Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2021

Open Access 01-12-2021 | Diseases of the neuromuscular synapses and muscles | Review

Ketogenic diet for mitochondrial disease: a systematic review on efficacy and safety

Authors: Heidi Zweers, Annemiek M. J. van Wegberg, Mirian C. H. Janssen, Saskia B. Wortmann

Published in: Orphanet Journal of Rare Diseases | Issue 1/2021

Login to get access

Abstract

Background

No curative therapy for mitochondrial disease (MD) exists, prioritizing supportive treatment for symptom relief. In animal and cell models ketones decrease oxidative stress, increase antioxidants and scavenge free radicals, putting ketogenic diets (KDs) on the list of management options for MD. Furthermore, KDs are well-known, safe and effective treatments for epilepsy, a frequent symptom of MD. This systematic review evaluates efficacy and safety of KD for MD.

Methods

We searched Pubmed, Cochrane, Embase and Cinahl (November 2020) with search terms linked to MD and KD. From the identified records, we excluded studies on Pyruvate Dehydrogenase Complex deficiency. From these eligible reports, cases without a genetically confirmed diagnosis and cases without sufficient data on KD and clinical course were excluded. The remaining studies were included in the qualitative analysis.

Results

Only 20 cases (14 pediatric) from the 694 papers identified met the inclusion criteria (one controlled trial (n = 5), 15 case reports). KD led to seizure control in 7 out of 8 cases and improved muscular symptoms in 3 of 10 individuals. In 4 of 20 cases KD reversed the clinical phenotype (e.g. cardiomyopathy, movement disorder). In 5 adults with mitochondrial DNA deletion(s) related myopathy rhabdomyolysis led to cessation of KD. Three individuals with POLG mutations died while being on KD, however, their survival was not different compared to individuals with POLG mutations without KD.

Conclusion

Data on efficacy and safety of KD for MD is too scarce for general recommendations. KD should be considered in individuals with MD and therapy refractory epilepsy, while KD is contraindicated in mitochondrial DNA deletion(s) related myopathy. When considering KD for MD the high rate of adverse effects should be taken into account, but also spectacular improvements in individual cases. KD is a highly individual management option in this fragile patient group and requires an experienced team. To increase knowledge on this—individually—promising management option more (prospective) studies using adequate outcome measures are crucial.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, et al. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis. 2020;43(1):36–50.PubMedCrossRef Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, et al. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis. 2020;43(1):36–50.PubMedCrossRef
2.
go back to reference Wortmann SB, Mayr JA, Nuoffer JM, Prokisch H, Sperl W. A guideline for the diagnosis of pediatric mitochondrial disease: the value of muscle and skin biopsies in the genetics era. Neuropediatrics. 2017;48(04):309–14.PubMedCrossRef Wortmann SB, Mayr JA, Nuoffer JM, Prokisch H, Sperl W. A guideline for the diagnosis of pediatric mitochondrial disease: the value of muscle and skin biopsies in the genetics era. Neuropediatrics. 2017;48(04):309–14.PubMedCrossRef
3.
go back to reference Zweers H, Smit D, Leij S, Wanten G, Janssen MCH. Individual dietary intervention in adult patients with mitochondrial disease due to the m.3243A>G mutation: the DINAMITE study, a randomized controlled trial. Nutrition. 2020;69:110544.PubMedCrossRef Zweers H, Smit D, Leij S, Wanten G, Janssen MCH. Individual dietary intervention in adult patients with mitochondrial disease due to the m.3243A>G mutation: the DINAMITE study, a randomized controlled trial. Nutrition. 2020;69:110544.PubMedCrossRef
4.
go back to reference Schiff M, Bénit P, Coulibaly A, Loublier S, El-Khoury R, Rustin P. Mitochondrial response to controlled nutrition in health and disease2011 2011-1-1. 65–75 p Schiff M, Bénit P, Coulibaly A, Loublier S, El-Khoury R, Rustin P. Mitochondrial response to controlled nutrition in health and disease2011 2011-1-1. 65–75 p
5.
go back to reference Wortmann SB, Essen HZ, Rodenburg RJT, Heuvel LPVANDEN, Vries MCDE, Rasmussen-conrad E, et al. Mitochondrial energy production correlates with the age-related BMI. Pediatric Res. 2009;65:103–8.CrossRef Wortmann SB, Essen HZ, Rodenburg RJT, Heuvel LPVANDEN, Vries MCDE, Rasmussen-conrad E, et al. Mitochondrial energy production correlates with the age-related BMI. Pediatric Res. 2009;65:103–8.CrossRef
6.
go back to reference Repp BM, Mastantuono E, Alston CL, Schiff M, Haack TB, Rotig A, et al. Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective? Orphanet J Rare Dis. 2018;13(1):120.PubMedPubMedCentralCrossRef Repp BM, Mastantuono E, Alston CL, Schiff M, Haack TB, Rotig A, et al. Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective? Orphanet J Rare Dis. 2018;13(1):120.PubMedPubMedCentralCrossRef
7.
go back to reference Distelmaier F, Haack TB, Wortmann SB, Mayr JA, Prokisch H. Treatable mitochondrial diseases: cofactor metabolism and beyond. Brain J Neurol. 2017;140(2):e11.CrossRef Distelmaier F, Haack TB, Wortmann SB, Mayr JA, Prokisch H. Treatable mitochondrial diseases: cofactor metabolism and beyond. Brain J Neurol. 2017;140(2):e11.CrossRef
9.
go back to reference Martin-McGill KJ, Bresnahan R, Levy RG, Cooper PN. Ketogenic diets for drug-resistant epilepsy. The Cochrane database of systematic reviews. 2020;6:CD001903. Martin-McGill KJ, Bresnahan R, Levy RG, Cooper PN. Ketogenic diets for drug-resistant epilepsy. The Cochrane database of systematic reviews. 2020;6:CD001903.
10.
go back to reference Masino SA. Ketogenic Diet and Metabolic Therapies, Chapter 2. In: Masino SA, editor.: Oxford University Press Inc; 2016. Masino SA. Ketogenic Diet and Metabolic Therapies, Chapter 2. In: Masino SA, editor.: Oxford University Press Inc; 2016.
11.
go back to reference Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;3(2):175–92.PubMedPubMedCentralCrossRef Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;3(2):175–92.PubMedPubMedCentralCrossRef
12.
go back to reference Kang H-C, Lee Y-M, Kim HD, Lee JS, Slama A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48(1):82–8.PubMedCrossRef Kang H-C, Lee Y-M, Kim HD, Lee JS, Slama A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48(1):82–8.PubMedCrossRef
13.
go back to reference Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond). 2010;7:74.CrossRef Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond). 2010;7:74.CrossRef
14.
go back to reference Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet. 2010;19(10):1974–84.PubMedCrossRef Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet. 2010;19(10):1974–84.PubMedCrossRef
15.
go back to reference Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223–35.PubMedCrossRef Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223–35.PubMedCrossRef
16.
17.
go back to reference Na J, Kim H, Lee Y. Effective and safe diet therapies for Lennox-Gastaut syndrome with mitochondrial dysfunction. Therapeutic Advances in Neurological Disorders. 2020;13. Na J, Kim H, Lee Y. Effective and safe diet therapies for Lennox-Gastaut syndrome with mitochondrial dysfunction. Therapeutic Advances in Neurological Disorders. 2020;13.
18.
go back to reference Roef MJ, de Meer K, Reijngoud D-J, Straver HWHC, de Barse M, Kalhan SC, et al. Triacylglycerol infusion improves exercise endurance in patients with mitochondrial myopathy due to complex I deficiency. Am J Clin Nutr. 2002;75:237–44.PubMedCrossRef Roef MJ, de Meer K, Reijngoud D-J, Straver HWHC, de Barse M, Kalhan SC, et al. Triacylglycerol infusion improves exercise endurance in patients with mitochondrial myopathy due to complex I deficiency. Am J Clin Nutr. 2002;75:237–44.PubMedCrossRef
19.
go back to reference Emperador S, Lopez-Gallardo E, Hernandez-Ainsa C, Habbane M, Montoya J, Bayona-Bafaluy MP, et al. Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation. Orphanet J Rare Dis. 2019;14(1):150.PubMedPubMedCentralCrossRef Emperador S, Lopez-Gallardo E, Hernandez-Ainsa C, Habbane M, Montoya J, Bayona-Bafaluy MP, et al. Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation. Orphanet J Rare Dis. 2019;14(1):150.PubMedPubMedCentralCrossRef
20.
go back to reference Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 2004;55(4):576–80.PubMedCrossRef Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 2004;55(4):576–80.PubMedCrossRef
21.
go back to reference Hughes SD, Kanabus M, Anderson G, Hargreaves IP. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J Neurochem. 2014;129(3):426–33.PubMedCrossRef Hughes SD, Kanabus M, Anderson G, Hargreaves IP. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J Neurochem. 2014;129(3):426–33.PubMedCrossRef
22.
go back to reference Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1alpha-SIRT3-UCP2 axis. Neurochem Res. 2019;44(1):22–37.PubMedCrossRef Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1alpha-SIRT3-UCP2 axis. Neurochem Res. 2019;44(1):22–37.PubMedCrossRef
23.
go back to reference Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007;145(1):256–64.PubMedCrossRef Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007;145(1):256–64.PubMedCrossRef
24.
go back to reference Guzman M, Blazquez C. Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):287–92.PubMedCrossRef Guzman M, Blazquez C. Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):287–92.PubMedCrossRef
25.
26.
go back to reference Sofou K, Dahlin M, Hallbook T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis. 2017;40(2):237–45.PubMedPubMedCentralCrossRef Sofou K, Dahlin M, Hallbook T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis. 2017;40(2):237–45.PubMedPubMedCentralCrossRef
27.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:2700.CrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:2700.CrossRef
30.
go back to reference Sterne JAC HM, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JPT. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ (Clinical research ed). 2016;355:i4919 Sterne JAC HM, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JPT. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ (Clinical research ed). 2016;355:i4919
31.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Reprint–preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009;89(9):873–80.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Reprint–preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009;89(9):873–80.CrossRef
32.
go back to reference Fraser JL, Vanderver A, Yang S, Chang T, Cramp L, Vezina G, et al. Thiamine pyrophosphokinase deficiency causes a Leigh Disease like phenotype in a sibling pair: identification through whole exome sequencing and management strategies. Mol Genet Metab Rep. 2014;1:66–70.PubMedPubMedCentralCrossRef Fraser JL, Vanderver A, Yang S, Chang T, Cramp L, Vezina G, et al. Thiamine pyrophosphokinase deficiency causes a Leigh Disease like phenotype in a sibling pair: identification through whole exome sequencing and management strategies. Mol Genet Metab Rep. 2014;1:66–70.PubMedPubMedCentralCrossRef
33.
go back to reference Joshi CN, Greenberg CR, Mhanni AA, Salman MS. Ketogenic diet in Alpers-Huttenlocher syndrome. Pediatr Neurol. 2009;40(4):314–6.PubMedCrossRef Joshi CN, Greenberg CR, Mhanni AA, Salman MS. Ketogenic diet in Alpers-Huttenlocher syndrome. Pediatr Neurol. 2009;40(4):314–6.PubMedCrossRef
34.
go back to reference Spiegler J, Stefanova I, Hellenbroich Y, Sperner J. Bowel obstruction in patients with Alpers-Huttenlocher syndrome. Neuropediatrics. 2011;42(5):194–6.PubMedCrossRef Spiegler J, Stefanova I, Hellenbroich Y, Sperner J. Bowel obstruction in patients with Alpers-Huttenlocher syndrome. Neuropediatrics. 2011;42(5):194–6.PubMedCrossRef
35.
go back to reference Koessler M, Haberlandt E, Karall D, Baumann M, Holler A, Scholl-Burgi S. Ketogenic diet in a patient with refractory status epilepticus due to POLG mutation. JIMD Rep. 2021;57(1):3–8.PubMedCrossRef Koessler M, Haberlandt E, Karall D, Baumann M, Holler A, Scholl-Burgi S. Ketogenic diet in a patient with refractory status epilepticus due to POLG mutation. JIMD Rep. 2021;57(1):3–8.PubMedCrossRef
36.
go back to reference Kose E, Kose M, Edizer S, Akışın Z, Yilmaz ZB, Şahin A, et al. Different clinical presentation in a patient with two novel pathogenic variants of the FBXL4 gene. Turk J Pediatr. 2020;62(4):652–6.PubMedCrossRef Kose E, Kose M, Edizer S, Akışın Z, Yilmaz ZB, Şahin A, et al. Different clinical presentation in a patient with two novel pathogenic variants of the FBXL4 gene. Turk J Pediatr. 2020;62(4):652–6.PubMedCrossRef
37.
go back to reference Kotecha S, Kairamkonda V. Mitochondrial respiratory chain complex IV deficiency presenting as neonatal respiratory distress syndrome. BMJ Case Rep. 2019;12(7). Kotecha S, Kairamkonda V. Mitochondrial respiratory chain complex IV deficiency presenting as neonatal respiratory distress syndrome. BMJ Case Rep. 2019;12(7).
38.
go back to reference Ahola S, Auranen M, Isohanni P, Niemisalo S, Urho N, Buzkova J, et al. Modified Atkins diet induces subacute selective ragged-red-fiber lysis in mitochondrial myopathy patients. EMBO Mol Med. 2016;8(11):1234–47.PubMedPubMedCentralCrossRef Ahola S, Auranen M, Isohanni P, Niemisalo S, Urho N, Buzkova J, et al. Modified Atkins diet induces subacute selective ragged-red-fiber lysis in mitochondrial myopathy patients. EMBO Mol Med. 2016;8(11):1234–47.PubMedPubMedCentralCrossRef
39.
go back to reference Huang X, Bedoyan JK, Demirbas D, Harris DJ, Miron A, Edelheit S, et al. Succinyl-CoA synthetase (SUCLA2) deficiency in two siblings with impaired activity of other mitochondrial oxidative enzymes in skeletal muscle without mitochondrial DNA depletion. 2017 2017-03-. Report No.: 1096-7206 Contract No.: 3. Huang X, Bedoyan JK, Demirbas D, Harris DJ, Miron A, Edelheit S, et al. Succinyl-CoA synthetase (SUCLA2) deficiency in two siblings with impaired activity of other mitochondrial oxidative enzymes in skeletal muscle without mitochondrial DNA depletion. 2017 2017-03-. Report No.: 1096-7206 Contract No.: 3.
40.
go back to reference Laugel V, This-Bernd V, Cormier-Daire V, Speeg-Schatz C, de Saint-Martin A, Fischbach M. Early-onset ophthalmoplegia in Leigh-like syndrome due to NDUFV1 mutations. Pediatr Neurol. 2007;36(1):54–7.PubMedCrossRef Laugel V, This-Bernd V, Cormier-Daire V, Speeg-Schatz C, de Saint-Martin A, Fischbach M. Early-onset ophthalmoplegia in Leigh-like syndrome due to NDUFV1 mutations. Pediatr Neurol. 2007;36(1):54–7.PubMedCrossRef
41.
go back to reference Della Marina A, Leiendecker B, Roesch S, Wortmann SB. Ketogenic diet for treating alopecia in BCS1l-related mitochondrial disease (Bjornstad syndrome). JIMD reports. 2020;53(1):10–1.PubMedPubMedCentralCrossRef Della Marina A, Leiendecker B, Roesch S, Wortmann SB. Ketogenic diet for treating alopecia in BCS1l-related mitochondrial disease (Bjornstad syndrome). JIMD reports. 2020;53(1):10–1.PubMedPubMedCentralCrossRef
42.
go back to reference Deberles E, Maragnes P, Penniello-Valette M-J, Allouche S, Joubert MA, Deberles E. Reversal of cardiac hypertrophy with a ketogenic diet in a child with mitochondrial disease and hypertrophic cardiomyopathy. Can J Cardiol. 2020;36(10):1690.PubMedCrossRef Deberles E, Maragnes P, Penniello-Valette M-J, Allouche S, Joubert MA, Deberles E. Reversal of cardiac hypertrophy with a ketogenic diet in a child with mitochondrial disease and hypertrophic cardiomyopathy. Can J Cardiol. 2020;36(10):1690.PubMedCrossRef
43.
go back to reference Pfeiffer B, Sen K, Kaur S, Pappas K. Expanding phenotypic spectrum of cerebral aspartate-glutamate carrier isoform 1 (AGC1) deficiency. Neuropediatrics. 2020;51(2):160–3.PubMedCrossRef Pfeiffer B, Sen K, Kaur S, Pappas K. Expanding phenotypic spectrum of cerebral aspartate-glutamate carrier isoform 1 (AGC1) deficiency. Neuropediatrics. 2020;51(2):160–3.PubMedCrossRef
44.
go back to reference Dahlin M, Martin DA, Hedlund Z, Jonsson M, von Dobeln U, Wedell A. The ketogenic diet compensates for AGC1 deficiency and improves myelination. Epilepsia. 2015;56(11):e176–81.PubMedCrossRef Dahlin M, Martin DA, Hedlund Z, Jonsson M, von Dobeln U, Wedell A. The ketogenic diet compensates for AGC1 deficiency and improves myelination. Epilepsia. 2015;56(11):e176–81.PubMedCrossRef
45.
go back to reference Illsinger S, Korenke GC, Boesch S, Nocker M, Karall D, Nuoffer JM, et al. Paroxysmal and non-paroxysmal dystonia in 3 patients with biallelic ECHS1 variants: Expanding the neurological spectrum and therapeutic approaches. Eur J Med Genet. 2020;63(11):104046.PubMedCrossRef Illsinger S, Korenke GC, Boesch S, Nocker M, Karall D, Nuoffer JM, et al. Paroxysmal and non-paroxysmal dystonia in 3 patients with biallelic ECHS1 variants: Expanding the neurological spectrum and therapeutic approaches. Eur J Med Genet. 2020;63(11):104046.PubMedCrossRef
46.
go back to reference O’Byrne JJ, Tarailo-Graovac M, Ghani A, Champion M, Deshpande C, Dursun A, et al. The genotypic and phenotypic spectrum of MTO1 deficiency. Mol Genet Metab. 2018;123(1):28–42.PubMedPubMedCentralCrossRef O’Byrne JJ, Tarailo-Graovac M, Ghani A, Champion M, Deshpande C, Dursun A, et al. The genotypic and phenotypic spectrum of MTO1 deficiency. Mol Genet Metab. 2018;123(1):28–42.PubMedPubMedCentralCrossRef
47.
go back to reference Takahara S, Soni S, Maayah ZH, Ferdaoussi M, Dyck JRB. Ketone Therapy for Heart Failure: Current Evidence for Clinical Use. Cardiovasc Res. 2021. Takahara S, Soni S, Maayah ZH, Ferdaoussi M, Dyck JRB. Ketone Therapy for Heart Failure: Current Evidence for Clinical Use. Cardiovasc Res. 2021.
48.
go back to reference Hikmat O, Tzoulis C, Klingenberg C, Rasmussen M, Tallaksen CME, Brodtkorb E, et al. The presence of anaemia negatively influences survival in patients with POLG disease. J Inherit Metab Dis. 2017;40(6):861–6.PubMedCrossRef Hikmat O, Tzoulis C, Klingenberg C, Rasmussen M, Tallaksen CME, Brodtkorb E, et al. The presence of anaemia negatively influences survival in patients with POLG disease. J Inherit Metab Dis. 2017;40(6):861–6.PubMedCrossRef
49.
go back to reference Seo JH, Lee YM, Lee JS, Kim SH, Kim HD. A case of Ohtahara syndrome with mitochondrial respiratory chain complex I deficiency. Brain Dev. 2010;32(3):253–7.PubMedCrossRef Seo JH, Lee YM, Lee JS, Kim SH, Kim HD. A case of Ohtahara syndrome with mitochondrial respiratory chain complex I deficiency. Brain Dev. 2010;32(3):253–7.PubMedCrossRef
50.
go back to reference Theunissen TEJ, Gerards M, Hellebrekers DMEI, van Tienen FH, Kamps R, Sallevelt SCEH, et al. Selection and characterization of palmitic acid responsive patients with an OXPHOS complex I defect. Front Mol Neurosci. 2017;10:336.PubMedPubMedCentralCrossRef Theunissen TEJ, Gerards M, Hellebrekers DMEI, van Tienen FH, Kamps R, Sallevelt SCEH, et al. Selection and characterization of palmitic acid responsive patients with an OXPHOS complex I defect. Front Mol Neurosci. 2017;10:336.PubMedPubMedCentralCrossRef
51.
go back to reference Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;38(3):437–43.PubMedPubMedCentralCrossRef Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;38(3):437–43.PubMedPubMedCentralCrossRef
52.
go back to reference Vehmeijer FO, van der Louw EJ, Arts WF, Catsman-Berrevoets CE, Neuteboom RF. Can we predict efficacy of the ketogenic diet in children with refractory epilepsy? Eur J Paediatr Neurol. 2015;19(6):701–5.PubMedCrossRef Vehmeijer FO, van der Louw EJ, Arts WF, Catsman-Berrevoets CE, Neuteboom RF. Can we predict efficacy of the ketogenic diet in children with refractory epilepsy? Eur J Paediatr Neurol. 2015;19(6):701–5.PubMedCrossRef
53.
54.
go back to reference de Meer K, Roef MJ, de Klerk JBC, Bakker HD, Smit GPA, Poll-The BT. Increasing fat in the diet does not improve muscle performance in patients with mitochondrial myopathy due to complex I deficiency. J Inherit Metab Dis. 2005;28:95–8.PubMedCrossRef de Meer K, Roef MJ, de Klerk JBC, Bakker HD, Smit GPA, Poll-The BT. Increasing fat in the diet does not improve muscle performance in patients with mitochondrial myopathy due to complex I deficiency. J Inherit Metab Dis. 2005;28:95–8.PubMedCrossRef
55.
go back to reference Roef MJ, de Meer K, Reijngoud D-J, Straver HWHC, de Barse M, Kalhan SC, et al. Triacylglycerol infusion does not improve hyperlactemia in resting patients with mitochondrial myopathy due to complex I deficiency. Am J Clin Nutr. 2002;75:228–36.PubMedCrossRef Roef MJ, de Meer K, Reijngoud D-J, Straver HWHC, de Barse M, Kalhan SC, et al. Triacylglycerol infusion does not improve hyperlactemia in resting patients with mitochondrial myopathy due to complex I deficiency. Am J Clin Nutr. 2002;75:228–36.PubMedCrossRef
56.
go back to reference Schiff M, Benit P, El-Khoury R, Schlemmer D, Benoist JF, Rustin P. Mouse studies to shape clinical trials for mitochondrial diseases: high fat diet in Harlequin mice. PLoS ONE. 2011;6(12):e28823.PubMedPubMedCentralCrossRef Schiff M, Benit P, El-Khoury R, Schlemmer D, Benoist JF, Rustin P. Mouse studies to shape clinical trials for mitochondrial diseases: high fat diet in Harlequin mice. PLoS ONE. 2011;6(12):e28823.PubMedPubMedCentralCrossRef
57.
go back to reference Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005;54(7):1926–33.PubMedCrossRef Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005;54(7):1926–33.PubMedCrossRef
58.
go back to reference Steriade C, Andrade DM, Faghfoury H, Tarnopolsky MA, Tai P. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet. Pediatr Neurol. 2014;50(5):498–502.PubMedCrossRef Steriade C, Andrade DM, Faghfoury H, Tarnopolsky MA, Tai P. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet. Pediatr Neurol. 2014;50(5):498–502.PubMedCrossRef
59.
go back to reference Wibon R, Lasorsa F, Töhönen V, Barbaro M, Sterky F, Kucinski T et al. AGC1 deficiency associated with global cerebral hypomyelination. New Engl J Med. 2009:489–95. Wibon R, Lasorsa F, Töhönen V, Barbaro M, Sterky F, Kucinski T et al. AGC1 deficiency associated with global cerebral hypomyelination. New Engl J Med. 2009:489–95.
Metadata
Title
Ketogenic diet for mitochondrial disease: a systematic review on efficacy and safety
Authors
Heidi Zweers
Annemiek M. J. van Wegberg
Mirian C. H. Janssen
Saskia B. Wortmann
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2021
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-021-01927-w

Other articles of this Issue 1/2021

Orphanet Journal of Rare Diseases 1/2021 Go to the issue