an Emergency Response. Jama. 2020;323(16):1545–6.PubMedCrossRef
65.
go back to reference Spina S, Marrazzo F, Migliari M, Stucchi R, Sforza A, Fumagalli R. The response of Milan's emergency medical system to the COVID-19 outbreak in Italy. Lancet. 2020;395(10227):e49–50.PubMedPubMedCentralCrossRef Spina S, Marrazzo F, Migliari M, Stucchi R, Sforza A, Fumagalli R. The response of Milan's emergency medical system to the COVID-19 outbreak in Italy. Lancet. 2020;395(10227):e49–50.PubMedPubMedCentralCrossRef
Metadata
Title
Development of machine learning models to predict RT-PCR results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with influenza-like symptoms using only basic clinical data
Authors
Thomas Langer
Martina Favarato
Riccardo Giudici
Gabriele Bassi
Roberta Garberi
Fabiana Villa
Hedwige Gay
Anna Zeduri
Sara Bragagnolo
Alberto Molteni
Andrea Beretta
Matteo Corradin
Mauro Moreno
Chiara Vismara
Carlo Federico Perno
Massimo Buscema
Enzo Grossi
Roberto Fumagalli
Publication date
01-12-2020
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s13049-020-00808-8

Other articles of this Issue 1/2020

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 1/2020 Go to the issue