Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | Breast Cancer | Research

AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs)

Authors: Francesca Cirillo, Rosamaria Lappano, Leonardo Bruno, Bruno Rizzuti, Fedora Grande, Rita Guzzi, Sara Briguori, Anna Maria Miglietta, Miki Nakajima, Maria Teresa Di Martino, Marcello Maggiolini

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

The chemical carcinogen 3-methylcholanthrene (3MC) binds to the aryl hydrocarbon receptor (AHR) that regulates the expression of cytochrome P450 (CYP) enzymes as CYP1B1, which is involved in the oncogenic activation of environmental pollutants as well as in the estrogen biosynthesis and metabolism. 3MC was shown to induce estrogenic responses binding to the estrogen receptor (ER) α and stimulating a functional interaction between AHR and ERα. Recently, the G protein estrogen receptor (GPER) has been reported to mediate certain biological responses induced by endogenous estrogens and environmental compounds eliciting an estrogen-like activity.

Methods

Molecular dynamics and docking simulations were performed to evaluate the potential of 3MC to interact with GPER. SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) derived from breast tumor patients were used as model system. Real-time PCR and western blotting analysis were performed in order to evaluate the activation of transduction mediators as well as the mRNA and protein levels of CYP1B1 and cyclin D1. Co-immunoprecipitation studies were performed in order to explore the potential of 3MC to trigger the association of GPER with AHR and EGFR. Luciferase assays were carried out to determine the activity of CYP1B1 promoter deletion constructs upon 3MC exposure, while the nuclear shuttle of AHR induced by 3MC was assessed through confocal microscopy. Cell proliferation stimulated by 3MC was determined as biological counterpart of the aforementioned experimental assays. The statistical analysis was performed by ANOVA.

Results

We first ascertained by docking simulations the ability of 3MC to interact with GPER. Thereafter, we established that 3MC activates the EGFR/ERK/c-Fos transduction signaling through both AHR and GPER in SkBr3 cells and CAFs. Then, we found that these receptors are involved in the up-regulation of CYP1B1 and cyclin D1 as well as in the stimulation of growth responses induced by 3MC.

Conclusions

In the present study we have provided novel insights regarding the molecular mechanisms by which 3MC may trigger a physical and functional interaction between AHR and GPER, leading to the stimulation of both SkBr3 breast cancer cells and CAFs. Altogether, our results indicate that 3MC may engage both GPER and AHR transduction pathways toward breast cancer progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110:451–88.PubMedPubMedCentral Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110:451–88.PubMedPubMedCentral
2.
go back to reference Bosetti C, Boffetta P, La Vecchia C. Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol. 2007;18:431–46.PubMedCrossRef Bosetti C, Boffetta P, La Vecchia C. Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol. 2007;18:431–46.PubMedCrossRef
3.
go back to reference Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, et al. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2011;29:324–57.PubMedPubMedCentralCrossRef Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, et al. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2011;29:324–57.PubMedPubMedCentralCrossRef
4.
go back to reference Petit P, Maître A, Persoons R, Bicout DJ. Lung cancer risk assessment for workers exposed to polycyclic aromatic hydrocarbons in various industries. Environ Int. 2019;124:109–20.PubMedCrossRef Petit P, Maître A, Persoons R, Bicout DJ. Lung cancer risk assessment for workers exposed to polycyclic aromatic hydrocarbons in various industries. Environ Int. 2019;124:109–20.PubMedCrossRef
6.
go back to reference Korsh J, Shen A, Aliano K, Davenport T. Polycyclic aromatic hydrocarbons and breast Cancer: a review of the literature. Breast Care (Basel). 2015;10:316–8.CrossRef Korsh J, Shen A, Aliano K, Davenport T. Polycyclic aromatic hydrocarbons and breast Cancer: a review of the literature. Breast Care (Basel). 2015;10:316–8.CrossRef
7.
go back to reference White AJ, Bradshaw PT, Herring AH, Teitelbaum SL, Beyea J, Stellman SD, et al. Exposure to multiple sources of polycyclic aromatic hydrocarbons and breast cancer incidence. Environ Int. 2016;89-90:185–92.PubMedPubMedCentralCrossRef White AJ, Bradshaw PT, Herring AH, Teitelbaum SL, Beyea J, Stellman SD, et al. Exposure to multiple sources of polycyclic aromatic hydrocarbons and breast cancer incidence. Environ Int. 2016;89-90:185–92.PubMedPubMedCentralCrossRef
8.
go back to reference Armstrong B, Hutchinson E, Unwin J, Fletcher T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect. 2004;112:970–8.PubMedPubMedCentralCrossRef Armstrong B, Hutchinson E, Unwin J, Fletcher T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect. 2004;112:970–8.PubMedPubMedCentralCrossRef
9.
go back to reference Kim KH, Jahan SA, Kabir E, Brown RJ. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.PubMedCrossRef Kim KH, Jahan SA, Kabir E, Brown RJ. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.PubMedCrossRef
10.
go back to reference IARC. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In: IARC WHO, editor. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: France; 2010. IARC. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In: IARC WHO, editor. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: France; 2010.
11.
go back to reference Cavalieri EL, Rogan EG. Depurinating estrogen DNA adducts generators of cancer initiation: their minimization leads to cancer prevention. Clin Trans Med. 2016;5:12.CrossRef Cavalieri EL, Rogan EG. Depurinating estrogen DNA adducts generators of cancer initiation: their minimization leads to cancer prevention. Clin Trans Med. 2016;5:12.CrossRef
12.
go back to reference D’Uva G, Baci D, Albini A, Noonan DM. Cancer chemoprevention revisited: cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat Reviews. 2018;63:1–18.CrossRef D’Uva G, Baci D, Albini A, Noonan DM. Cancer chemoprevention revisited: cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat Reviews. 2018;63:1–18.CrossRef
13.
go back to reference Gajjar K, Martin-Hirsch PL, Martin FL. CYP1B1 and hormone-induced cancer. Cancer Lett. 2012;324:3–30.CrossRef Gajjar K, Martin-Hirsch PL, Martin FL. CYP1B1 and hormone-induced cancer. Cancer Lett. 2012;324:3–30.CrossRef
14.
go back to reference Go R, Hwang K, Choi K. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24–30.PubMedCrossRef Go R, Hwang K, Choi K. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24–30.PubMedCrossRef
15.
go back to reference Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6:947–60.PubMedCrossRef Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6:947–60.PubMedCrossRef
16.
go back to reference Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227:115–24.PubMedCrossRef Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227:115–24.PubMedCrossRef
18.
go back to reference Zhan P, Wang Q, Qian Q, Wei S, Yu L. CYP1A1 MspI and exon7 gene polymorphisms and lung cancer risk: an updated meta-analysis and review. J Exp Clin Cancer Res. 2011;30:99.PubMedPubMedCentralCrossRef Zhan P, Wang Q, Qian Q, Wei S, Yu L. CYP1A1 MspI and exon7 gene polymorphisms and lung cancer risk: an updated meta-analysis and review. J Exp Clin Cancer Res. 2011;30:99.PubMedPubMedCentralCrossRef
19.
go back to reference Kwon Y, Baek H, Ye D, Shin S, Kim D, Chun Y. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/β-catenin signaling via Sp1 upregulation. PLoS One. 2016;11:e0151598.PubMedPubMedCentralCrossRef Kwon Y, Baek H, Ye D, Shin S, Kim D, Chun Y. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/β-catenin signaling via Sp1 upregulation. PLoS One. 2016;11:e0151598.PubMedPubMedCentralCrossRef
20.
go back to reference Kudo I, Hosaka M, Haga A, Tsuji N, Nagata Y, Okada H, et al. The regulation mechanisms of AhR by molecular chaperone complex. J Biochem. 2018;163:223–32.PubMedCrossRef Kudo I, Hosaka M, Haga A, Tsuji N, Nagata Y, Okada H, et al. The regulation mechanisms of AhR by molecular chaperone complex. J Biochem. 2018;163:223–32.PubMedCrossRef
21.
go back to reference Feng S, Cao Z, Wang X. Role of aryl hydrocarbon receptor in cancer. Biochim Biophys Acta. 2013;1836:197–210.PubMed Feng S, Cao Z, Wang X. Role of aryl hydrocarbon receptor in cancer. Biochim Biophys Acta. 2013;1836:197–210.PubMed
23.
go back to reference Yin X, Chen J, Mao W, Wang Y, Chen M. A selective aryl hydrocarbon receptor modulator 3,3′-Diindolylmethane inhibits gastric cancer cell growth. J Exp Clin Cancer Res. 2012;31:4.CrossRef Yin X, Chen J, Mao W, Wang Y, Chen M. A selective aryl hydrocarbon receptor modulator 3,3′-Diindolylmethane inhibits gastric cancer cell growth. J Exp Clin Cancer Res. 2012;31:4.CrossRef
24.
go back to reference Ohtake F, Takeyam K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Letters to nature. 2003;423:545–50.CrossRef Ohtake F, Takeyam K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Letters to nature. 2003;423:545–50.CrossRef
25.
go back to reference Ye M, Zhang Y, Gao H, Xu Y, Jing P, Wu J, et al. Activation of the aryl hydrocarbon receptor leads to resistance to EGFR TKIs in non-small cell lung Cancer by activating Src-mediated bypass signaling. Clin Cancer Res. 2018;24:1227–39.PubMedCrossRef Ye M, Zhang Y, Gao H, Xu Y, Jing P, Wu J, et al. Activation of the aryl hydrocarbon receptor leads to resistance to EGFR TKIs in non-small cell lung Cancer by activating Src-mediated bypass signaling. Clin Cancer Res. 2018;24:1227–39.PubMedCrossRef
27.
go back to reference Puga A, Ma C, Marlowe JL. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol. 2009;77:713–22.PubMedCrossRef Puga A, Ma C, Marlowe JL. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol. 2009;77:713–22.PubMedCrossRef
28.
go back to reference Liu Y, Ji R, Li J, Gu Q, Zhao X, Sun T, et al. Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. J Exp Clin Cancer Res. 2010;29:16.PubMedPubMedCentralCrossRef Liu Y, Ji R, Li J, Gu Q, Zhao X, Sun T, et al. Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. J Exp Clin Cancer Res. 2010;29:16.PubMedPubMedCentralCrossRef
29.
go back to reference Jiang Z, Guo J, Shen J, Jin M, Xie S, Wang L. The role of estrogen receptor alpha in mediating chemoresistance in breast cancer cells. J Exp Clin Cancer Res. 2012;31:42.PubMedPubMedCentralCrossRef Jiang Z, Guo J, Shen J, Jin M, Xie S, Wang L. The role of estrogen receptor alpha in mediating chemoresistance in breast cancer cells. J Exp Clin Cancer Res. 2012;31:42.PubMedPubMedCentralCrossRef
30.
go back to reference Hýžd′alová M, Pivnička J, Zapletal O, Vázquez-Gómez G, Matthews J, Neča J, et al. Aryl hydrocarbon receptor-dependent metabolism plays a significant role in estrogen-like effects of polycyclic aromatic hydrocarbons on cell proliferation. Toxicol Sci. 2018;165:447–61.PubMedCrossRefPubMedCentral Hýžd′alová M, Pivnička J, Zapletal O, Vázquez-Gómez G, Matthews J, Neča J, et al. Aryl hydrocarbon receptor-dependent metabolism plays a significant role in estrogen-like effects of polycyclic aromatic hydrocarbons on cell proliferation. Toxicol Sci. 2018;165:447–61.PubMedCrossRefPubMedCentral
31.
go back to reference Abdelrahim M, Ariazi E, Kim K, Khan S, Barhoumi R, Burghardt R, et al. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha. Cancer Res. 2006;66:2459–67.PubMedCrossRef Abdelrahim M, Ariazi E, Kim K, Khan S, Barhoumi R, Burghardt R, et al. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha. Cancer Res. 2006;66:2459–67.PubMedCrossRef
32.
go back to reference Shipley JM, Waxman DJ. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methylcholanthrene. Toxicol Appl Pharmacol. 2006;213:87–97.PubMedCrossRef Shipley JM, Waxman DJ. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methylcholanthrene. Toxicol Appl Pharmacol. 2006;213:87–97.PubMedCrossRef
33.
go back to reference Swedenborg E, Rüegg J, Hillenweck A, Rehnmark S, Faulds MH, Zalko D, et al. 3-Methylcholanthrene displays dual effects on estrogen receptor (ER) alpha and ER beta signaling in a cell-type specific fashion. Mol Pharmacol. 2008;73:575–86.PubMedCrossRef Swedenborg E, Rüegg J, Hillenweck A, Rehnmark S, Faulds MH, Zalko D, et al. 3-Methylcholanthrene displays dual effects on estrogen receptor (ER) alpha and ER beta signaling in a cell-type specific fashion. Mol Pharmacol. 2008;73:575–86.PubMedCrossRef
34.
go back to reference Liu S, Abdelrahim M, Khan S, Ariazi E, Jordan VC, Safe S. Aryl hydrocarbon receptor agonists directly activate estrogen receptor a in MCF-7 breast cancer cells. Biol Chem. 2006;387:1209–13.PubMedCrossRef Liu S, Abdelrahim M, Khan S, Ariazi E, Jordan VC, Safe S. Aryl hydrocarbon receptor agonists directly activate estrogen receptor a in MCF-7 breast cancer cells. Biol Chem. 2006;387:1209–13.PubMedCrossRef
35.
go back to reference Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J. 2009;28:523–32.PubMedPubMedCentralCrossRef Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J. 2009;28:523–32.PubMedPubMedCentralCrossRef
36.
go back to reference Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol. 2017;176:49–56.PubMedCrossRef Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol. 2017;176:49–56.PubMedCrossRef
37.
go back to reference Santolla MF, Lappano R, Cirillo F, Rigiracciolo DC, Sebastiani A, Abonante S, et al. miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. J Exp Clin Cancer Res. 2018;37:94.PubMedPubMedCentralCrossRef Santolla MF, Lappano R, Cirillo F, Rigiracciolo DC, Sebastiani A, Abonante S, et al. miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. J Exp Clin Cancer Res. 2018;37:94.PubMedPubMedCentralCrossRef
38.
go back to reference Madeo A, Maggiolini M. Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res. 2010;70:6036–46.PubMedCrossRef Madeo A, Maggiolini M. Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res. 2010;70:6036–46.PubMedCrossRef
39.
go back to reference Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz ER, Cappello AR, et al. Effects of atrazine on estrogen receptor a- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493–9.PubMedPubMedCentralCrossRef Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz ER, Cappello AR, et al. Effects of atrazine on estrogen receptor a- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493–9.PubMedPubMedCentralCrossRef
40.
go back to reference Pupo M, Pisano A, Lappano R, Santolla MF, De Francesco EM, Abonante S, et al. Bisphenol a induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2012;120:1177–82.PubMedPubMedCentralCrossRef Pupo M, Pisano A, Lappano R, Santolla MF, De Francesco EM, Abonante S, et al. Bisphenol a induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2012;120:1177–82.PubMedPubMedCentralCrossRef
41.
go back to reference Huang M, Li Y, Zhang H, Nan F. Research breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res. 2010;29:80.PubMedPubMedCentralCrossRef Huang M, Li Y, Zhang H, Nan F. Research breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res. 2010;29:80.PubMedPubMedCentralCrossRef
42.
go back to reference Yao Y, Guo Q, Cao Y, Qiu Y, Tan R, Yu Z, et al. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J Exp Clin Cancer Res. 2018;37:282.PubMedPubMedCentralCrossRef Yao Y, Guo Q, Cao Y, Qiu Y, Tan R, Yu Z, et al. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J Exp Clin Cancer Res. 2018;37:282.PubMedPubMedCentralCrossRef
44.
go back to reference Zhi K, Shen X, Zhang H, Bi J. Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers. J Exp Clin Cancer Res. 2010;29:66.PubMedPubMedCentralCrossRef Zhi K, Shen X, Zhang H, Bi J. Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers. J Exp Clin Cancer Res. 2010;29:66.PubMedPubMedCentralCrossRef
46.
go back to reference Maggiolini M, Picard D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol. 2010;204:105–14.PubMedCrossRef Maggiolini M, Picard D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol. 2010;204:105–14.PubMedCrossRef
47.
go back to reference Cirillo F, Pellegrino M, Malivindi R, Rago V, Avino S, Muto L, et al. GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer. Oncotarget. 2017;8:106608–24.PubMedPubMedCentralCrossRef Cirillo F, Pellegrino M, Malivindi R, Rago V, Avino S, Muto L, et al. GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer. Oncotarget. 2017;8:106608–24.PubMedPubMedCentralCrossRef
48.
go back to reference Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G protein–coupled estrogen receptor and its pharmacologic modulators. Pharmacol Rev. 2015;67:505–40.PubMedPubMedCentralCrossRef Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G protein–coupled estrogen receptor and its pharmacologic modulators. Pharmacol Rev. 2015;67:505–40.PubMedPubMedCentralCrossRef
49.
go back to reference Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–32.PubMedCrossRef Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–32.PubMedCrossRef
50.
go back to reference Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006;102:175–9.PubMedCrossRef Thomas P, Dong J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006;102:175–9.PubMedCrossRef
51.
go back to reference Zhang J, Yang J, Jang R, Zhang Y. GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure. 2015;23:1538–49.PubMedPubMedCentralCrossRef Zhang J, Yang J, Jang R, Zhang Y. GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure. 2015;23:1538–49.PubMedPubMedCentralCrossRef
52.
go back to reference Arnatt CK, Zhang Y. G protein-coupled estrogen receptor (GPER) agonist dual binding mode analyses toward understanding of its activation mechanism: a comparative homology modeling approach. Mol Inform. 2013;32:647–58.PubMedPubMedCentralCrossRef Arnatt CK, Zhang Y. G protein-coupled estrogen receptor (GPER) agonist dual binding mode analyses toward understanding of its activation mechanism: a comparative homology modeling approach. Mol Inform. 2013;32:647–58.PubMedPubMedCentralCrossRef
53.
go back to reference Mendez-Luna D, Martinez-Archundia M, Maroun RC, Ceballos-Reyes G, Fragoso-Vazquez MJ, Gonzalez-Juarez DE, et al. Deciphering the GPER/GPR30-agonist and antagonists interactions using molecular modeling studies, molecular dynamics, and docking simulations. J Biomol Struct Dyn. 2015;33:2161–72.PubMedCrossRef Mendez-Luna D, Martinez-Archundia M, Maroun RC, Ceballos-Reyes G, Fragoso-Vazquez MJ, Gonzalez-Juarez DE, et al. Deciphering the GPER/GPR30-agonist and antagonists interactions using molecular modeling studies, molecular dynamics, and docking simulations. J Biomol Struct Dyn. 2015;33:2161–72.PubMedCrossRef
54.
go back to reference Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software. 2015;X:19–25.CrossRef Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software. 2015;X:19–25.CrossRef
55.
go back to reference Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.PubMedPubMedCentral Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.PubMedPubMedCentral
56.
go back to reference Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.PubMedPubMedCentralCrossRef Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.PubMedPubMedCentralCrossRef
57.
go back to reference Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–8.PubMedPubMedCentral Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–8.PubMedPubMedCentral
58.
go back to reference Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.PubMedCrossRef Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.PubMedCrossRef
59.
go back to reference Evoli S, Mobley DL, Guzzi R, Rizzuti B. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Phys Chem Chem Phys. 2016;18:32358–68.PubMedPubMedCentralCrossRef Evoli S, Mobley DL, Guzzi R, Rizzuti B. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Phys Chem Chem Phys. 2016;18:32358–68.PubMedPubMedCentralCrossRef
60.
go back to reference Pantusa M, Bartucci R, Rizzuti B. Stability of trans-resveratrol associated with transport proteins. J Agric Food Chem. 2014;62:4384–91.PubMedCrossRef Pantusa M, Bartucci R, Rizzuti B. Stability of trans-resveratrol associated with transport proteins. J Agric Food Chem. 2014;62:4384–91.PubMedCrossRef
61.
go back to reference Zhao B, Degroot DE, Hayashi A, He G, Denison MS. CH223191 is a ligand-selective antagonist of the ah (dioxin) receptor. Toxicol Sci. 2010;117:393–403.PubMedPubMedCentralCrossRef Zhao B, Degroot DE, Hayashi A, He G, Denison MS. CH223191 is a ligand-selective antagonist of the ah (dioxin) receptor. Toxicol Sci. 2010;117:393–403.PubMedPubMedCentralCrossRef
63.
go back to reference De Marco P, Lappano R, De Francesco EM, Cirillo F, Pupo M, Avino S, et al. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response. Sci Rep. 2016;6:24354.PubMedPubMedCentralCrossRef De Marco P, Lappano R, De Francesco EM, Cirillo F, Pupo M, Avino S, et al. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response. Sci Rep. 2016;6:24354.PubMedPubMedCentralCrossRef
64.
go back to reference Avino S, De Marco P, Cirillo F, Santolla MF, De Francesco EM, Perri MG, et al. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells. Oncotarget. 2016;7:52710–28.PubMedPubMedCentralCrossRef Avino S, De Marco P, Cirillo F, Santolla MF, De Francesco EM, Perri MG, et al. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells. Oncotarget. 2016;7:52710–28.PubMedPubMedCentralCrossRef
65.
go back to reference Albanito L, Sisci D, Aquila S, Brunelli E, Vivacqua A, Madeo A, et al. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology. 2008;149:3799–808.PubMedPubMedCentralCrossRef Albanito L, Sisci D, Aquila S, Brunelli E, Vivacqua A, Madeo A, et al. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology. 2008;149:3799–808.PubMedPubMedCentralCrossRef
66.
go back to reference Tang YM, Wo YP, Stewart J, Hawkins AL, Griffin CA, Sutter TR, et al. Isolation and characterization of the human cytochrome P450 CYP1B1 gene. J Biol Chem. 1996;271:28324–30.PubMedCrossRef Tang YM, Wo YP, Stewart J, Hawkins AL, Griffin CA, Sutter TR, et al. Isolation and characterization of the human cytochrome P450 CYP1B1 gene. J Biol Chem. 1996;271:28324–30.PubMedCrossRef
67.
go back to reference Tsuchiya Y, Nakajima M, Yokoi T. Critical enhancer region to which AhR/ARNT and Sp1 bind in the human CYP1B1 gene. J Biochem. 2003;133:583–92.PubMedCrossRef Tsuchiya Y, Nakajima M, Yokoi T. Critical enhancer region to which AhR/ARNT and Sp1 bind in the human CYP1B1 gene. J Biochem. 2003;133:583–92.PubMedCrossRef
68.
69.
go back to reference Lappano R, Rosano C, De Marco P, De Francesco EM, Pezzi V, Maggiolini M. Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol. 2010;320:162–70.PubMedCrossRef Lappano R, Rosano C, De Marco P, De Francesco EM, Pezzi V, Maggiolini M. Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol. 2010;320:162–70.PubMedCrossRef
70.
go back to reference Xie G, Peng Z, Raufman JP. Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1006–15.PubMedPubMedCentralCrossRef Xie G, Peng Z, Raufman JP. Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1006–15.PubMedPubMedCentralCrossRef
71.
go back to reference Xie G, Raufman JP. Role of the aryl hydrocarbon receptor in Colon neoplasia. Cancers (Basel). 2015;7:1436–46.CrossRef Xie G, Raufman JP. Role of the aryl hydrocarbon receptor in Colon neoplasia. Cancers (Basel). 2015;7:1436–46.CrossRef
72.
go back to reference Bekki K, Vogel H, Li W, Ito T, Sweeney C, Haarmann-Stemmann T, et al. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells. Pestic Biochem Physiol. 2015;120:5–13.PubMedCrossRef Bekki K, Vogel H, Li W, Ito T, Sweeney C, Haarmann-Stemmann T, et al. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells. Pestic Biochem Physiol. 2015;120:5–13.PubMedCrossRef
73.
go back to reference Marlowe JL, Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem. 2005;96:1174–84.PubMedCrossRef Marlowe JL, Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem. 2005;96:1174–84.PubMedCrossRef
74.
go back to reference Puga A, Xia Y, Elferink C. Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact. 2002;141:117–30.PubMedCrossRef Puga A, Xia Y, Elferink C. Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact. 2002;141:117–30.PubMedCrossRef
75.
go back to reference Vivacqua A, Lappano R, De Marco P, Sisci D, Aquila S, De Amicis F, et al. G protein-coupled receptor 30 expression is up-regulated by EGF and TGFα in estrogen receptor α-positive Cancer cells. Mol Endocrinol. 2009;23:1815–26.PubMedPubMedCentralCrossRef Vivacqua A, Lappano R, De Marco P, Sisci D, Aquila S, De Amicis F, et al. G protein-coupled receptor 30 expression is up-regulated by EGF and TGFα in estrogen receptor α-positive Cancer cells. Mol Endocrinol. 2009;23:1815–26.PubMedPubMedCentralCrossRef
76.
go back to reference Rigiracciolo DC, Scarpelli A, Lappano R, Pisano A, Santolla MF, Avino S, et al. GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget. 2016;7:94–111.PubMedCrossRef Rigiracciolo DC, Scarpelli A, Lappano R, Pisano A, Santolla MF, Avino S, et al. GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget. 2016;7:94–111.PubMedCrossRef
77.
go back to reference Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, et al. GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. 2017;56:580–93.PubMedCrossRef Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, et al. GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. 2017;56:580–93.PubMedCrossRef
78.
go back to reference Beischlag TV, Morales JL, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18:207–50.PubMedPubMedCentralCrossRef Beischlag TV, Morales JL, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18:207–50.PubMedPubMedCentralCrossRef
79.
go back to reference Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T. Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res. 2004;64:3119–25.PubMedCrossRef Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T. Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res. 2004;64:3119–25.PubMedCrossRef
80.
go back to reference Vivacqua A, Romeo E, De Marco P, De Francesco EM, Abonante S, Maggiolini M. GPER mediates the Egr-1 expression induced by 17β-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells. Breast Cancer Res Treat. 2012;133:1025–35.PubMedCrossRef Vivacqua A, Romeo E, De Marco P, De Francesco EM, Abonante S, Maggiolini M. GPER mediates the Egr-1 expression induced by 17β-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells. Breast Cancer Res Treat. 2012;133:1025–35.PubMedCrossRef
81.
go back to reference Kwon YJ, Cho NH, Ye DJ, Baek HS, Ryu YS, Chun YJ. Cytochrome P450 1B1 promotes cancer cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4. J Toxicol Environ Health A. 2018;81:278–87.PubMedCrossRef Kwon YJ, Cho NH, Ye DJ, Baek HS, Ryu YS, Chun YJ. Cytochrome P450 1B1 promotes cancer cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4. J Toxicol Environ Health A. 2018;81:278–87.PubMedCrossRef
82.
go back to reference Nagata D, Suzuki E, Nishimatsu H, Satonaka H, Goto A, Omata M, et al. Transcriptional activation of the cyclin D1 gene is mediated by multiple cis-elements, including SP1 sites and a cAMP-responsive element in vascular endothelial cells. J Biol Chem. 2001;276:662–9.PubMedCrossRef Nagata D, Suzuki E, Nishimatsu H, Satonaka H, Goto A, Omata M, et al. Transcriptional activation of the cyclin D1 gene is mediated by multiple cis-elements, including SP1 sites and a cAMP-responsive element in vascular endothelial cells. J Biol Chem. 2001;276:662–9.PubMedCrossRef
83.
84.
go back to reference Guo Z, Hao X, Tan F, Pei X, Shang L, Jiang X, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenet. 2011;2:63–76.CrossRef Guo Z, Hao X, Tan F, Pei X, Shang L, Jiang X, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenet. 2011;2:63–76.CrossRef
85.
go back to reference Fang Y, Cao Z, Hou Q, Ma C, Yao C, Li J, et al. Cyclin d1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells. Mol Cancer Ther. 2013;12:1492–503.PubMedPubMedCentralCrossRef Fang Y, Cao Z, Hou Q, Ma C, Yao C, Li J, et al. Cyclin d1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells. Mol Cancer Ther. 2013;12:1492–503.PubMedPubMedCentralCrossRef
86.
go back to reference Hughes D, Guttenplan JB, Marcus CB, Subbaramaiah K, Dannenberg AJ. HSP90 inhibitors suppress aryl hydrocarbon receptor-mediated-activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation. Cancer Prev Res (Phila). 2008;1:485–93.CrossRef Hughes D, Guttenplan JB, Marcus CB, Subbaramaiah K, Dannenberg AJ. HSP90 inhibitors suppress aryl hydrocarbon receptor-mediated-activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation. Cancer Prev Res (Phila). 2008;1:485–93.CrossRef
87.
go back to reference Richmond O, Ghotbaddini M, Allen C, Walker A, Zahir S, Powell JB. The aryl hydrocarbon receptor is constitutively active in advanced prostate Cancer cells. PLoS One. 2014;9:e95058.PubMedPubMedCentralCrossRef Richmond O, Ghotbaddini M, Allen C, Walker A, Zahir S, Powell JB. The aryl hydrocarbon receptor is constitutively active in advanced prostate Cancer cells. PLoS One. 2014;9:e95058.PubMedPubMedCentralCrossRef
89.
go back to reference Izawa T, Arakaki R, Mori H, Tsunematsu T, Kudo Y, Tanaka E, et al. The nuclear receptor AhR controls bone homeostasis by regulating osteoclast differentiation via the RANK/c-Fos signaling Axis. J Immunol. 2016;197:4639–50.PubMedPubMedCentralCrossRef Izawa T, Arakaki R, Mori H, Tsunematsu T, Kudo Y, Tanaka E, et al. The nuclear receptor AhR controls bone homeostasis by regulating osteoclast differentiation via the RANK/c-Fos signaling Axis. J Immunol. 2016;197:4639–50.PubMedPubMedCentralCrossRef
90.
go back to reference Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol. 2009;77:508–20.PubMedCrossRef Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol. 2009;77:508–20.PubMedCrossRef
91.
go back to reference John K, Lahoti TS, Wagner K, Hughes JM, Perdew GH. The ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines. Mol Carcinog. 2013;53:765–76.PubMedPubMedCentralCrossRef John K, Lahoti TS, Wagner K, Hughes JM, Perdew GH. The ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines. Mol Carcinog. 2013;53:765–76.PubMedPubMedCentralCrossRef
92.
go back to reference Narasimhan S, Stanford Zulick E, Novikov O, Parks AJ, Schlezinger JJ, Wang Z, et al. Towards resolving the pro- and anti-tumor effects of the aryl hydrocarbon receptor. Int J Mol Sci. 2018;19:1388.PubMedCentralCrossRef Narasimhan S, Stanford Zulick E, Novikov O, Parks AJ, Schlezinger JJ, Wang Z, et al. Towards resolving the pro- and anti-tumor effects of the aryl hydrocarbon receptor. Int J Mol Sci. 2018;19:1388.PubMedCentralCrossRef
93.
go back to reference Smith HO, Arias-Pulido H, Kuo DY, Howard T, Qualls CR, Lee SJ, et al. GPR30 predicts poor survival for ovarian cancer. Gynecol Oncol. 2009;114:465–71.PubMedPubMedCentralCrossRef Smith HO, Arias-Pulido H, Kuo DY, Howard T, Qualls CR, Lee SJ, et al. GPR30 predicts poor survival for ovarian cancer. Gynecol Oncol. 2009;114:465–71.PubMedPubMedCentralCrossRef
94.
go back to reference Marjon NA, Hu C, Hathaway HJ, Prossnitz ER. G protein-coupled estrogen receptor regulates mammary tumorigenesis and metastasis. Mol Cancer Res. 2014;12:1644–54.PubMedPubMedCentralCrossRef Marjon NA, Hu C, Hathaway HJ, Prossnitz ER. G protein-coupled estrogen receptor regulates mammary tumorigenesis and metastasis. Mol Cancer Res. 2014;12:1644–54.PubMedPubMedCentralCrossRef
95.
go back to reference Ariazi EA, Brailoiu E, Yerrum S, Shupp HA, Slifker MJ, Cunliffe HE, et al. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res. 2014;70:1184–94.CrossRef Ariazi EA, Brailoiu E, Yerrum S, Shupp HA, Slifker MJ, Cunliffe HE, et al. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res. 2014;70:1184–94.CrossRef
96.
go back to reference Chimento A, Casaburi I, Rosano C, Avena P, De Luca A, Campana C, et al. Oleuropein and hydroxytyrosol activate GPER/GPR30-dependent pathways leading to apoptosis of ERnegative SKBR3 breast cancer cells. Mol Nutr Food Res. 2014;58:478–89.PubMedCrossRef Chimento A, Casaburi I, Rosano C, Avena P, De Luca A, Campana C, et al. Oleuropein and hydroxytyrosol activate GPER/GPR30-dependent pathways leading to apoptosis of ERnegative SKBR3 breast cancer cells. Mol Nutr Food Res. 2014;58:478–89.PubMedCrossRef
97.
go back to reference Weißenborn C, Ignatov T, Ochel HJ, Costa SD, Zenclussen AC, Ignatov Z, et al. GPER functions as a tumor suppressor in triple-negative breast cancer cells. J Cancer Res Clin Oncol. 2014;140:713–23.PubMedCrossRef Weißenborn C, Ignatov T, Ochel HJ, Costa SD, Zenclussen AC, Ignatov Z, et al. GPER functions as a tumor suppressor in triple-negative breast cancer cells. J Cancer Res Clin Oncol. 2014;140:713–23.PubMedCrossRef
98.
go back to reference Weißenborn C, Ignatov T, Poehlmann A, Wege AK, Costa SD, Zenclussen AC, et al. GPER functions as a tumor suppressor in MCF-7 and SKBR-3 breast cancer cells. J Cancer Res Clin Oncol. 2014;140:663–71.PubMedCrossRef Weißenborn C, Ignatov T, Poehlmann A, Wege AK, Costa SD, Zenclussen AC, et al. GPER functions as a tumor suppressor in MCF-7 and SKBR-3 breast cancer cells. J Cancer Res Clin Oncol. 2014;140:663–71.PubMedCrossRef
99.
go back to reference Santolla MF, Avino S, Pellegrino M, De Francesco EM, De Marco P, Lappano R, et al. SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis. 2015;6:e1834.PubMedPubMedCentralCrossRef Santolla MF, Avino S, Pellegrino M, De Francesco EM, De Marco P, Lappano R, et al. SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis. 2015;6:e1834.PubMedPubMedCentralCrossRef
100.
go back to reference Rigiracciolo DC, Santolla MF, Lappano R, Vivacqua A, Cirillo F, Galli GR, et al. Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. J Exp Clin Cancer Res. 2019;38:58.PubMedPubMedCentralCrossRef Rigiracciolo DC, Santolla MF, Lappano R, Vivacqua A, Cirillo F, Galli GR, et al. Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. J Exp Clin Cancer Res. 2019;38:58.PubMedPubMedCentralCrossRef
101.
go back to reference Maggiolini M, Santolla MF, Avino S, Aiello F, Rosano C, Garofalo A, et al. Identification of two benzopyrroloxazines acting as selective GPER antagonists in breast cancer cells and cancer-associated fibroblasts. Future Med Chem. 2015;7:437–48.PubMedCrossRef Maggiolini M, Santolla MF, Avino S, Aiello F, Rosano C, Garofalo A, et al. Identification of two benzopyrroloxazines acting as selective GPER antagonists in breast cancer cells and cancer-associated fibroblasts. Future Med Chem. 2015;7:437–48.PubMedCrossRef
102.
go back to reference Lappano R, Santolla MF, Pupo M, Sinicropi MS, Caruso A, Rosano C, et al. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells. Breast Cancer Res. 2012;14:R12.PubMedPubMedCentralCrossRef Lappano R, Santolla MF, Pupo M, Sinicropi MS, Caruso A, Rosano C, et al. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells. Breast Cancer Res. 2012;14:R12.PubMedPubMedCentralCrossRef
103.
go back to reference Lappano R, Rosano C, Santolla MF, Pupo M, De Francesco EM, De Marco P, Ponassi M, Spallarossa A, Ranise A, Maggiolini M. Two novel GPER agonists induce gene expression changes and growth effects in cancer cells. Curr Cancer Drug Targets. 2012;12:531–42.PubMedCrossRef Lappano R, Rosano C, Santolla MF, Pupo M, De Francesco EM, De Marco P, Ponassi M, Spallarossa A, Ranise A, Maggiolini M. Two novel GPER agonists induce gene expression changes and growth effects in cancer cells. Curr Cancer Drug Targets. 2012;12:531–42.PubMedCrossRef
104.
go back to reference Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, et al. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol. 2006;2:207–12.PubMedCrossRef Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, et al. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol. 2006;2:207–12.PubMedCrossRef
105.
go back to reference Dennis MK, Field AS, Burai R, Ramesh C, Petrie WK, Bologa CG, et al. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J Steroid Biochem Mol Biol. 2011;127:358–66.PubMedPubMedCentralCrossRef Dennis MK, Field AS, Burai R, Ramesh C, Petrie WK, Bologa CG, et al. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J Steroid Biochem Mol Biol. 2011;127:358–66.PubMedPubMedCentralCrossRef
Metadata
Title
AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs)
Authors
Francesca Cirillo
Rosamaria Lappano
Leonardo Bruno
Bruno Rizzuti
Fedora Grande
Rita Guzzi
Sara Briguori
Anna Maria Miglietta
Miki Nakajima
Maria Teresa Di Martino
Marcello Maggiolini
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1337-2

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine