Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2014

Open Access 01-12-2014 | Review

Hajdu-Cheney syndrome: a review

Authors: Ernesto Canalis, Stefano Zanotti

Published in: Orphanet Journal of Rare Diseases | Issue 1/2014

Login to get access

Abstract

Hajdu Cheney Syndrome (HCS), Orpha 955, is a rare disease characterized by acroosteolysis, severe osteoporosis, short stature, specific craniofacial features, wormian bones, neurological symptoms, cardiovascular defects and polycystic kidneys. HCS is rare and is inherited as autosomal dominant although many sporadic cases have been reported. HCS is associated with mutations in exon 34 of NOTCH2 upstream the PEST domain that lead to the creation of a truncated and stable NOTCH2 protein with enhanced NOTCH2 signaling activity. Although the number of cases with NOTCH2 mutations reported are limited, it would seem that the diagnosis of HCS can be established by sequence analysis of exon 34 of NOTCH2. Notch receptors are single-pass transmembrane proteins that determine cell fate, and play a critical role in skeletal development and homeostasis. Dysregulation of Notch signaling is associated with skeletal developmental disorders. There is limited information about the mechanisms of the bone loss and acroosteolysis in HCS making decisions regarding therapeutic intervention difficult. Bone antiresorptive and anabolic agents have been tried to treat the osteoporosis, but their benefit has not been established. In conclusion, Notch regulates skeletal development and bone remodeling, and gain-of-function mutations of NOTCH2 are associated with HCS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheney WD: Acro-Osteolysis. Am J Roentgenol Radium Ther Nucl Med. 1965, 94: 595-607.PubMed Cheney WD: Acro-Osteolysis. Am J Roentgenol Radium Ther Nucl Med. 1965, 94: 595-607.PubMed
2.
go back to reference Hajdu N, Kauntze R: Cranio-skeletal dysplasia. Br J Radiol. 1948, 21: 42-48. 10.1259/0007-1285-21-241-42.CrossRefPubMed Hajdu N, Kauntze R: Cranio-skeletal dysplasia. Br J Radiol. 1948, 21: 42-48. 10.1259/0007-1285-21-241-42.CrossRefPubMed
3.
go back to reference Currarino G: Hajdu-Cheney syndrome associated with serpentine fibulae and polycystic kidney disease. Pediatr Radiol. 2009, 39: 47-52. 10.1007/s00247-008-0992-9.CrossRefPubMed Currarino G: Hajdu-Cheney syndrome associated with serpentine fibulae and polycystic kidney disease. Pediatr Radiol. 2009, 39: 47-52. 10.1007/s00247-008-0992-9.CrossRefPubMed
4.
go back to reference Gray MJ, Kim CA, Bertola DR, Arantes PR, Stewart H, Simpson MA, Irving MD, Robertson SP: Serpentine fibula polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome. Eur J Hum Genet. 2012, 20: 122-124. 10.1038/ejhg.2011.125.CrossRefPubMedPubMedCentral Gray MJ, Kim CA, Bertola DR, Arantes PR, Stewart H, Simpson MA, Irving MD, Robertson SP: Serpentine fibula polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome. Eur J Hum Genet. 2012, 20: 122-124. 10.1038/ejhg.2011.125.CrossRefPubMedPubMedCentral
5.
go back to reference Silverman FN, Dorst JP, Hajdu N: Acroosteolysis (Hajdu-Cheney syndrome). Birth Defects Orig Artic Ser. 1974, 10: 106-123.PubMed Silverman FN, Dorst JP, Hajdu N: Acroosteolysis (Hajdu-Cheney syndrome). Birth Defects Orig Artic Ser. 1974, 10: 106-123.PubMed
6.
go back to reference Brennan AM, Pauli RM: Hajdu–Cheney syndrome: evolution of phenotype and clinical problems. Am J Med Genet. 2001, 100: 292-310. 10.1002/1096-8628(20010515)100:4<292::AID-AJMG1308>3.0.CO;2-4.CrossRefPubMed Brennan AM, Pauli RM: Hajdu–Cheney syndrome: evolution of phenotype and clinical problems. Am J Med Genet. 2001, 100: 292-310. 10.1002/1096-8628(20010515)100:4<292::AID-AJMG1308>3.0.CO;2-4.CrossRefPubMed
7.
go back to reference Descartes M, Rojnueangnit K, Cole L, Sutton A, Morgan SL, Patry L, Samuels ME: Hajdu-Cheney syndrome: phenotypical progression with de-novo NOTCH2 mutation. Clin Dysmorphol. 2014, 23: 88-94. 10.1097/MCD.0000000000000034.CrossRefPubMed Descartes M, Rojnueangnit K, Cole L, Sutton A, Morgan SL, Patry L, Samuels ME: Hajdu-Cheney syndrome: phenotypical progression with de-novo NOTCH2 mutation. Clin Dysmorphol. 2014, 23: 88-94. 10.1097/MCD.0000000000000034.CrossRefPubMed
8.
go back to reference Stathopoulos IP, Trovas G, Lampropoulou-Adamidou K, Koromila T, Kollia P, Papaioannou NA, Lyritis G: Severe osteoporosis and mutation in NOTCH2 gene in a woman with Hajdu-Cheney syndrome. Bone. 2013, 52: 366-371. 10.1016/j.bone.2012.10.027.CrossRefPubMed Stathopoulos IP, Trovas G, Lampropoulou-Adamidou K, Koromila T, Kollia P, Papaioannou NA, Lyritis G: Severe osteoporosis and mutation in NOTCH2 gene in a woman with Hajdu-Cheney syndrome. Bone. 2013, 52: 366-371. 10.1016/j.bone.2012.10.027.CrossRefPubMed
9.
go back to reference Kaler SG, Geggel RL, Sadeghi-Nejad A: Hajdu-Cheney syndrome associated with severe cardiac valvular and conduction disease . Dysmorph Clin Genet. 1990, 4: 43-47. Kaler SG, Geggel RL, Sadeghi-Nejad A: Hajdu-Cheney syndrome associated with severe cardiac valvular and conduction disease . Dysmorph Clin Genet. 1990, 4: 43-47.
10.
go back to reference Sargin G, Cildag S, Senturk T: Hajdu-Cheney syndrome with ventricular septal defect. Kaohsiung J Med Sci. 2013, 29: 343-344. 10.1016/j.kjms.2012.10.009.CrossRefPubMed Sargin G, Cildag S, Senturk T: Hajdu-Cheney syndrome with ventricular septal defect. Kaohsiung J Med Sci. 2013, 29: 343-344. 10.1016/j.kjms.2012.10.009.CrossRefPubMed
11.
go back to reference Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le MM, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, Le CC: Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet. 2011, 43: 306-308. 10.1038/ng.778.CrossRefPubMed Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le MM, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, Le CC: Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet. 2011, 43: 306-308. 10.1038/ng.778.CrossRefPubMed
12.
go back to reference Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, Boycott KM, Ste-Marie LG, McKiernan FE, Marik I, Van EH, Michaud JL, Samuels ME: Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat. 2011, 32: 1114-1117. 10.1002/humu.21546.CrossRefPubMed Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, Boycott KM, Ste-Marie LG, McKiernan FE, Marik I, Van EH, Michaud JL, Samuels ME: Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat. 2011, 32: 1114-1117. 10.1002/humu.21546.CrossRefPubMed
13.
go back to reference Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC: Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011, 43: 303-305. 10.1038/ng.779.CrossRefPubMed Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC: Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011, 43: 303-305. 10.1038/ng.779.CrossRefPubMed
14.
go back to reference Zhao W, Petit E, Gafni RI, Collins MT, Robey PG, Seton M, Miller KK, Mannstadt M: Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteoporos Int. 2013, 24: 2275-2281. 10.1007/s00198-013-2298-5.CrossRefPubMedPubMedCentral Zhao W, Petit E, Gafni RI, Collins MT, Robey PG, Seton M, Miller KK, Mannstadt M: Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteoporos Int. 2013, 24: 2275-2281. 10.1007/s00198-013-2298-5.CrossRefPubMedPubMedCentral
15.
go back to reference Zhang X, Shi Y, Weng Y, Lai Q, Luo T, Zhao J, Ren G, Li W, Pan H, Ke Y, Zhang W, He Q, Wang Q, Zhou R: The Truncate Mutation of Notch2 Enhances Cell Proliferation through Activating the NF-kappaB Signal Pathway in the Diffuse Large B-Cell Lymphomas. PLoS One. 2014, 9: e108747-10.1371/journal.pone.0108747.CrossRefPubMedPubMedCentral Zhang X, Shi Y, Weng Y, Lai Q, Luo T, Zhao J, Ren G, Li W, Pan H, Ke Y, Zhang W, He Q, Wang Q, Zhou R: The Truncate Mutation of Notch2 Enhances Cell Proliferation through Activating the NF-kappaB Signal Pathway in the Diffuse Large B-Cell Lymphomas. PLoS One. 2014, 9: e108747-10.1371/journal.pone.0108747.CrossRefPubMedPubMedCentral
16.
go back to reference Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G, Nannya Y, Suzuki R, Ota S, Ota Y, Izutsu K, Sakata-Yanagimoto M, Hangaishi A, Yagita H, Fukayama M, Seto M, Kurokawa M, Ogawa S, Chiba S: Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 2009, 100: 920-926. 10.1111/j.1349-7006.2009.01130.x.CrossRefPubMed Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G, Nannya Y, Suzuki R, Ota S, Ota Y, Izutsu K, Sakata-Yanagimoto M, Hangaishi A, Yagita H, Fukayama M, Seto M, Kurokawa M, Ogawa S, Chiba S: Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 2009, 100: 920-926. 10.1111/j.1349-7006.2009.01130.x.CrossRefPubMed
17.
go back to reference Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, Miranda RN, Bahler DW, Medeiros LJ, Lim MS, Elenitoba-Johnson KS: Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012, 209: 1553-1565. 10.1084/jem.20120910.CrossRefPubMedPubMedCentral Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, Miranda RN, Bahler DW, Medeiros LJ, Lim MS, Elenitoba-Johnson KS: Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012, 209: 1553-1565. 10.1084/jem.20120910.CrossRefPubMedPubMedCentral
18.
go back to reference Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Fama R, Ciardullo C, Greco M, Cresta S, Piranda D, Holmes A, Fabbri G, Messina M, Rinaldi A, Wang J, Agostinelli C, Piccaluga PP, Lucioni M, Tabbo F, Serra R, Franceschetti S, Deambrogi C, Daniele G, Gattei V, Marasca R, Facchetti F, et al: The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012, 209: 1537-1551. 10.1084/jem.20120904.CrossRefPubMedPubMedCentral Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Fama R, Ciardullo C, Greco M, Cresta S, Piranda D, Holmes A, Fabbri G, Messina M, Rinaldi A, Wang J, Agostinelli C, Piccaluga PP, Lucioni M, Tabbo F, Serra R, Franceschetti S, Deambrogi C, Daniele G, Gattei V, Marasca R, Facchetti F, et al: The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012, 209: 1537-1551. 10.1084/jem.20120904.CrossRefPubMedPubMedCentral
19.
go back to reference Elias AN, Pinals RS, Anderson HC, Gould LV, Streeten DH: Hereditary osteodysplasia with acro-osteolysis. (The Hajdu-Cheney syndrome). Am J Med. 1978, 65: 627-636. 10.1016/0002-9343(78)90851-3.CrossRefPubMed Elias AN, Pinals RS, Anderson HC, Gould LV, Streeten DH: Hereditary osteodysplasia with acro-osteolysis. (The Hajdu-Cheney syndrome). Am J Med. 1978, 65: 627-636. 10.1016/0002-9343(78)90851-3.CrossRefPubMed
20.
go back to reference Nunziata V, Di GG, Ballanti P, Bonucci E: High turnover osteoporosis in acro-osteolysis (Hajdu-Cheney syndrome). J Endocrinol Invest. 1990, 13: 251-255. 10.1007/BF03349553.CrossRefPubMed Nunziata V, Di GG, Ballanti P, Bonucci E: High turnover osteoporosis in acro-osteolysis (Hajdu-Cheney syndrome). J Endocrinol Invest. 1990, 13: 251-255. 10.1007/BF03349553.CrossRefPubMed
21.
go back to reference Udell J, Schumacher HR, Kaplan F, Fallon MD: Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome. Arthritis Rheum. 1986, 29: 1032-1038. 10.1002/art.1780290815.CrossRefPubMed Udell J, Schumacher HR, Kaplan F, Fallon MD: Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome. Arthritis Rheum. 1986, 29: 1032-1038. 10.1002/art.1780290815.CrossRefPubMed
22.
go back to reference Avela K, Valanne L, Helenius I, Makitie O: Hajdu-Cheney syndrome with severe dural ectasia. Am J Med Genet A. 2011, 155A: 595-598. 10.1002/ajmg.a.33510.CrossRefPubMed Avela K, Valanne L, Helenius I, Makitie O: Hajdu-Cheney syndrome with severe dural ectasia. Am J Med Genet A. 2011, 155A: 595-598. 10.1002/ajmg.a.33510.CrossRefPubMed
23.
go back to reference Blumenauer BT, Cranney AB, Goldstein R: Acro-osteolysis and osteoporosis as manifestations of the Hajdu-Cheney syndrome. Clin Exp Rheumatol. 2002, 20: 574-575.PubMed Blumenauer BT, Cranney AB, Goldstein R: Acro-osteolysis and osteoporosis as manifestations of the Hajdu-Cheney syndrome. Clin Exp Rheumatol. 2002, 20: 574-575.PubMed
24.
go back to reference Brown DM, Bradford DS, Gorlin RJ, Desnick RJ, Langer LO, Jowsey J, Sauk JJ: The acro-osteolysis syndrome: Morphologic and biochemical studies. J Pediatr. 1976, 88: 573-580. 10.1016/S0022-3476(76)80009-1.CrossRefPubMed Brown DM, Bradford DS, Gorlin RJ, Desnick RJ, Langer LO, Jowsey J, Sauk JJ: The acro-osteolysis syndrome: Morphologic and biochemical studies. J Pediatr. 1976, 88: 573-580. 10.1016/S0022-3476(76)80009-1.CrossRefPubMed
25.
go back to reference Leidig-Bruckner G, Pfeilschifter J, Penning N, Limberg B, Priemel M, Delling G, Ziegler R: Severe osteoporosis in familial Hajdu-Cheney syndrome: progression of acro-osteolysis and osteoporosis during long-term follow-up. J Bone Miner Res. 1999, 14: 2036-2041. 10.1359/jbmr.1999.14.12.2036.CrossRefPubMed Leidig-Bruckner G, Pfeilschifter J, Penning N, Limberg B, Priemel M, Delling G, Ziegler R: Severe osteoporosis in familial Hajdu-Cheney syndrome: progression of acro-osteolysis and osteoporosis during long-term follow-up. J Bone Miner Res. 1999, 14: 2036-2041. 10.1359/jbmr.1999.14.12.2036.CrossRefPubMed
26.
go back to reference Ikeda F, Nishimura R, Matsubara T, Hata K, Reddy SV, Yoneda T: Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol. 2006, 177: 2384-2390. 10.4049/jimmunol.177.4.2384.CrossRefPubMed Ikeda F, Nishimura R, Matsubara T, Hata K, Reddy SV, Yoneda T: Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol. 2006, 177: 2384-2390. 10.4049/jimmunol.177.4.2384.CrossRefPubMed
27.
go back to reference Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K: The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008, 28: 6402-6412. 10.1128/MCB.00299-08.CrossRefPubMedPubMedCentral Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K: The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008, 28: 6402-6412. 10.1128/MCB.00299-08.CrossRefPubMedPubMedCentral
28.
go back to reference Isidor B, Le MM, Exner GU, Pichon O, Thierry G, Guiochon-Mantel A, David A, Cormier-Daire V, Le CC: Serpentine fibula-polycystic kidney syndrome caused by truncating mutations in NOTCH2. Hum Mutat. 2011, 32: 1239-1242. 10.1002/humu.21563.CrossRefPubMed Isidor B, Le MM, Exner GU, Pichon O, Thierry G, Guiochon-Mantel A, David A, Cormier-Daire V, Le CC: Serpentine fibula-polycystic kidney syndrome caused by truncating mutations in NOTCH2. Hum Mutat. 2011, 32: 1239-1242. 10.1002/humu.21563.CrossRefPubMed
29.
go back to reference Majewski F, Enders H, Ranke MB, Voit T: Serpentine fibula–polycystic kidney syndrome and Melnick-Needles syndrome are different disorders. Eur J Pediatr. 1993, 152: 916-921. 10.1007/BF01957530.CrossRefPubMed Majewski F, Enders H, Ranke MB, Voit T: Serpentine fibula–polycystic kidney syndrome and Melnick-Needles syndrome are different disorders. Eur J Pediatr. 1993, 152: 916-921. 10.1007/BF01957530.CrossRefPubMed
30.
go back to reference Canalis E, Mazziotti G, Giustina A, Bilezikian JP: Glucorticoid-Induced Osteoporosis: Pathophysiology and Therapy. Osteoporos Int. 2007, 18: 1319-1328. 10.1007/s00198-007-0394-0.CrossRefPubMed Canalis E, Mazziotti G, Giustina A, Bilezikian JP: Glucorticoid-Induced Osteoporosis: Pathophysiology and Therapy. Osteoporos Int. 2007, 18: 1319-1328. 10.1007/s00198-007-0394-0.CrossRefPubMed
31.
go back to reference Mazziotti G, Canalis E, Giustina A: Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med. 2010, 123: 877-884. 10.1016/j.amjmed.2010.02.028.CrossRefPubMed Mazziotti G, Canalis E, Giustina A: Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med. 2010, 123: 877-884. 10.1016/j.amjmed.2010.02.028.CrossRefPubMed
32.
go back to reference Narumi Y, Min BJ, Shimizu K, Kazukawa I, Sameshima K, Nakamura K, Kosho T, Rhee Y, Chung YS, Kim OH, Fukushima Y, Park WY, Nishimura G: Clinical consequences in truncating mutations in exon 34 of NOTCH2: report of six patients with Hajdu-Cheney syndrome and a patient with serpentine fibula polycystic kidney syndrome . Am J Med Genet A. 2013, 161a: 518-526. 10.1002/ajmg.a.35772.CrossRefPubMed Narumi Y, Min BJ, Shimizu K, Kazukawa I, Sameshima K, Nakamura K, Kosho T, Rhee Y, Chung YS, Kim OH, Fukushima Y, Park WY, Nishimura G: Clinical consequences in truncating mutations in exon 34 of NOTCH2: report of six patients with Hajdu-Cheney syndrome and a patient with serpentine fibula polycystic kidney syndrome . Am J Med Genet A. 2013, 161a: 518-526. 10.1002/ajmg.a.35772.CrossRefPubMed
33.
go back to reference Franchimont N, Canalis E: Management of glucocorticoid induced osteoporosis in premenopausal women with autoimmune disease. Autoimmun Rev. 2003, 2: 224-228. 10.1016/S1568-9972(03)00056-9.CrossRefPubMed Franchimont N, Canalis E: Management of glucocorticoid induced osteoporosis in premenopausal women with autoimmune disease. Autoimmun Rev. 2003, 2: 224-228. 10.1016/S1568-9972(03)00056-9.CrossRefPubMed
34.
go back to reference Miller PD: Unrecognized and unappreciated secondary causes of osteoporosis. Endocrinol Metab Clin North Am. 2012, 41: 613-628. 10.1016/j.ecl.2012.05.005.CrossRefPubMed Miller PD: Unrecognized and unappreciated secondary causes of osteoporosis. Endocrinol Metab Clin North Am. 2012, 41: 613-628. 10.1016/j.ecl.2012.05.005.CrossRefPubMed
35.
go back to reference Mannstadt M, Lin AE, Le LP: Case records of the Massachusetts General Hospital. Case 24–2014. A 27-year-old man with severe osteoporosis and multiple bone fractures. N Engl J Med. 2014, 371: 465-472. 10.1056/NEJMcpc1404139.CrossRefPubMed Mannstadt M, Lin AE, Le LP: Case records of the Massachusetts General Hospital. Case 24–2014. A 27-year-old man with severe osteoporosis and multiple bone fractures. N Engl J Med. 2014, 371: 465-472. 10.1056/NEJMcpc1404139.CrossRefPubMed
36.
go back to reference Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N: Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol. 2012, 37: 283-289.PubMed Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N: Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol. 2012, 37: 283-289.PubMed
37.
go back to reference McKiernan FE: Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome: 2-year follow-up. Osteoporos Int. 2008, 19: 379-380. 10.1007/s00198-007-0461-6.CrossRefPubMed McKiernan FE: Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome: 2-year follow-up. Osteoporos Int. 2008, 19: 379-380. 10.1007/s00198-007-0461-6.CrossRefPubMed
38.
go back to reference Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH: Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014, 26: 390-401. 10.1016/j.ccr.2014.07.023.CrossRefPubMedPubMedCentral Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH: Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014, 26: 390-401. 10.1016/j.ccr.2014.07.023.CrossRefPubMedPubMedCentral
39.
go back to reference Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE: Direct inhibition of the NOTCH transcription factor complex. Nature. 2009, 462: 182-188. 10.1038/nature08543.CrossRefPubMedPubMedCentral Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE: Direct inhibition of the NOTCH transcription factor complex. Nature. 2009, 462: 182-188. 10.1038/nature08543.CrossRefPubMedPubMedCentral
41.
go back to reference Liu Z, Turkoz A, Jackson EN, Corbo JC, Engelbach JA, Garbow JR, Piwnica-Worms DR, Kopan R: Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest. 2011, 121: 800-808. 10.1172/JCI43114.CrossRefPubMedPubMedCentral Liu Z, Turkoz A, Jackson EN, Corbo JC, Engelbach JA, Garbow JR, Piwnica-Worms DR, Kopan R: Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest. 2011, 121: 800-808. 10.1172/JCI43114.CrossRefPubMedPubMedCentral
42.
go back to reference Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR: Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med. 1999, 159: 1215-1220. 10.1001/archinte.159.11.1215.CrossRefPubMed Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR: Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med. 1999, 159: 1215-1220. 10.1001/archinte.159.11.1215.CrossRefPubMed
43.
go back to reference Canalis E, Giustina A, Bilezikian JP: Mechanisms of Anabolic Therapies for Osteoporosis. N Engl J Med. 2007, 357: 905-916. 10.1056/NEJMra067395.CrossRefPubMed Canalis E, Giustina A, Bilezikian JP: Mechanisms of Anabolic Therapies for Osteoporosis. N Engl J Med. 2007, 357: 905-916. 10.1056/NEJMra067395.CrossRefPubMed
44.
go back to reference Canalis E: The fate of circulating osteoblasts. N Engl J Med. 2005, 352: 2014-2016. 10.1056/NEJMe058080.CrossRefPubMed Canalis E: The fate of circulating osteoblasts. N Engl J Med. 2005, 352: 2014-2016. 10.1056/NEJMe058080.CrossRefPubMed
45.
go back to reference Parfitt AM: The bone remodeling compartment: a circulatory function for bone lining cells. J Bone Miner Res. 2001, 16: 1583-1585. 10.1359/jbmr.2001.16.9.1583.CrossRefPubMed Parfitt AM: The bone remodeling compartment: a circulatory function for bone lining cells. J Bone Miner Res. 2001, 16: 1583-1585. 10.1359/jbmr.2001.16.9.1583.CrossRefPubMed
46.
go back to reference Seeman E, Delmas PD: Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006, 354: 2250-2261. 10.1056/NEJMra053077.CrossRefPubMed Seeman E, Delmas PD: Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006, 354: 2250-2261. 10.1056/NEJMra053077.CrossRefPubMed
47.
go back to reference Sims NA, Martin TJ: Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy reports. 2014, 3: 481-PubMedPubMedCentral Sims NA, Martin TJ: Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy reports. 2014, 3: 481-PubMedPubMedCentral
48.
go back to reference Martin TJ: Coupling factors: how many candidates can there be?. J Bone Miner Res. 2014, 29: 1519-1521. 10.1002/jbmr.2276.CrossRefPubMed Martin TJ: Coupling factors: how many candidates can there be?. J Bone Miner Res. 2014, 29: 1519-1521. 10.1002/jbmr.2276.CrossRefPubMed
50.
go back to reference Canalis E: Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013, 9: 575-583. 10.1038/nrendo.2013.154.CrossRefPubMed Canalis E: Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013, 9: 575-583. 10.1038/nrendo.2013.154.CrossRefPubMed
51.
go back to reference Canalis E, Economides AN, Gazzerro E: Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003, 24: 218-235. 10.1210/er.2002-0023.CrossRefPubMed Canalis E, Economides AN, Gazzerro E: Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003, 24: 218-235. 10.1210/er.2002-0023.CrossRefPubMed
52.
go back to reference Gazzerro E, Canalis E: Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006, 7: 51-65. 10.1007/s11154-006-9000-6.CrossRefPubMed Gazzerro E, Canalis E: Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006, 7: 51-65. 10.1007/s11154-006-9000-6.CrossRefPubMed
53.
go back to reference Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ: Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012, 492: 1-18. 10.1016/j.gene.2011.10.044.CrossRefPubMedPubMedCentral Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ: Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012, 492: 1-18. 10.1016/j.gene.2011.10.044.CrossRefPubMedPubMedCentral
55.
go back to reference Zanotti S, Canalis E: Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int. 2012, 90: 69-75. 10.1007/s00223-011-9541-x.CrossRefPubMedPubMedCentral Zanotti S, Canalis E: Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int. 2012, 90: 69-75. 10.1007/s00223-011-9541-x.CrossRefPubMedPubMedCentral
57.
go back to reference Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F: Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008, 14: 306-314. 10.1038/nm1716.CrossRefPubMedPubMedCentral Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F: Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008, 14: 306-314. 10.1038/nm1716.CrossRefPubMedPubMedCentral
58.
go back to reference Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009, 16: 633-647. 10.1016/j.devcel.2009.03.010.CrossRefPubMed Fortini ME: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009, 16: 633-647. 10.1016/j.devcel.2009.03.010.CrossRefPubMed
59.
go back to reference Mumm JS, Kopan R: Notch signaling: from the outside in. Dev Biol. 2000, 228: 151-165. 10.1006/dbio.2000.9960.CrossRefPubMed Mumm JS, Kopan R: Notch signaling: from the outside in. Dev Biol. 2000, 228: 151-165. 10.1006/dbio.2000.9960.CrossRefPubMed
60.
go back to reference Sahlgren C, Lendahl U: Notch signaling and its integration with other signaling mechanisms. Regen Med. 2006, 1: 195-205. 10.2217/17460751.1.2.195.CrossRefPubMed Sahlgren C, Lendahl U: Notch signaling and its integration with other signaling mechanisms. Regen Med. 2006, 1: 195-205. 10.2217/17460751.1.2.195.CrossRefPubMed
62.
go back to reference Kovall RA: More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008, 27: 5099-5109. 10.1038/onc.2008.223.CrossRefPubMed Kovall RA: More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene. 2008, 27: 5099-5109. 10.1038/onc.2008.223.CrossRefPubMed
63.
go back to reference Nam Y, Sliz P, Song L, Aster JC, Blacklow SC: Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006, 124: 973-983. 10.1016/j.cell.2005.12.037.CrossRefPubMed Nam Y, Sliz P, Song L, Aster JC, Blacklow SC: Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006, 124: 973-983. 10.1016/j.cell.2005.12.037.CrossRefPubMed
64.
go back to reference Schroeter EH, Kisslinger JA, Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998, 393: 382-386. 10.1038/30756.CrossRefPubMed Schroeter EH, Kisslinger JA, Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998, 393: 382-386. 10.1038/30756.CrossRefPubMed
65.
go back to reference Wilson JJ, Kovall RA: Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell. 2006, 124: 985-996. 10.1016/j.cell.2006.01.035.CrossRefPubMed Wilson JJ, Kovall RA: Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell. 2006, 124: 985-996. 10.1016/j.cell.2006.01.035.CrossRefPubMed
66.
go back to reference Iso T, Kedes L, Hamamori Y: HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003, 194: 237-255. 10.1002/jcp.10208.CrossRefPubMed Iso T, Kedes L, Hamamori Y: HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003, 194: 237-255. 10.1002/jcp.10208.CrossRefPubMed
67.
go back to reference Andersen P, Uosaki H, Shenje LT, Kwon C: Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol. 2012, 22: 257-265. 10.1016/j.tcb.2012.02.003.CrossRefPubMedPubMedCentral Andersen P, Uosaki H, Shenje LT, Kwon C: Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol. 2012, 22: 257-265. 10.1016/j.tcb.2012.02.003.CrossRefPubMedPubMedCentral
68.
go back to reference Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL: NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008, 283: 6509-6518. 10.1074/jbc.M707000200.CrossRefPubMed Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL: NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008, 283: 6509-6518. 10.1074/jbc.M707000200.CrossRefPubMed
69.
go back to reference Dallas DJ, Genever PG, Patton AJ, Millichip MI, McKie N, Skerry TM: Localization of ADAM10 and Notch receptors in bone. Bone. 1999, 25: 9-15. 10.1016/S8756-3282(99)00099-X.CrossRefPubMed Dallas DJ, Genever PG, Patton AJ, Millichip MI, McKie N, Skerry TM: Localization of ADAM10 and Notch receptors in bone. Bone. 1999, 25: 9-15. 10.1016/S8756-3282(99)00099-X.CrossRefPubMed
70.
go back to reference Pereira RM, Delany AM, Durant D, Canalis E: Cortisol regulates the expression of Notch in osteoblasts. J Cell Biochem. 2002, 85: 252-258. 10.1002/jcb.10125.CrossRefPubMed Pereira RM, Delany AM, Durant D, Canalis E: Cortisol regulates the expression of Notch in osteoblasts. J Cell Biochem. 2002, 85: 252-258. 10.1002/jcb.10125.CrossRefPubMed
71.
go back to reference Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B: Dimorphic effects of Notch signaling in bone homeostasis. Nat Med. 2008, 14: 299-305. 10.1038/nm1712.CrossRefPubMedPubMedCentral Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B: Dimorphic effects of Notch signaling in bone homeostasis. Nat Med. 2008, 14: 299-305. 10.1038/nm1712.CrossRefPubMedPubMedCentral
72.
go back to reference Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E: Notch Inhibits Osteoblast Differentiation And Causes Osteopenia. Endocrinology. 2008, 149: 3890-3899. 10.1210/en.2008-0140.CrossRefPubMedPubMedCentral Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E: Notch Inhibits Osteoblast Differentiation And Causes Osteopenia. Endocrinology. 2008, 149: 3890-3899. 10.1210/en.2008-0140.CrossRefPubMedPubMedCentral
73.
go back to reference Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ: RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010, 137: 1461-1471. 10.1242/dev.042911.CrossRefPubMedPubMedCentral Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ: RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010, 137: 1461-1471. 10.1242/dev.042911.CrossRefPubMedPubMedCentral
74.
go back to reference Francis JC, Radtke F, Logan MP: Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn. 2005, 234: 1006-1015. 10.1002/dvdy.20590.CrossRefPubMed Francis JC, Radtke F, Logan MP: Notch1 signals through Jagged2 to regulate apoptosis in the apical ectodermal ridge of the developing limb bud. Dev Dyn. 2005, 234: 1006-1015. 10.1002/dvdy.20590.CrossRefPubMed
75.
go back to reference Kageyama R, Masamizu Y, Niwa Y: Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn. 2007, 236: 1403-1409. 10.1002/dvdy.21114.CrossRefPubMed Kageyama R, Masamizu Y, Niwa Y: Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn. 2007, 236: 1403-1409. 10.1002/dvdy.21114.CrossRefPubMed
76.
go back to reference Zanotti S, Smerdel-Ramoya A, Canalis E: Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem. 2011, 286: 2648-2657. 10.1074/jbc.M110.183038.CrossRefPubMedPubMedCentral Zanotti S, Smerdel-Ramoya A, Canalis E: Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem. 2011, 286: 2648-2657. 10.1074/jbc.M110.183038.CrossRefPubMedPubMedCentral
77.
go back to reference Chen S, Tao J, Bae Y, Jiang MM, Bertin T, Chen Y, Yang T, Lee B: Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Miner Res. 2013, 28: 649-659. 10.1002/jbmr.1770.CrossRefPubMedPubMedCentral Chen S, Tao J, Bae Y, Jiang MM, Bertin T, Chen Y, Yang T, Lee B: Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Miner Res. 2013, 28: 649-659. 10.1002/jbmr.1770.CrossRefPubMedPubMedCentral
78.
go back to reference Kohn A, Dong Y, Mirando AJ, Jesse AM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ: Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development. 2012, 139: 1198-1212. 10.1242/dev.070649.CrossRefPubMedPubMedCentral Kohn A, Dong Y, Mirando AJ, Jesse AM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ: Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development. 2012, 139: 1198-1212. 10.1242/dev.070649.CrossRefPubMedPubMedCentral
79.
go back to reference Mead TJ, Yutzey KE: Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci U S A. 2009, 106: 14420-14425. 10.1073/pnas.0902306106.CrossRefPubMedPubMedCentral Mead TJ, Yutzey KE: Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci U S A. 2009, 106: 14420-14425. 10.1073/pnas.0902306106.CrossRefPubMedPubMedCentral
80.
go back to reference Zanotti S, Canalis E: Notch suppresses nuclear factor of activated T cells (Nfat) transactivation and Nfatc1 expression in chondrocytes. Endocrinology. 2013, 154: 762-772. 10.1210/en.2012-1925.CrossRefPubMedPubMedCentral Zanotti S, Canalis E: Notch suppresses nuclear factor of activated T cells (Nfat) transactivation and Nfatc1 expression in chondrocytes. Endocrinology. 2013, 154: 762-772. 10.1210/en.2012-1925.CrossRefPubMedPubMedCentral
81.
go back to reference Canalis E, Parker K, Feng JQ, Zanotti S: Osteoblast Lineage-specific Effects of Notch Activation in the Skeleton. Endocrinology. 2013, 154: 623-634. 10.1210/en.2012-1732.CrossRefPubMedPubMedCentral Canalis E, Parker K, Feng JQ, Zanotti S: Osteoblast Lineage-specific Effects of Notch Activation in the Skeleton. Endocrinology. 2013, 154: 623-634. 10.1210/en.2012-1732.CrossRefPubMedPubMedCentral
82.
go back to reference Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S: Notch Signaling in Osteocytes Differentially Regulates Cancellous and Cortical Bone Remodeling. J Biol Chem. 2013, 288: 25614-25625. 10.1074/jbc.M113.470492.CrossRefPubMedPubMedCentral Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S: Notch Signaling in Osteocytes Differentially Regulates Cancellous and Cortical Bone Remodeling. J Biol Chem. 2013, 288: 25614-25625. 10.1074/jbc.M113.470492.CrossRefPubMedPubMedCentral
83.
go back to reference Zanotti S, Canalis E: Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone. 2014, 62: 22-28. 10.1016/j.bone.2014.01.023.CrossRefPubMedPubMedCentral Zanotti S, Canalis E: Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone. 2014, 62: 22-28. 10.1016/j.bone.2014.01.023.CrossRefPubMedPubMedCentral
84.
go back to reference Bigas A, Martin DI, Milner LA: Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol. 1998, 18: 2324-2333.CrossRefPubMedPubMedCentral Bigas A, Martin DI, Milner LA: Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol. 1998, 18: 2324-2333.CrossRefPubMedPubMedCentral
85.
go back to reference Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T: Notch1 is essential for postimplantation development in mice. Genes Dev. 1994, 8: 707-719. 10.1101/gad.8.6.707.CrossRefPubMed Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T: Notch1 is essential for postimplantation development in mice. Genes Dev. 1994, 8: 707-719. 10.1101/gad.8.6.707.CrossRefPubMed
86.
go back to reference Conlon RA, Reaume AG, Rossant J: Notch1 is required for the coordinate segmentation of somites. Development. 1995, 121: 1533-1545.PubMed Conlon RA, Reaume AG, Rossant J: Notch1 is required for the coordinate segmentation of somites. Development. 1995, 121: 1533-1545.PubMed
87.
go back to reference Weinmaster G, Roberts VJ, Lemke G: Notch2: a second mammalian Notch gene. Development. 1992, 116: 931-941.PubMed Weinmaster G, Roberts VJ, Lemke G: Notch2: a second mammalian Notch gene. Development. 1992, 116: 931-941.PubMed
88.
go back to reference Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H: Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012, 14: R45-10.1186/ar3758.CrossRefPubMedPubMedCentral Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H: Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012, 14: R45-10.1186/ar3758.CrossRefPubMedPubMedCentral
Metadata
Title
Hajdu-Cheney syndrome: a review
Authors
Ernesto Canalis
Stefano Zanotti
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2014
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-014-0200-y

Other articles of this Issue 1/2014

Orphanet Journal of Rare Diseases 1/2014 Go to the issue