Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2015

Open Access 01-12-2015 | Research

Neuron navigator 2 overexpression indicates poor prognosis of colorectal cancer and promotes invasion through the SSH1L/cofilin-1 pathway

Authors: Fengbo Tan, Hong Zhu, Yiming Tao, Nanhui Yu, Qian Pei, Heli Liu, Yuan Zhou, Haifan Xu, Xiangping Song, Yuqiang Li, Zhongyi Zhou, Xiao He, Xingwen Zhang, Haiping Pei

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2015

Login to get access

Abstract

Background

Neuron navigator 2 (NAV2) encodes a member of the neuron navigator gene family, which plays a role in tumorigenesis and cell migration. However, the prognostic value of NAV2 expression in colorectal cancer (CRC) patients and the potential pathway through which NAV2 promotes migration and invasion in CRC cell lines is poorly understood.

Methods

The expression level of NAV2 was detected in CRC tissues from two different CRC cohorts by immunohistochemistry, qRT-PCR and Western blotting; the correlation between NAV2 expression and clinicopathological characters was analyzed, and the prognostic value of NAV2 expression was analyzed using a Cox regression model. CRC cell lines with NAV2 knocked out were used to validate the function and potential pathway used by NAV2 to promote CRC cell migration and invasion.

Results

The results showed that NAV2 was overexpressed in CRC tissues, and it was closely correlated with depth of invasion, and lymph and distant metastasis. Multivariate analysis indicated that high NAV2 expression was a poor prognostic indicator of recurrence-free survival and overall survival in CRC patients. Furthermore, Cox regression analysis revealed that high NAV2 expression integrated with high tumor budding grade was a powerful independent predictive factor of CRC clinical outcome. In vitro and in vivo assays demonstrated that knockdown of NAV2 led to reduced migration and invasion of cancer cells, and the process involved the regulation of F-actin polymerization through the SSH1L/cofilin-1 pathway.

Conclusion

Based on these findings, NAV2 could serve as both a prognostic biomarker and a potential therapeutic target for patients with NAV2-positive CRC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMed
2.
go back to reference Xu JM, Liu XJ, Ge FJ, Lin L, Wang Y, Sharma MR, et al. Kras mutations in tumor tissue and plasma by different assays predict survival of patients with metastatic colorectal cancer. J Exp Clin Cancer Res. 2014;33:104.PubMedCentralCrossRefPubMed Xu JM, Liu XJ, Ge FJ, Lin L, Wang Y, Sharma MR, et al. Kras mutations in tumor tissue and plasma by different assays predict survival of patients with metastatic colorectal cancer. J Exp Clin Cancer Res. 2014;33:104.PubMedCentralCrossRefPubMed
3.
go back to reference Lise M, Pilati P, Da Pian P, Mocellin S, Nitti D, Corazzino S. Treatment options for liver metastases from colorectal cancer. J Exp Clin Cancer Res. 2003;22:149–56.PubMed Lise M, Pilati P, Da Pian P, Mocellin S, Nitti D, Corazzino S. Treatment options for liver metastases from colorectal cancer. J Exp Clin Cancer Res. 2003;22:149–56.PubMed
4.
go back to reference Malik HZ, Gomez D, Wong V, Al-Mukthar A, Toogood GJ, Lodge JP, et al. Predictors of early disease recurrence following hepatic resection for colorectal cancer metastasis. Eur J Surg Oncol. 2007;33:1003–9.CrossRefPubMed Malik HZ, Gomez D, Wong V, Al-Mukthar A, Toogood GJ, Lodge JP, et al. Predictors of early disease recurrence following hepatic resection for colorectal cancer metastasis. Eur J Surg Oncol. 2007;33:1003–9.CrossRefPubMed
5.
go back to reference Maes T, Barcelo A, Buesa C. Neuron navigator: A human gene family with homology to unc-53, a cell guidance gene from caenorhabditis elegans. Genomics. 2002;80:21–30.CrossRefPubMed Maes T, Barcelo A, Buesa C. Neuron navigator: A human gene family with homology to unc-53, a cell guidance gene from caenorhabditis elegans. Genomics. 2002;80:21–30.CrossRefPubMed
6.
go back to reference Muley PD, McNeill EM, Marzinke MA, Knobel KM, Barr MM, Clagett-Dame M. The atra-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev Neurobiol. 2008;68:1441–53.PubMedCentralCrossRefPubMed Muley PD, McNeill EM, Marzinke MA, Knobel KM, Barr MM, Clagett-Dame M. The atra-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev Neurobiol. 2008;68:1441–53.PubMedCentralCrossRefPubMed
7.
go back to reference Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule unc-53/nav2 is linked to the arp2/3 complex by abi-1. Development. 2009;136:563–74.CrossRefPubMed Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule unc-53/nav2 is linked to the arp2/3 complex by abi-1. Development. 2009;136:563–74.CrossRefPubMed
8.
go back to reference Stringham E, Pujol N, Vandekerckhove J, Bogaert T. Unc-53 controls longitudinal migration in c. Elegans Development. 2002;129:3367–79.PubMed Stringham E, Pujol N, Vandekerckhove J, Bogaert T. Unc-53 controls longitudinal migration in c. Elegans Development. 2002;129:3367–79.PubMed
9.
go back to reference Clark ES, Whigham AS, Yarbrough WG, Weaver AM. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 2007;67:4227–35.CrossRefPubMed Clark ES, Whigham AS, Yarbrough WG, Weaver AM. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 2007;67:4227–35.CrossRefPubMed
10.
go back to reference Nakaya Y, Sukowati EW, Wu Y, Sheng G. Rhoa and microtubule dynamics control cell-basement membrane interaction in emt during gastrulation. Nat Cell Biol. 2008;10:765–75.CrossRefPubMed Nakaya Y, Sukowati EW, Wu Y, Sheng G. Rhoa and microtubule dynamics control cell-basement membrane interaction in emt during gastrulation. Nat Cell Biol. 2008;10:765–75.CrossRefPubMed
11.
go back to reference Bamburg JR. Proteins of the adf/cofilin family: Essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230.CrossRefPubMed Bamburg JR. Proteins of the adf/cofilin family: Essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230.CrossRefPubMed
12.
go back to reference van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, Desmarais V, et al. Egf-induced pip2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol. 2007;179:1247–59.PubMedCentralCrossRefPubMed van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, Desmarais V, et al. Egf-induced pip2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol. 2007;179:1247–59.PubMedCentralCrossRefPubMed
13.
go back to reference Nagata-Ohashi K, Ohta Y, Goto K, Chiba S, Mori R, Nishita M, et al. A pathway of neuregulin-induced activation of cofilin-phosphatase slingshot and cofilin in lamellipodia. J Cell Biol. 2004;165:465–71.PubMedCentralCrossRefPubMed Nagata-Ohashi K, Ohta Y, Goto K, Chiba S, Mori R, Nishita M, et al. A pathway of neuregulin-induced activation of cofilin-phosphatase slingshot and cofilin in lamellipodia. J Cell Biol. 2004;165:465–71.PubMedCentralCrossRefPubMed
14.
go back to reference Ohta Y, Kousaka K, Nagata-Ohashi K, Ohashi K, Muramoto A, Shima Y, et al. Differential activities, subcellular distribution and tissue expression patterns of three members of slingshot family phosphatases that dephosphorylate cofilin. Genes Cells. 2003;8:811–24.CrossRefPubMed Ohta Y, Kousaka K, Nagata-Ohashi K, Ohashi K, Muramoto A, Shima Y, et al. Differential activities, subcellular distribution and tissue expression patterns of three members of slingshot family phosphatases that dephosphorylate cofilin. Genes Cells. 2003;8:811–24.CrossRefPubMed
15.
go back to reference Abe T, Yamazaki D, Murakami S, Hiroi M, Nitta Y, Maeyama Y, et al. The nav2 homolog sickie regulates f-actin-mediated axonal growth in drosophila mushroom body neurons via the non-canonical rac-cofilin pathway. Development. 2014;141:4716–28.CrossRefPubMed Abe T, Yamazaki D, Murakami S, Hiroi M, Nitta Y, Maeyama Y, et al. The nav2 homolog sickie regulates f-actin-mediated axonal growth in drosophila mushroom body neurons via the non-canonical rac-cofilin pathway. Development. 2014;141:4716–28.CrossRefPubMed
16.
go back to reference Ishiguro H, Shimokawa T, Tsunoda T, Tanaka T, Fujii Y, Nakamura Y, et al. Isolation of helad1, a novel human helicase gene up-regulated in colorectal carcinomas. Oncogene. 2002;21:6387–94.CrossRefPubMed Ishiguro H, Shimokawa T, Tsunoda T, Tanaka T, Fujii Y, Nakamura Y, et al. Isolation of helad1, a novel human helicase gene up-regulated in colorectal carcinomas. Oncogene. 2002;21:6387–94.CrossRefPubMed
17.
go back to reference Davidson B, Abeler VM, Hellesylt E, Holth A, Shih Ie M, Skeie-Jensen T, et al. Gene expression signatures differentiate uterine endometrial stromal sarcoma from leiomyosarcoma. Gynecol Oncol. 2013;128:349–55.PubMedCentralCrossRefPubMed Davidson B, Abeler VM, Hellesylt E, Holth A, Shih Ie M, Skeie-Jensen T, et al. Gene expression signatures differentiate uterine endometrial stromal sarcoma from leiomyosarcoma. Gynecol Oncol. 2013;128:349–55.PubMedCentralCrossRefPubMed
18.
go back to reference Merrill RA, Plum LA, Kaiser ME, Clagett-Dame M. A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc Natl Acad Sci U S A. 2002;99:3422–7.PubMedCentralCrossRefPubMed Merrill RA, Plum LA, Kaiser ME, Clagett-Dame M. A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc Natl Acad Sci U S A. 2002;99:3422–7.PubMedCentralCrossRefPubMed
19.
go back to reference Punt CJ, Buyse M, Kohne CH, Hohenberger P, Labianca R, Schmoll HJ, et al. Endpoints in adjuvant treatment trials: A systematic review of the literature in colon cancer and proposed definitions for future trials. J Natl Cancer Inst. 2007;99:998–1003.CrossRefPubMed Punt CJ, Buyse M, Kohne CH, Hohenberger P, Labianca R, Schmoll HJ, et al. Endpoints in adjuvant treatment trials: A systematic review of the literature in colon cancer and proposed definitions for future trials. J Natl Cancer Inst. 2007;99:998–1003.CrossRefPubMed
20.
go back to reference Shinto E, Jass JR, Tsuda H, Sato T, Ueno H, Hase K, et al. Differential prognostic significance of morphologic invasive markers in colorectal cancer: Tumor budding and cytoplasmic podia. Dis Colon Rectum. 2006;49:1422–30.CrossRefPubMed Shinto E, Jass JR, Tsuda H, Sato T, Ueno H, Hase K, et al. Differential prognostic significance of morphologic invasive markers in colorectal cancer: Tumor budding and cytoplasmic podia. Dis Colon Rectum. 2006;49:1422–30.CrossRefPubMed
21.
go back to reference Wang J, Cui F, Wang X, Xue Y, Chen J, Yu Y, et al. Elevated kinesin family member 26b is a prognostic biomarker and a potential therapeutic target for colorectal cancer. J Exp Clin Cancer Res. 2015;34:13.PubMedCentralCrossRefPubMed Wang J, Cui F, Wang X, Xue Y, Chen J, Yu Y, et al. Elevated kinesin family member 26b is a prognostic biomarker and a potential therapeutic target for colorectal cancer. J Exp Clin Cancer Res. 2015;34:13.PubMedCentralCrossRefPubMed
22.
go back to reference Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 2012;7:42.PubMedCentralCrossRefPubMed Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 2012;7:42.PubMedCentralCrossRefPubMed
23.
go back to reference de Both NJ, Vermey M, Dinjens WN, Bosman FT. A comparative evaluation of various invasion assays testing colon carcinoma cell lines. Br J Cancer. 1999;81:934–41.PubMedCentralCrossRefPubMed de Both NJ, Vermey M, Dinjens WN, Bosman FT. A comparative evaluation of various invasion assays testing colon carcinoma cell lines. Br J Cancer. 1999;81:934–41.PubMedCentralCrossRefPubMed
24.
go back to reference Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou Y, Rychahou PG, et al. Pten loss induces epithelial--mesenchymal transition in human colon cancer cells. Anticancer Res. 2009;29:4439–49.PubMedCentralPubMed Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou Y, Rychahou PG, et al. Pten loss induces epithelial--mesenchymal transition in human colon cancer cells. Anticancer Res. 2009;29:4439–49.PubMedCentralPubMed
25.
go back to reference Subauste MC, Kupriyanova TA, Conn EM, Ardi VC, Quigley JP, Deryugina EI. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastasis. 2009;26:1033–47.PubMedCentralCrossRefPubMed Subauste MC, Kupriyanova TA, Conn EM, Ardi VC, Quigley JP, Deryugina EI. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastasis. 2009;26:1033–47.PubMedCentralCrossRefPubMed
26.
go back to reference Vega FM, Fruhwirth G, Ng T, Ridley AJ. Rhoa and rhoc have distinct roles in migration and invasion by acting through different targets. J Cell Biol. 2011;193:655–65.PubMedCentralCrossRefPubMed Vega FM, Fruhwirth G, Ng T, Ridley AJ. Rhoa and rhoc have distinct roles in migration and invasion by acting through different targets. J Cell Biol. 2011;193:655–65.PubMedCentralCrossRefPubMed
27.
go back to reference Debauve G, Capouillez A, Belayew A, Saussez S. The helicase-like transcription factor and its implication in cancer progression. Cell Mol Life Sci. 2008;65:591–604.CrossRefPubMed Debauve G, Capouillez A, Belayew A, Saussez S. The helicase-like transcription factor and its implication in cancer progression. Cell Mol Life Sci. 2008;65:591–604.CrossRefPubMed
28.
go back to reference Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.PubMedCentralCrossRefPubMed Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.PubMedCentralCrossRefPubMed
29.
go back to reference Carlsson E, Ranki A, Sipila L, Karenko L, Abdel-Rahman WM, Ovaska K, et al. Potential role of a navigator gene nav3 in colorectal cancer. Br J Cancer. 2012;106:517–24.PubMedCentralCrossRefPubMed Carlsson E, Ranki A, Sipila L, Karenko L, Abdel-Rahman WM, Ovaska K, et al. Potential role of a navigator gene nav3 in colorectal cancer. Br J Cancer. 2012;106:517–24.PubMedCentralCrossRefPubMed
31.
go back to reference Jayasinghe C, Simiantonaki N, Habedank S, Kirkpatrick CJ. The relevance of cell type- and tumor zone-specific vegfr-2 activation in locally advanced colon cancer. J Exp Clin Cancer Res. 2015;34:42.PubMedCentralCrossRefPubMed Jayasinghe C, Simiantonaki N, Habedank S, Kirkpatrick CJ. The relevance of cell type- and tumor zone-specific vegfr-2 activation in locally advanced colon cancer. J Exp Clin Cancer Res. 2015;34:42.PubMedCentralCrossRefPubMed
32.
go back to reference Betge J, Kornprat P, Pollheimer MJ, Lindtner RA, Schlemmer A, Rehak P, et al. Tumor budding is an independent predictor of outcome in ajcc/uicc stage ii colorectal cancer. Ann Surg Oncol. 2012;19:3706–12.CrossRefPubMed Betge J, Kornprat P, Pollheimer MJ, Lindtner RA, Schlemmer A, Rehak P, et al. Tumor budding is an independent predictor of outcome in ajcc/uicc stage ii colorectal cancer. Ann Surg Oncol. 2012;19:3706–12.CrossRefPubMed
33.
go back to reference Koelzer VH, Zlobec I, Berger MD, Cathomas G, Dawson H, Dirschmid K, et al. Tumor budding in colorectal cancer revisited: Results of a multicenter interobserver study. Virchows Arch. 2015;466(5):485–93.CrossRefPubMed Koelzer VH, Zlobec I, Berger MD, Cathomas G, Dawson H, Dirschmid K, et al. Tumor budding in colorectal cancer revisited: Results of a multicenter interobserver study. Virchows Arch. 2015;466(5):485–93.CrossRefPubMed
34.
go back to reference Moazzem Hossain M, Wang X, Bergan RC, Jin JP. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness. FEBS Open Bio. 2014;4:627–36.PubMedCentralCrossRefPubMed Moazzem Hossain M, Wang X, Bergan RC, Jin JP. Diminished expression of h2-calponin in prostate cancer cells promotes cell proliferation, migration and the dependence of cell adhesion on substrate stiffness. FEBS Open Bio. 2014;4:627–36.PubMedCentralCrossRefPubMed
35.
go back to reference Lauscher JC, Elezkurtaj S, Dullat S, Lipka S, Grone J, Buhr HJ, et al. Increased pontin expression is a potential predictor for outcome in sporadic colorectal carcinoma. Oncol Rep. 2012;28:1619–24.PubMed Lauscher JC, Elezkurtaj S, Dullat S, Lipka S, Grone J, Buhr HJ, et al. Increased pontin expression is a potential predictor for outcome in sporadic colorectal carcinoma. Oncol Rep. 2012;28:1619–24.PubMed
36.
go back to reference Leake I. Colorectal cancer. Understanding the routes of metastasis in colorectal cancer Nat Rev Gastroenterol Hepatol. 2014;11:270.CrossRefPubMed Leake I. Colorectal cancer. Understanding the routes of metastasis in colorectal cancer Nat Rev Gastroenterol Hepatol. 2014;11:270.CrossRefPubMed
37.
go back to reference Nakanishi M, Kuriu Y, Murayama Y, Konishi H, Komatsu S, Shiozaki A, et al. Efficacy of perioperative chemotherapy in patients with colorectal cancer undergoing hepatectomy for resectable synchronous liver metastasis. Hepatogastroenterology. 2014;61:1582–7.PubMed Nakanishi M, Kuriu Y, Murayama Y, Konishi H, Komatsu S, Shiozaki A, et al. Efficacy of perioperative chemotherapy in patients with colorectal cancer undergoing hepatectomy for resectable synchronous liver metastasis. Hepatogastroenterology. 2014;61:1582–7.PubMed
39.
go back to reference Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRef Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRef
40.
go back to reference Vitolo MI, Boggs AE, Whipple RA, Yoon JR, Thompson K, Matrone MA, et al. Loss of pten induces microtentacles through pi3k-independent activation of cofilin. Oncogene. 2013;32:2200–10.CrossRefPubMed Vitolo MI, Boggs AE, Whipple RA, Yoon JR, Thompson K, Matrone MA, et al. Loss of pten induces microtentacles through pi3k-independent activation of cofilin. Oncogene. 2013;32:2200–10.CrossRefPubMed
41.
go back to reference Lu Y, Liu C, Xu YF, Cheng H, Shi S, Wu CT, et al. Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition. Hepatobiliary Pancreat Dis Int. 2014;13:386–94.CrossRefPubMed Lu Y, Liu C, Xu YF, Cheng H, Shi S, Wu CT, et al. Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition. Hepatobiliary Pancreat Dis Int. 2014;13:386–94.CrossRefPubMed
Metadata
Title
Neuron navigator 2 overexpression indicates poor prognosis of colorectal cancer and promotes invasion through the SSH1L/cofilin-1 pathway
Authors
Fengbo Tan
Hong Zhu
Yiming Tao
Nanhui Yu
Qian Pei
Heli Liu
Yuan Zhou
Haifan Xu
Xiangping Song
Yuqiang Li
Zhongyi Zhou
Xiao He
Xingwen Zhang
Haiping Pei
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2015
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-015-0237-3

Other articles of this Issue 1/2015

Journal of Experimental & Clinical Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine