Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2016

Open Access 01-12-2016 | Research

MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein(P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1)

Authors: Lin Zhao, Yan Wang, Longyang Jiang, Miao He, Xuefeng Bai, Lifeng Yu, Minjie Wei

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2016

Login to get access

Abstract

Background

The importance of individual microRNAs (miRNAs) in tumor has been established in different cancers. However, their association with tumor chemoresistance has not been fully understood. Previously, we found two novel MDR-associated microRNAs (miRNAs). In this report, we investigated the combined effects of miRNA gene cluster in chemoresistance of breast cancer.

Methods

This study was performed in two different breast cancer cell lines (MCF-7 and MCF-7/ADR). The levels of miRNAs and mRNA expression were determined by using Quantitative Real-Time PCR. Western blotting was used to detect the levels of protein molecules. Cell viability was assessed by MTS assay. Bioinformatics and Luciferase reporter assay was performed to examine miRNA binding to the 3′-UTR of target genes.

Results

The miR-302S family including miR-302a, miR-302b, miR-302c, and miR-302d was significantly down-regulated in P-glycoprotein (P-gp)-overexpressing MCF-7/ADR cells. Overexpression of miR-302 increased intracellular accumulation of ADR and sensitized breast cancer cells to ADR. Most importantly, miR-302S produced stronger effects than each individual member alone. The four miRNAs cooperatively downregulate P-gp expression in regulating drug sensitivity. However, our results showed that the suppression of P-gp expression by miR-302 is not through typical miRNA-mediated mRNA degradation but at the level of protein and transcription. Further studies identified MAP/ERK kinase kinase 1 (MEKK1) as a direct and functional target of miR-302. miR-302 showed combinatorial effects on MKEE1 repression and MEKK1-mediated ERK pathway. The suppression of P-gp by miR-302 was reversed by MEKK1 overexpression.

Conclusion

Our results indicate that miR-302 cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein by targeting MEKK1 of ERK pathway. miR-302 gene cluster may be a potential target for reversing P-gp-mediated chemoresistance in breast cancer.
Literature
4.
go back to reference Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. Breast Cancer (Dove Med Press). 2014;6:1–13. doi:10.2147/bctt.s37638. Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. Breast Cancer (Dove Med Press). 2014;6:1–13. doi:10.​2147/​bctt.​s37638.
6.
go back to reference Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64.CrossRefPubMed Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64.CrossRefPubMed
11.
go back to reference Su CM, Wang MY, Hong CC, Chen HA, Su YH, Wu CH, et al. miR-520h is crucial for DAPK2 regulation and breast cancer progression. Oncogene. 2015. doi:10.1038/onc.2015.168. Su CM, Wang MY, Hong CC, Chen HA, Su YH, Wu CH, et al. miR-520h is crucial for DAPK2 regulation and breast cancer progression. Oncogene. 2015. doi:10.​1038/​onc.​2015.​168.
12.
go back to reference Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, et al. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate. 2015. doi:10.1002/pros.23031. Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, et al. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate. 2015. doi:10.​1002/​pros.​23031.
16.
go back to reference Ivanovska I, Cleary MA. Combinatorial microRNAs: working together to make a difference. Cell Cycle. 2008;7(20):3137–42.CrossRefPubMed Ivanovska I, Cleary MA. Combinatorial microRNAs: working together to make a difference. Cell Cycle. 2008;7(20):3137–42.CrossRefPubMed
18.
20.
go back to reference Kanagasabai R, Krishnamurthy K, Druhan LJ, Ilangovan G. Forced expression of heat shock protein 27 (Hsp27) reverses P-glycoprotein (ABCB1)-mediated drug efflux and MDR1 gene expression in Adriamycin-resistant human breast cancer cells. J Biol Chem. 2011;286(38):33289–300. doi:10.1074/jbc.M111.249102.PubMedCentralCrossRefPubMed Kanagasabai R, Krishnamurthy K, Druhan LJ, Ilangovan G. Forced expression of heat shock protein 27 (Hsp27) reverses P-glycoprotein (ABCB1)-mediated drug efflux and MDR1 gene expression in Adriamycin-resistant human breast cancer cells. J Biol Chem. 2011;286(38):33289–300. doi:10.​1074/​jbc.​M111.​249102.PubMedCentralCrossRefPubMed
23.
go back to reference Wang W, Zou L, Zhou D, Zhou Z, Tang F, Xu Z, et al. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway. Mol Carcinog. 2015. doi:10.1002/mc.22376. Wang W, Zou L, Zhou D, Zhou Z, Tang F, Xu Z, et al. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway. Mol Carcinog. 2015. doi:10.​1002/​mc.​22376.
26.
27.
go back to reference Barroso-delJesus A, Lucena-Aguilar G, Sanchez L, Ligero G, Gutierrez-Aranda I, Menendez P. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. FASEB J. 2011;25(5):1497–508. doi:10.1096/fj.10-172221.CrossRefPubMed Barroso-delJesus A, Lucena-Aguilar G, Sanchez L, Ligero G, Gutierrez-Aranda I, Menendez P. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. FASEB J. 2011;25(5):1497–508. doi:10.​1096/​fj.​10-172221.CrossRefPubMed
28.
go back to reference Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29(5):443–8. doi:10.1038/nbt.1862.PubMedCentralCrossRefPubMed Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29(5):443–8. doi:10.​1038/​nbt.​1862.PubMedCentralCrossRefPubMed
31.
go back to reference Yang CM, Chiba T, Brill B, Delis N, von Manstein V, Vafaizadeh V, et al. Expression of the miR-302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes. Int J Cancer. 2015. doi:10.1002/ijc.29606. Yang CM, Chiba T, Brill B, Delis N, von Manstein V, Vafaizadeh V, et al. Expression of the miR-302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes. Int J Cancer. 2015. doi:10.​1002/​ijc.​29606.
33.
35.
go back to reference Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9. doi:10.1158/1535-7163.mct-08-0021.CrossRefPubMed Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9. doi:10.​1158/​1535-7163.​mct-08-0021.CrossRefPubMed
38.
go back to reference Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M, et al. Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer. 2008;123(11):2532–42. doi:10.1002/ijc.23818.CrossRefPubMed Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M, et al. Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer. 2008;123(11):2532–42. doi:10.​1002/​ijc.​23818.CrossRefPubMed
Metadata
Title
MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein(P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1)
Authors
Lin Zhao
Yan Wang
Longyang Jiang
Miao He
Xuefeng Bai
Lifeng Yu
Minjie Wei
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2016
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-016-0300-8

Other articles of this Issue 1/2016

Journal of Experimental & Clinical Cancer Research 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine