Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Review

The perfect personalized cancer therapy: cancer vaccines against neoantigens

Authors: Luigi Aurisicchio, Matteo Pallocca, Gennaro Ciliberto, Fabio Palombo

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

In the advent of Immune Checkpoint inhibitors (ICI) and of CAR-T adoptive T-cells, the new frontier in Oncology is Cancer Immunotherapy because of its ability to provide long term clinical benefit in metastatic disease in several solid and liquid tumor types. It is now clear that ICI acts by unmasking preexisting immune responses as well as by inducing de novo responses against tumor neoantigens. Thanks to theprogress made in genomics technologies and the evolution of bioinformatics, neoantigens represent ideal targets, due to their specific expression in cancer tissue and the potential lack of side effects. In this review, we discuss the promise of preclinical and clinical results with mutation-derived neoantigen cancer vaccines (NCVs) along with the current limitations from bioinformatics prediction to manufacturing an effective new therapeutic approach.
Literature
1.
go back to reference Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7:264–76.CrossRefPubMed Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7:264–76.CrossRefPubMed
2.
go back to reference Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates LR; Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. https://doi.org/10.1038/nature12477. Epub 2013 Aug 14. Erratum in: Nature. 2013 Oct 10;502(7470):258. Imielinsk, Marcin [corrected to Imielinski, Marcin]. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates LR; Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. https://​doi.​org/​10.​1038/​nature12477. Epub 2013 Aug 14. Erratum in: Nature. 2013 Oct 10;502(7470):258. Imielinsk, Marcin [corrected to Imielinski, Marcin].
6.
go back to reference Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer England. 2017;17:209–22.CrossRef Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer England. 2017;17:209–22.CrossRef
7.
go back to reference Finn OJ, Rammensee H-G. Is it possible to develop Cancer vaccines to Neoantigens, what are the major challenges, and how can these be overcome? United States: Neoantigens: Nothing New in Spite of the Name. Cold Spring Harb. Perspect. Biol; 2017. Finn OJ, Rammensee H-G. Is it possible to develop Cancer vaccines to Neoantigens, what are the major challenges, and how can these be overcome? United States: Neoantigens: Nothing New in Spite of the Name. Cold Spring Harb. Perspect. Biol; 2017.
8.
go back to reference Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24:743–50.CrossRefPubMedPubMedCentral Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24:743–50.CrossRefPubMedPubMedCentral
10.
go back to reference Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1:1319–23.CrossRefPubMed Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1:1319–23.CrossRefPubMed
11.
go back to reference Tran E, Robbins PF, Rosenberg SA. Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017;18:255–62.CrossRefPubMed Tran E, Robbins PF, Rosenberg SA. Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017;18:255–62.CrossRefPubMed
12.
go back to reference Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I. Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res. 2016;22:1845–55.CrossRefPubMedPubMedCentral Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I. Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res. 2016;22:1845–55.CrossRefPubMedPubMedCentral
14.
go back to reference Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (80-. ). 2015;348:124–128. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25765070%5Cn, http://www.sciencemag.org/cgi/doi/10.1126/science.aaa1348 Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (80-. ). 2015;348:124–128. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25765070%5Cn, http://www.sciencemag.org/cgi/doi/10.1126/science.aaa1348
15.
go back to reference Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;6733:1–11. Available from: http://science.sciencemag.org/content/sci/early/2017/06/07/science.aan6733.full.pdf%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/28596308 Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;6733:1–11. Available from: http://​science.​sciencemag.​org/​content/​sci/​early/​2017/​06/​07/​science.​aan6733.​full.​pdf%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/28596308
16.
go back to reference McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (80-. ). 2016;351:1463–9.CrossRefPubMedCentral McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (80-. ). 2016;351:1463–9.CrossRefPubMedCentral
17.
go back to reference Strønen E, Toebes M, Kelderman S, Van BMM, Yang W, Van RN, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (80-. ). 2016;2288:1–11. Strønen E, Toebes M, Kelderman S, Van BMM, Yang W, Van RN, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (80-. ). 2016;2288:1–11.
18.
go back to reference Tran E, Turcotte S, Gros A, Robbins PF, Lu Y, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial Cancer. Science (80- ). 2014;9:641–5.CrossRef Tran E, Turcotte S, Gros A, Robbins PF, Lu Y, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial Cancer. Science (80- ). 2014;9:641–5.CrossRef
19.
go back to reference Robbins PF, Lu Y-C, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747–752. Available from: http://www.nature.com/nm/journal/v19/n6/full/nm.3161.html#methods%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3757932&tool=pmcentrez&rendertype=abstract Robbins PF, Lu Y-C, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747–752. Available from: http://​www.​nature.​com/​nm/​journal/​v19/​n6/​full/​nm.​3161.​html#methods%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3757932&tool=pmcentrez&rendertype=abstract
20.
go back to reference Castle JC, Kreiter S, Diekmann J, Löwer M, Van De Roemer N, De Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72:1081–91.CrossRefPubMed Castle JC, Kreiter S, Diekmann J, Löwer M, Van De Roemer N, De Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72:1081–91.CrossRefPubMed
22.
go back to reference Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015;520:692–696. Available from: http://www.nature.com/doifinder/10.1038/nature14426%5Cn, /link?doi=10.1038/nature14426 Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015;520:692–696. Available from: http://​www.​nature.​com/​doifinder/​10.​1038/​nature14426%5Cn, /link?doi=10.1038/nature14426
23.
go back to reference Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014;515:572–576. Available from: http://www.nature.com/doifinder/10.1038/nature14001%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25428506 Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014;515:572–576. Available from: http://​www.​nature.​com/​doifinder/​10.​1038/​nature14001%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25428506
24.
go back to reference Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater England. 2017;16:489–96.CrossRef Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater England. 2017;16:489–96.CrossRef
25.
go back to reference Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli S a, Pawashe AP, et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 2014;211:2231–2248. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4203949&tool=pmcentrez&rendertype=abstract%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25245761%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4203949 Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli S a, Pawashe AP, et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 2014;211:2231–2248. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​4203949&​tool=​pmcentrez&​rendertype=​abstract%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25245761%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4203949
27.
go back to reference Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014;512:324–327. Available from: http://www.nature.com/doifinder/10.1038/nature13387%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25043048%5Cn, http://www.nature.com/doifinder/10.1038/nature13387 Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014;512:324–327. Available from: http://​www.​nature.​com/​doifinder/​10.​1038/​nature13387%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25043048%5Cn, http://www.nature.com/doifinder/10.1038/nature13387
28.
go back to reference Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401.CrossRefPubMed Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401.CrossRefPubMed
29.
go back to reference Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Cancer immunotherapy; 2016. p. 1. Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Cancer immunotherapy; 2016. p. 1.
31.
go back to reference Zolkind P, Przybylski D, Marjanovic N, Nguyen L, Johanns T, Alexandrov A, et al. Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma. Oncotarget. 2018;9(3):4109–4119. https://doi.org/10.18632/oncotarget.23751 Zolkind P, Przybylski D, Marjanovic N, Nguyen L, Johanns T, Alexandrov A, et al. Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma. Oncotarget. 2018;9(3):4109–4119. https://​doi.​org/​10.​18632/​oncotarget.​23751
32.
go back to reference Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, Lee CW, Kim S, Woo JW, Park KS, Hwang YY, Park J, Lee IH, Lim KT, Lee KH, Jeong MS, Surh CD, Suh YS, Park JS, Sung YC. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5:5317. https://doi.org/10.1038/ncomms6317. PMID:25354725 Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, Lee CW, Kim S, Woo JW, Park KS, Hwang YY, Park J, Lee IH, Lim KT, Lee KH, Jeong MS, Surh CD, Suh YS, Park JS, Sung YC. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5:5317. https://​doi.​org/​10.​1038/​ncomms6317. PMID:25354725
33.
go back to reference Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–88.CrossRefPubMedPubMedCentral Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386:2078–88.CrossRefPubMedPubMedCentral
34.
go back to reference Morrow MP, Kraynyak KA, Sylvester AJ, Dallas M, Knoblock D, Boyer JD, et al. Clinical and immunologic biomarkers for histologic regression of high-grade cervical dysplasia and clearance of HPV16 and HPV18 after immunotherapy. Clin Cancer Res. 2018;24:276–94.CrossRefPubMed Morrow MP, Kraynyak KA, Sylvester AJ, Dallas M, Knoblock D, Boyer JD, et al. Clinical and immunologic biomarkers for histologic regression of high-grade cervical dysplasia and clearance of HPV16 and HPV18 after immunotherapy. Clin Cancer Res. 2018;24:276–94.CrossRefPubMed
35.
go back to reference Diaz-Montero CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med. 2013;11:1. Available from: Journal of Translational MedicineCrossRef Diaz-Montero CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med. 2013;11:1. Available from: Journal of Translational MedicineCrossRef
38.
go back to reference Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6. Nature Publishing Group Available from: https://doi.org/10.1038/nature23003 Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6. Nature Publishing Group Available from: https://​doi.​org/​10.​1038/​nature23003
49.
go back to reference Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. England. 2017;551:512–6. Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. England. 2017;551:512–6.
50.
go back to reference Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature England. 2017;551:517–20. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature England. 2017;551:517–20.
51.
go back to reference Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov. 2016;6:202–16.CrossRefPubMed Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov. 2016;6:202–16.CrossRefPubMed
53.
go back to reference Milella M, Falcone I, Conciatori F, Matteoni S, Sacconi A, De Luca T, et al. PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci Rep. 2017;7:1–15.CrossRef Milella M, Falcone I, Conciatori F, Matteoni S, Sacconi A, De Luca T, et al. PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci Rep. 2017;7:1–15.CrossRef
54.
go back to reference Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell Elsevier Inc. 2016;165:35–44. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell Elsevier Inc. 2016;165:35–44.
55.
go back to reference George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine Leiomyosarcoma. Immunity Elsevier Inc. 2017;46:197–204. George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine Leiomyosarcoma. Immunity Elsevier Inc. 2017;46:197–204.
56.
go back to reference Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404.e9.CrossRefPubMedPubMedCentral Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404.e9.CrossRefPubMedPubMedCentral
57.
go back to reference Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer Immunogenomic analyses reveal genotype-Immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep ElsevierCompany. 2017;18:248–62.CrossRef Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer Immunogenomic analyses reveal genotype-Immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep ElsevierCompany. 2017;18:248–62.CrossRef
58.
go back to reference Peters S, Kerr KM, Stahel R. PD-1 blockade in advanced NSCLC: a focus on pembrolizumab. Cancer Treat Rev. 2018;62:39–49.CrossRefPubMed Peters S, Kerr KM, Stahel R. PD-1 blockade in advanced NSCLC: a focus on pembrolizumab. Cancer Treat Rev. 2018;62:39–49.CrossRefPubMed
59.
go back to reference Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 2017;8. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 2017;8.
60.
go back to reference Deken MA, Gadiot J, Jordanova ES, Lacroix R, van Gool M, Kroon P, et al. Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology. United States. 2016;5:e1238557. Deken MA, Gadiot J, Jordanova ES, Lacroix R, van Gool M, Kroon P, et al. Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology. United States. 2016;5:e1238557.
62.
go back to reference Strønen E, Toebes M, Kelderman S, Buuren MM Van, Yang W, Rooij N Van, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires(1). 2016;2288:1–11. Strønen E, Toebes M, Kelderman S, Buuren MM Van, Yang W, Rooij N Van, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires(1). 2016;2288:1–11.
67.
go back to reference Zhang J, Mardis ER, Maher CA. INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics England. 2017;33:555–7. Zhang J, Mardis ER, Maher CA. INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics England. 2017;33:555–7.
Metadata
Title
The perfect personalized cancer therapy: cancer vaccines against neoantigens
Authors
Luigi Aurisicchio
Matteo Pallocca
Gennaro Ciliberto
Fabio Palombo
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0751-1

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine