Skip to main content
Top
Published in: Calcified Tissue International 2/2012

01-02-2012 | Review

Notch Regulation of Bone Development and Remodeling and Related Skeletal Disorders

Authors: Stefano Zanotti, Ernesto Canalis

Published in: Calcified Tissue International | Issue 2/2012

Login to get access

Abstract

Notch signaling mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal. In the canonical signaling pathway, the Notch receptor is cleaved following ligand binding, resulting in the release and nuclear translocation of the Notch intracellular domain (NICD). NICD induces gene expression by forming a ternary complex with the DNA binding protein CBF1/Rbp-Jk, Suppressor of Hairless, Lag1, and Mastermind-Like (Maml). Hairy Enhancer of Split (Hes) and Hes related with YRPW motif (Hey) are classic Notch targets. Notch canonical signaling plays a central role in skeletal development and bone remodeling by suppressing the differentiation of skeletal cells. The skeletal phenotype of mice misexpressing Hes1 phenocopies partially the effects of Notch misexpression, suggesting that Hey proteins mediate most of the skeletal effects of Notch. Dysregulation of Notch signaling is associated with diseases affecting human skeletal development, such as Alagille syndrome, brachydactyly and spondylocostal dysostosis. Somatic mutations in Notch receptors and ligands are found in tumors of the skeletal system. Overexpression of NOTCH1 is associated with osteosarcoma, and overexpression of NOTCH3 or JAGGED1 in breast cancer cells favors the formation of osteolytic bone metastasis. Activating mutations in NOTCH2 cause Hajdu-Cheney syndrome, which is characterized by skeletal defects and fractures, and JAG1 polymorphisms, are associated with variations in bone mineral density. In conclusion, Notch is a regulator of skeletal development and bone remodeling, and abnormal Notch signaling is associated with developmental and postnatal skeletal disorders.
Literature
1.
2.
go back to reference Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916PubMedCrossRef Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916PubMedCrossRef
3.
go back to reference D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of notch ligands. Oncogene 27:5148–5167PubMedCrossRef D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of notch ligands. Oncogene 27:5148–5167PubMedCrossRef
4.
go back to reference Kopan R, Ilagan MX (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedCrossRef Kopan R, Ilagan MX (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedCrossRef
5.
go back to reference Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647PubMedCrossRef Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647PubMedCrossRef
6.
go back to reference Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the notch signaling pathway. J Cell Physiol 194:237–255PubMedCrossRef Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the notch signaling pathway. J Cell Physiol 194:237–255PubMedCrossRef
7.
8.
go back to reference Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518PubMedCrossRef Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518PubMedCrossRef
9.
go back to reference Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O’Keefe RJ, Hilton MJ (2010) RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 137:1461–1471PubMedCrossRef Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O’Keefe RJ, Hilton MJ (2010) RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 137:1461–1471PubMedCrossRef
10.
go back to reference Tao J, Chen S, Yang T, Dawson B, Munivez E, Bertin T, Lee B (2010) Osteosclerosis owing to Notch gain of function is solely Rbpj-dependent. J Bone Miner Res 25:2175–2183PubMedCrossRef Tao J, Chen S, Yang T, Dawson B, Munivez E, Bertin T, Lee B (2010) Osteosclerosis owing to Notch gain of function is solely Rbpj-dependent. J Bone Miner Res 25:2175–2183PubMedCrossRef
11.
12.
go back to reference Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T (1994) Notch1 is essential for postimplantation development in mice. Genes Dev 8:707–719PubMedCrossRef Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T (1994) Notch1 is essential for postimplantation development in mice. Genes Dev 8:707–719PubMedCrossRef
13.
go back to reference Bellavia D, Checquolo S, Campese AF, Felli MP, Gulino A, Screpanti I (2008) Notch3: from subtle structural differences to functional diversity. Oncogene 27:5092–5098PubMedCrossRef Bellavia D, Checquolo S, Campese AF, Felli MP, Gulino A, Screpanti I (2008) Notch3: from subtle structural differences to functional diversity. Oncogene 27:5092–5098PubMedCrossRef
14.
go back to reference Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A (2007) The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 16:982–992PubMedCrossRef Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A (2007) The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 16:982–992PubMedCrossRef
15.
go back to reference Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352PubMed Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352PubMed
16.
go back to reference Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ (2002) Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33:77–80PubMedCrossRef Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ (2002) Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33:77–80PubMedCrossRef
18.
go back to reference Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314PubMedCrossRef Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314PubMedCrossRef
19.
go back to reference Mead TJ, Yutzey KE (2009) Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci USA 106:14420–14425PubMedCrossRef Mead TJ, Yutzey KE (2009) Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci USA 106:14420–14425PubMedCrossRef
20.
go back to reference Zanotti S, Smerdel-Ramoya A, Canalis E (2011) Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem 286:2648–2657PubMedCrossRef Zanotti S, Smerdel-Ramoya A, Canalis E (2011) Hairy and enhancer of split (HES)1 is a determinant of bone mass. J Biol Chem 286:2648–2657PubMedCrossRef
22.
go back to reference Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E (2008) Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149:3890–3899PubMedCrossRef Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E (2008) Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149:3890–3899PubMedCrossRef
23.
go back to reference Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305PubMedCrossRef Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305PubMedCrossRef
24.
go back to reference Kalajzic I, Kalajzic Z, Kaliterna M, Gronowicz G, Clark SH, Lichtler AC, Rowe D (2002) Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 17:15–25PubMedCrossRef Kalajzic I, Kalajzic Z, Kaliterna M, Gronowicz G, Clark SH, Lichtler AC, Rowe D (2002) Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 17:15–25PubMedCrossRef
25.
go back to reference Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281:6203–6210PubMedCrossRef Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E (2006) Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281:6203–6210PubMedCrossRef
26.
go back to reference Zanotti S, Smerdel-Ramoya A, Canalis E (2011) Reciprocal regulation of notch and nuclear factor of activated T-cells (NFAT)c1 transactivation in osteoblasts. J Biol Chem 286:4576–4588PubMedCrossRef Zanotti S, Smerdel-Ramoya A, Canalis E (2011) Reciprocal regulation of notch and nuclear factor of activated T-cells (NFAT)c1 transactivation in osteoblasts. J Biol Chem 286:4576–4588PubMedCrossRef
27.
go back to reference Sitara D, Aliprantis AO (2010) Transcriptional regulation of bone and joint remodeling by NFAT. Immunol Rev 233:286–300PubMedCrossRef Sitara D, Aliprantis AO (2010) Transcriptional regulation of bone and joint remodeling by NFAT. Immunol Rev 233:286–300PubMedCrossRef
28.
go back to reference Zhang Y, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2009) The Notch-responsive transcription factor Hes-1 attenuates osteocalcin promoter activity in osteoblastic cells. J Cell Biochem 108:651–659PubMedCrossRef Zhang Y, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2009) The Notch-responsive transcription factor Hes-1 attenuates osteocalcin promoter activity in osteoblastic cells. J Cell Biochem 108:651–659PubMedCrossRef
29.
go back to reference Lee JS, Thomas DM, Gutierrez G, Carty SA, Yanagawa S, Hinds PW (2006) HES1 cooperates with pRb to activate RUNX2-dependent transcription. J Bone Miner Res 21:921–933PubMedCrossRef Lee JS, Thomas DM, Gutierrez G, Carty SA, Yanagawa S, Hinds PW (2006) HES1 cooperates with pRb to activate RUNX2-dependent transcription. J Bone Miner Res 21:921–933PubMedCrossRef
30.
go back to reference McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani S (2000) The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem 275:530–538PubMedCrossRef McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani S (2000) The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem 275:530–538PubMedCrossRef
31.
go back to reference Shen Q, Christakos S (2005) The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J Biol Chem 280:40589–40598PubMedCrossRef Shen Q, Christakos S (2005) The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J Biol Chem 280:40589–40598PubMedCrossRef
32.
go back to reference Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, Gerwin N, Mueller M, Kinzel B, Susa M (2010) Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 46:680–694PubMedCrossRef Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, Gerwin N, Mueller M, Kinzel B, Susa M (2010) Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 46:680–694PubMedCrossRef
34.
35.
go back to reference Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234PubMedCrossRef Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234PubMedCrossRef
36.
go back to reference Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedCrossRef Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedCrossRef
37.
go back to reference Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205PubMedCrossRef Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205PubMedCrossRef
38.
go back to reference Tian J, Ling L, Shboul M, Lee H, O’Connor B, Merriman B, Nelson SF, Cool S, Ababneh OH, Al-Hadidy A, Masri A, Hamamy H, Reversade B (2010) Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet 87:768–778PubMedCrossRef Tian J, Ling L, Shboul M, Lee H, O’Connor B, Merriman B, Nelson SF, Cool S, Ababneh OH, Al-Hadidy A, Masri A, Hamamy H, Reversade B (2010) Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet 87:768–778PubMedCrossRef
39.
go back to reference Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T (1998) Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12:1046–1057PubMedCrossRef Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T (1998) Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12:1046–1057PubMedCrossRef
40.
go back to reference Sidow A, Bulotsky MS, Kerrebrock AW, Bronson RT, Daly MJ, Reeve MP, Hawkins TL, Birren BW, Jaenisch R, Lander ES (1997) Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389:722–725PubMedCrossRef Sidow A, Bulotsky MS, Kerrebrock AW, Bronson RT, Daly MJ, Reeve MP, Hawkins TL, Birren BW, Jaenisch R, Lander ES (1997) Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389:722–725PubMedCrossRef
41.
42.
go back to reference Krantz ID, Piccoli DA, Spinner NB (1999) Clinical and molecular genetics of alagille syndrome. Curr Opin Pediatr 11:558–564PubMedCrossRef Krantz ID, Piccoli DA, Spinner NB (1999) Clinical and molecular genetics of alagille syndrome. Curr Opin Pediatr 11:558–564PubMedCrossRef
43.
go back to reference McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173PubMedCrossRef McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173PubMedCrossRef
44.
go back to reference McCright B, Lozier J, Gridley T (2002) A mouse model of alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082PubMed McCright B, Lozier J, Gridley T (2002) A mouse model of alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082PubMed
45.
go back to reference Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, Pourquie O, Kusumi K, Dunwoodie S (2007) Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn 236:1456–1474PubMedCrossRef Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, Pourquie O, Kusumi K, Dunwoodie S (2007) Abnormal vertebral segmentation and the notch signaling pathway in man. Dev Dyn 236:1456–1474PubMedCrossRef
46.
go back to reference Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RS (2002) Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129:1795–1806PubMed Dunwoodie SL, Clements M, Sparrow DB, Sa X, Conlon RA, Beddington RS (2002) Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 129:1795–1806PubMed
47.
go back to reference Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES (1998) The mouse pudgy mutation disrupts delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 19:274–278PubMedCrossRef Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES (1998) The mouse pudgy mutation disrupts delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 19:274–278PubMedCrossRef
48.
go back to reference Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11:1827–1839PubMedCrossRef Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11:1827–1839PubMedCrossRef
49.
go back to reference Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, Ellard S, Young E, Ramirez N, Carlo SE, Torres J, Emans JB, Turnpenny PD, Pourquie O (2008) Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet 82:1334–1341PubMedCrossRef Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, Ellard S, Young E, Ramirez N, Carlo SE, Torres J, Emans JB, Turnpenny PD, Pourquie O (2008) Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am J Hum Genet 82:1334–1341PubMedCrossRef
50.
go back to reference Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, Turnpenny PD (2004) Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 74:1249–1254PubMedCrossRef Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, Turnpenny PD (2004) Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 74:1249–1254PubMedCrossRef
51.
go back to reference Stanley P (2007) Regulation of Notch signaling by glycosylation. Curr Opin Struct Biol 17:530–535PubMedCrossRef Stanley P (2007) Regulation of Notch signaling by glycosylation. Curr Opin Struct Biol 17:530–535PubMedCrossRef
52.
go back to reference Dunwoodie SL (2009) Mutation of the fucose-specific beta 1,3N-acetylglucosaminyltransferase LFNG results in abnormal formation of the spine. Biochim Biophys Acta 1792:100–111PubMed Dunwoodie SL (2009) Mutation of the fucose-specific beta 1,3N-acetylglucosaminyltransferase LFNG results in abnormal formation of the spine. Biochim Biophys Acta 1792:100–111PubMed
53.
go back to reference Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37PubMedCrossRef Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37PubMedCrossRef
54.
go back to reference Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R (2001) Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 15:2642–2647PubMedCrossRef Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R (2001) Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 15:2642–2647PubMedCrossRef
55.
go back to reference Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17:3761–3766PubMedCrossRef Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17:3761–3766PubMedCrossRef
56.
go back to reference Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL (2010) Two novel missense mutations in Hairy-and-Enhancer-of-Split-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 18:674–679PubMedCrossRef Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL (2010) Two novel missense mutations in Hairy-and-Enhancer-of-Split-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 18:674–679PubMedCrossRef
57.
go back to reference Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le MM, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, Le CC (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43:306–308PubMedCrossRef Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le MM, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, Le CC (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43:306–308PubMedCrossRef
58.
go back to reference Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305PubMedCrossRef Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305PubMedCrossRef
59.
go back to reference Kung AW, Xiao SM, Cherny S, Li GH, Gao Y, Tso G, Lau KS, Luk KD, Liu JM, Cui B, Zhang MJ, Zhang ZL, He JW, Yue H, Xia WB, Luo LM, He SL, Kiel DP, Karasik D, Hsu YH, Cupples LA, Demissie S, Styrkarsdottir U, Halldorsson BV, Sigurdsson G, Thorsteinsdottir U, Stefansson K, Richards JB, Zhai G, Soranzo N, Valdes A, Spector TD, Sham PC (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86:229–239PubMedCrossRef Kung AW, Xiao SM, Cherny S, Li GH, Gao Y, Tso G, Lau KS, Luk KD, Liu JM, Cui B, Zhang MJ, Zhang ZL, He JW, Yue H, Xia WB, Luo LM, He SL, Kiel DP, Karasik D, Hsu YH, Cupples LA, Demissie S, Styrkarsdottir U, Halldorsson BV, Sigurdsson G, Thorsteinsdottir U, Stefansson K, Richards JB, Zhai G, Soranzo N, Valdes A, Spector TD, Sham PC (2010) Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86:229–239PubMedCrossRef
60.
go back to reference Radtke F, Fasnacht N, MacDonald HR (2010) Notch signaling in the immune system. Immunity 32:14–27PubMedCrossRef Radtke F, Fasnacht N, MacDonald HR (2010) Notch signaling in the immune system. Immunity 32:14–27PubMedCrossRef
61.
go back to reference Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107:2223–2233PubMedCrossRef Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107:2223–2233PubMedCrossRef
62.
go back to reference Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470PubMedCrossRef Engin F, Bertin T, Ma O, Jiang MM, Wang L, Sutton RE, Donehower LA, Lee B (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470PubMedCrossRef
63.
go back to reference Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP (2008) Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 14:2962–2969PubMedCrossRef Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP (2008) Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 14:2962–2969PubMedCrossRef
64.
go back to reference Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P, Hauschka PV (2010) Notch3 in human breast cancer cell lines regulates osteoblast–cancer cell interactions and osteolytic bone metastasis. Am J Pathol 177:1459–1469PubMedCrossRef Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P, Hauschka PV (2010) Notch3 in human breast cancer cell lines regulates osteoblast–cancer cell interactions and osteolytic bone metastasis. Am J Pathol 177:1459–1469PubMedCrossRef
65.
go back to reference Ryeom SW (2011) The cautionary tale of side effects of chronic Notch1 inhibition. J Clin Invest 121:508–509PubMedCrossRef Ryeom SW (2011) The cautionary tale of side effects of chronic Notch1 inhibition. J Clin Invest 121:508–509PubMedCrossRef
66.
go back to reference Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188PubMedCrossRef Moellering RE, Cornejo M, Davis TN, Del BC, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188PubMedCrossRef
Metadata
Title
Notch Regulation of Bone Development and Remodeling and Related Skeletal Disorders
Authors
Stefano Zanotti
Ernesto Canalis
Publication date
01-02-2012
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 2/2012
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-011-9541-x

Other articles of this Issue 2/2012

Calcified Tissue International 2/2012 Go to the issue