Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2022

Open Access 01-12-2022 | Bone Defect | Research

The healing of bone defects by cell-free and stem cell-seeded 3D-printed PLA tissue-engineered scaffolds

Authors: Marjan Bahraminasab, Athar Talebi, Nesa Doostmohammadi, Samaneh Arab, Ali Ghanbari, Sam Zarbakhsh

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2022

Login to get access

Abstract

In this paper, the in-vivo healing of critical-sized bony defects by cell-free and stem cell-seeded 3D-printed PLA scaffolds was studied in rat calvaria bone. The scaffolds were implanted in the provided defect sites and histological analysis was conducted after 8 and 12 weeks. The results showed that both cell-free and stem cell-seeded scaffolds exhibited superb healing compared with the empty defect controls, and new bone and connective tissues were formed in the healing site after 8 and 12 weeks, postoperatively. The higher filled area, bone formation and bone maturation were observed after 12 weeks, particularly for PLA + Cell scaffolds.
Literature
1.
go back to reference Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM. Cranial bone defects: current and future strategies. Neurosurg Focus. 2010;29(6):E8.PubMedCrossRef Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM. Cranial bone defects: current and future strategies. Neurosurg Focus. 2010;29(6):E8.PubMedCrossRef
2.
go back to reference Azi ML, Aprato A, Santi I, Kfuri M, Masse A, Joeris A. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2016;17(1):1–10.CrossRef Azi ML, Aprato A, Santi I, Kfuri M, Masse A, Joeris A. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2016;17(1):1–10.CrossRef
3.
go back to reference Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):1–27.CrossRef Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):1–27.CrossRef
4.
go back to reference Zhang Q, Nettleship I, Schmelzer E, Gerlach J, Zhang X, Wang J, et al. Tissue engineering and regenerative medicine therapies for cell senescence in bone and cartilage. Tissue Eng Part B Rev. 2020;26(1):64–78.PubMedCrossRef Zhang Q, Nettleship I, Schmelzer E, Gerlach J, Zhang X, Wang J, et al. Tissue engineering and regenerative medicine therapies for cell senescence in bone and cartilage. Tissue Eng Part B Rev. 2020;26(1):64–78.PubMedCrossRef
5.
go back to reference Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online. 2020;19(1):1–33.CrossRef Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online. 2020;19(1):1–33.CrossRef
6.
go back to reference Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, et al. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng. 2021;7(12):5397–431.PubMedCrossRef Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, et al. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng. 2021;7(12):5397–431.PubMedCrossRef
7.
go back to reference Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016;47:S47–51.PubMed Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016;47:S47–51.PubMed
8.
go back to reference Oryan A, Hassanajili S, Sahvieh S, Azarpira N. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat. Life Sci. 2020;257:118038.PubMedCrossRef Oryan A, Hassanajili S, Sahvieh S, Azarpira N. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat. Life Sci. 2020;257:118038.PubMedCrossRef
9.
go back to reference Han SH, Cha M, Jin Y-Z, Lee K-M, Lee JH. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed Mater. 2020;16(1):015019.PubMedCrossRef Han SH, Cha M, Jin Y-Z, Lee K-M, Lee JH. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed Mater. 2020;16(1):015019.PubMedCrossRef
10.
go back to reference Liu Z, Ge Y, Zhang L, Wang Y, Guo C, Feng K, et al. The effect of induced membranes combined with enhanced bone marrow and 3D PLA-HA on repairing long bone defects in vivo. J Tissue Eng Regen Med. 2020;14(10):1403–14.PubMedCrossRef Liu Z, Ge Y, Zhang L, Wang Y, Guo C, Feng K, et al. The effect of induced membranes combined with enhanced bone marrow and 3D PLA-HA on repairing long bone defects in vivo. J Tissue Eng Regen Med. 2020;14(10):1403–14.PubMedCrossRef
11.
go back to reference Diomede F, Gugliandolo A, Cardelli P, Merciaro I, Ettorre V, Traini T, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther. 2018;9(1):104.PubMedPubMedCentralCrossRef Diomede F, Gugliandolo A, Cardelli P, Merciaro I, Ettorre V, Traini T, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther. 2018;9(1):104.PubMedPubMedCentralCrossRef
12.
go back to reference Shahrezaie M, Moshiri A, Shekarchi B, Oryan A, Maffulli N, Parvizi J. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value. J Tissue Eng Regen Med. 2018;12(4):936–60.PubMedCrossRef Shahrezaie M, Moshiri A, Shekarchi B, Oryan A, Maffulli N, Parvizi J. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value. J Tissue Eng Regen Med. 2018;12(4):936–60.PubMedCrossRef
13.
go back to reference Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62.PubMedPubMedCentralCrossRef Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62.PubMedPubMedCentralCrossRef
14.
go back to reference Persson M, Lorite GS, Kokkonen HE, Cho S-W, Lehenkari PP, Skrifvars M, et al. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B Biointerfaces. 2014;121:409–16.PubMedCrossRef Persson M, Lorite GS, Kokkonen HE, Cho S-W, Lehenkari PP, Skrifvars M, et al. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B Biointerfaces. 2014;121:409–16.PubMedCrossRef
15.
go back to reference Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng. 2017;11(1):31.PubMedPubMedCentralCrossRef Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng. 2017;11(1):31.PubMedPubMedCentralCrossRef
16.
go back to reference Corcione CE, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, et al. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram Int. 2019;45(2):2803–10.CrossRef Corcione CE, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, et al. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram Int. 2019;45(2):2803–10.CrossRef
17.
go back to reference Buj-Corral I, Bagheri A, Petit-Rojo O. 3D printing of porous scaffolds with controlled porosity and pore size values. Materials. 2018;11(9):1532.PubMedCentralCrossRef Buj-Corral I, Bagheri A, Petit-Rojo O. 3D printing of porous scaffolds with controlled porosity and pore size values. Materials. 2018;11(9):1532.PubMedCentralCrossRef
18.
go back to reference Wurm MC, Möst T, Bergauer B, Rietzel D, Neukam FW, Cifuentes SC, et al. In-vitro evaluation of polylactic acid (PLA) manufactured by fused deposition modeling. J Biol Eng. 2017;11(1):1–9.CrossRef Wurm MC, Möst T, Bergauer B, Rietzel D, Neukam FW, Cifuentes SC, et al. In-vitro evaluation of polylactic acid (PLA) manufactured by fused deposition modeling. J Biol Eng. 2017;11(1):1–9.CrossRef
19.
go back to reference Talebi A, Roodbari NH, Sameni HR, Zarbakhsh S. Impact of coadministration of apigenin and bone marrow stromal cells on damaged ovaries due to chemotherapy in rat: an experimental study. Int J Reprod Biomed. 2020;18(7):551.PubMedPubMedCentral Talebi A, Roodbari NH, Sameni HR, Zarbakhsh S. Impact of coadministration of apigenin and bone marrow stromal cells on damaged ovaries due to chemotherapy in rat: an experimental study. Int J Reprod Biomed. 2020;18(7):551.PubMedPubMedCentral
20.
go back to reference Safakhah HA, Kor NM, Bazargani A, Bandegi AR, Pourbadie HG, Khoshkholgh-Sima B, et al. Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation. J Pain Res. 2017;10:1457.PubMedPubMedCentralCrossRef Safakhah HA, Kor NM, Bazargani A, Bandegi AR, Pourbadie HG, Khoshkholgh-Sima B, et al. Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation. J Pain Res. 2017;10:1457.PubMedPubMedCentralCrossRef
21.
go back to reference Sadeghi M, Bakhshandeh B, Dehghan MM, Mehrnia MR, Khojasteh A. Functional synergy of anti-mir221 and nanohydroxyapatite scaffold in bone tissue engineering of rat skull. J Mater Sci Mater Med. 2016;27(8):132.PubMedCrossRef Sadeghi M, Bakhshandeh B, Dehghan MM, Mehrnia MR, Khojasteh A. Functional synergy of anti-mir221 and nanohydroxyapatite scaffold in bone tissue engineering of rat skull. J Mater Sci Mater Med. 2016;27(8):132.PubMedCrossRef
22.
go back to reference Bahraminasab M, Arab S, Safari M, Talebi A, Kavakebian F, Doostmohammadi N. In vivo performance of Al2O3-Ti bone implants in the rat femur. J Orthop Surg Res. 2021;16(1):1–14.CrossRef Bahraminasab M, Arab S, Safari M, Talebi A, Kavakebian F, Doostmohammadi N. In vivo performance of Al2O3-Ti bone implants in the rat femur. J Orthop Surg Res. 2021;16(1):1–14.CrossRef
23.
go back to reference Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, et al. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett. 2015;9(7):583–96.CrossRef Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, et al. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett. 2015;9(7):583–96.CrossRef
24.
go back to reference Lu F, Yu H, Yan C, Yao J. Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv. 2016;6(51):46008–18.CrossRef Lu F, Yu H, Yan C, Yao J. Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv. 2016;6(51):46008–18.CrossRef
25.
go back to reference Zhang M, Thomas NL. Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol. 2011;30(2):67–79.CrossRef Zhang M, Thomas NL. Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol. 2011;30(2):67–79.CrossRef
26.
go back to reference Burgos N, Martino VP, Jiménez A. Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab. 2013;98(2):651–8.CrossRef Burgos N, Martino VP, Jiménez A. Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab. 2013;98(2):651–8.CrossRef
27.
go back to reference Revati R, Majid MA, Ridzuan M, Normahira M, Nasir NM, Gibson A. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mater Sci Eng C Mater Biol Appl. 2017;75:752–9.PubMedCrossRef Revati R, Majid MA, Ridzuan M, Normahira M, Nasir NM, Gibson A. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mater Sci Eng C Mater Biol Appl. 2017;75:752–9.PubMedCrossRef
29.
go back to reference Yang S-L, Wu Z-H, Yang W, Yang M-B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test. 2008;27(8):957–63.CrossRef Yang S-L, Wu Z-H, Yang W, Yang M-B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test. 2008;27(8):957–63.CrossRef
30.
go back to reference Wang X, Li C, Gong H. Morphological and functional changes in bone marrow mesenchymal stem cells in rats with heart failure. Exp Ther Med. 2017;13(6):2888–92.PubMedPubMedCentralCrossRef Wang X, Li C, Gong H. Morphological and functional changes in bone marrow mesenchymal stem cells in rats with heart failure. Exp Ther Med. 2017;13(6):2888–92.PubMedPubMedCentralCrossRef
31.
go back to reference Chen Q, Yuan Y, Chen T. Morphology, differentiation and adhesion molecule expression changes of bone marrow mesenchymal stem cells from acute myeloid leukemia patients. Mol Med Rep. 2014;9(1):293–8.PubMedCrossRef Chen Q, Yuan Y, Chen T. Morphology, differentiation and adhesion molecule expression changes of bone marrow mesenchymal stem cells from acute myeloid leukemia patients. Mol Med Rep. 2014;9(1):293–8.PubMedCrossRef
32.
go back to reference Schmitz N, Laverty S, Kraus V, Aigner T. Basic methods in histopathology of joint tissues. Osteoarthr Cartil. 2010;18:S113–6.CrossRef Schmitz N, Laverty S, Kraus V, Aigner T. Basic methods in histopathology of joint tissues. Osteoarthr Cartil. 2010;18:S113–6.CrossRef
33.
go back to reference Robey PG. Bone matrix proteoglycans and glycoproteins. In: Principles of bone biology. Elsevier; 2002. p. 225–37.CrossRef Robey PG. Bone matrix proteoglycans and glycoproteins. In: Principles of bone biology. Elsevier; 2002. p. 225–37.CrossRef
34.
go back to reference Masuzaki T, Ayukawa Y, Moriyama Y, Jinno Y, Atsuta I, Ogino Y, et al. The effect of a single remote injection of statin-impregnated poly (lactic-co-glycolic acid) microspheres on osteogenesis around titanium implants in rat tibia. Biomaterials. 2010;31(12):3327–34.PubMedCrossRef Masuzaki T, Ayukawa Y, Moriyama Y, Jinno Y, Atsuta I, Ogino Y, et al. The effect of a single remote injection of statin-impregnated poly (lactic-co-glycolic acid) microspheres on osteogenesis around titanium implants in rat tibia. Biomaterials. 2010;31(12):3327–34.PubMedCrossRef
35.
go back to reference Shuai C, Cheng Y, Yang W, Feng P, Yang Y, He C, et al. Magnetically actuated bone scaffold: microstructure, cell response and osteogenesis. Compos B Eng. 2020;192:107986.CrossRef Shuai C, Cheng Y, Yang W, Feng P, Yang Y, He C, et al. Magnetically actuated bone scaffold: microstructure, cell response and osteogenesis. Compos B Eng. 2020;192:107986.CrossRef
36.
go back to reference Lai Y, Li Y, Cao H, Long J, Wang X, Li L, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197:207–19.PubMedCrossRef Lai Y, Li Y, Cao H, Long J, Wang X, Li L, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197:207–19.PubMedCrossRef
37.
go back to reference Da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9–14.PubMedPubMedCentralCrossRef Da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9–14.PubMedPubMedCentralCrossRef
38.
go back to reference Zimina A, Senatov F, Choudhary R, Kolesnikov E, Anisimova N, Kiselevskiy M, et al. Biocompatibility and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruction. Polymers. 2020;12(12):2938.PubMedCentralCrossRef Zimina A, Senatov F, Choudhary R, Kolesnikov E, Anisimova N, Kiselevskiy M, et al. Biocompatibility and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruction. Polymers. 2020;12(12):2938.PubMedCentralCrossRef
39.
go back to reference Mazur K, Singh R, Friedrich RP, Genç H, Unterweger H, Sałasińska K, et al. The effect of antibacterial particle incorporation on the mechanical properties, biodegradability, and biocompatibility of PLA and PHBV composites. Macromol Mater Eng. 2020;305(9):2000244.CrossRef Mazur K, Singh R, Friedrich RP, Genç H, Unterweger H, Sałasińska K, et al. The effect of antibacterial particle incorporation on the mechanical properties, biodegradability, and biocompatibility of PLA and PHBV composites. Macromol Mater Eng. 2020;305(9):2000244.CrossRef
40.
go back to reference Llorens E, Calderón S, del Valle LJ, Puiggalí J. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2015;50:74–84.PubMedCrossRef Llorens E, Calderón S, del Valle LJ, Puiggalí J. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2015;50:74–84.PubMedCrossRef
41.
go back to reference Ayukawa Y, Ogino Y, Moriyama Y, Atsuta I, Jinno Y, Kihara M, et al. Simvastatin enhances bone formation around titanium implants in rat tibiae. J Oral Rehabil. 2010;37(2):123–30.PubMedCrossRef Ayukawa Y, Ogino Y, Moriyama Y, Atsuta I, Jinno Y, Kihara M, et al. Simvastatin enhances bone formation around titanium implants in rat tibiae. J Oral Rehabil. 2010;37(2):123–30.PubMedCrossRef
42.
go back to reference Tarafder S, Davies NM, Bandyopadhyay A, Bose S. 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci. 2013;1(12):1250.PubMedPubMedCentralCrossRef Tarafder S, Davies NM, Bandyopadhyay A, Bose S. 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci. 2013;1(12):1250.PubMedPubMedCentralCrossRef
43.
go back to reference Zhang Y, Zhang M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J Mater Sci Mater Med. 2004;15(3):255–60.PubMedCrossRef Zhang Y, Zhang M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J Mater Sci Mater Med. 2004;15(3):255–60.PubMedCrossRef
44.
go back to reference Gordon MY, Levičar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F, et al. Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells. 2006;24(7):1822–30.PubMedCrossRef Gordon MY, Levičar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F, et al. Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells. 2006;24(7):1822–30.PubMedCrossRef
45.
go back to reference Marei NH, El-Sherbiny IM, Lotfy A, El-Badawy A, El-Badri N. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int J Biol Macromol. 2016;93:9–19.PubMedCrossRef Marei NH, El-Sherbiny IM, Lotfy A, El-Badawy A, El-Badri N. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int J Biol Macromol. 2016;93:9–19.PubMedCrossRef
47.
go back to reference Tytgat L, Kollert MR, Van Damme L, Thienpont H, Ottevaere H, Duda GN, et al. Evaluation of 3D printed Gelatin-based scaffolds with varying pore size for MSC-based adipose tissue engineering. Macromol Biosci. 2020;20(4):1900364.CrossRef Tytgat L, Kollert MR, Van Damme L, Thienpont H, Ottevaere H, Duda GN, et al. Evaluation of 3D printed Gelatin-based scaffolds with varying pore size for MSC-based adipose tissue engineering. Macromol Biosci. 2020;20(4):1900364.CrossRef
48.
go back to reference Qazi TH, Tytgat L, Dubruel P, Duda GN, Van Vlierberghe S, Geissler S. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects. ACS Biomater Sci Eng. 2019;5(10):5348–58.PubMedCrossRef Qazi TH, Tytgat L, Dubruel P, Duda GN, Van Vlierberghe S, Geissler S. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects. ACS Biomater Sci Eng. 2019;5(10):5348–58.PubMedCrossRef
49.
go back to reference Teixeira BN, Aprile P, Mendonça RH, Kelly DJ, Thiré RMDSM. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater. 2019;107(1):37–49.PubMedCrossRef Teixeira BN, Aprile P, Mendonça RH, Kelly DJ, Thiré RMDSM. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater. 2019;107(1):37–49.PubMedCrossRef
50.
go back to reference Bahraminasab M, Edwards KL. Biocomposites for hard tissue replacement and repair. In: Sidhu SS, Bains PS, Zitoune R, Yazdani M, editors. Futuristic composites. Materials horizons: from nature to nanomaterials. Singapore: Springer; 2018. p. 281–96.CrossRef Bahraminasab M, Edwards KL. Biocomposites for hard tissue replacement and repair. In: Sidhu SS, Bains PS, Zitoune R, Yazdani M, editors. Futuristic composites. Materials horizons: from nature to nanomaterials. Singapore: Springer; 2018. p. 281–96.CrossRef
51.
go back to reference Bahraminasab M, Edwards KL. Computational tailoring of orthopaedic biomaterials: design principles and aiding tools. In: Bains PS, Sidhu SS, Bahraminasab M, Prakash C, editors. Biomaterials in orthopaedics and bone regeneration. Singapore: Springer; 2019. p. 15–31.CrossRef Bahraminasab M, Edwards KL. Computational tailoring of orthopaedic biomaterials: design principles and aiding tools. In: Bains PS, Sidhu SS, Bahraminasab M, Prakash C, editors. Biomaterials in orthopaedics and bone regeneration. Singapore: Springer; 2019. p. 15–31.CrossRef
52.
go back to reference Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny J. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95(11):2126–46.CrossRef Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny J. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95(11):2126–46.CrossRef
53.
go back to reference Tatullo M, Spagnuolo G, Codispoti B, Zamparini F, Zhang A, Esposti MD, et al. PLA-based mineral-doped scaffolds seeded with human periapical cyst-derived MSCs: a promising tool for regenerative healing in dentistry. Materials. 2019;12(4):597.PubMedCentralCrossRef Tatullo M, Spagnuolo G, Codispoti B, Zamparini F, Zhang A, Esposti MD, et al. PLA-based mineral-doped scaffolds seeded with human periapical cyst-derived MSCs: a promising tool for regenerative healing in dentistry. Materials. 2019;12(4):597.PubMedCentralCrossRef
54.
go back to reference Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 2016;46:256–65.PubMedCrossRef Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 2016;46:256–65.PubMedCrossRef
55.
go back to reference Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis. 2016;3(1):56–71.PubMedCrossRef Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis. 2016;3(1):56–71.PubMedCrossRef
Metadata
Title
The healing of bone defects by cell-free and stem cell-seeded 3D-printed PLA tissue-engineered scaffolds
Authors
Marjan Bahraminasab
Athar Talebi
Nesa Doostmohammadi
Samaneh Arab
Ali Ghanbari
Sam Zarbakhsh
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Bone Defect
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2022
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-022-03213-2

Other articles of this Issue 1/2022

Journal of Orthopaedic Surgery and Research 1/2022 Go to the issue