Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Influence of daily imaging on plan quality and normal tissue toxicity for prostate cancer radiotherapy

Authors: Katharina Bell, Marina Heitfeld, Norbert Licht, Christian Rübe, Yvonne Dzierma

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Modern radiotherapy offers various possibilities for image guided verification of patient positioning. Different clinically relevant IGRT (image guided radiotherapy) scenarios were considered with regard to their influence on dosimetric plan quality and normal tissue complication probability (NTCP).

Methods

This study is based on treatment plans of 50 prostate patients. We evaluate the clinically performed IGRT and simulate the influence of different daily IGRT scenarios on plan quality. Imaging doses of planar and cone-beam-CT (CBCT) images for three different energies (6 MV, 1 MV and 121 kV) were added to the treatment plans. The plan quality of the different scenarios was assessed by a visual inspection of the dose distribution and dose-volume-histogram (DVH) and a statistical analysis of DVH criteria. In addition, an assessment of the normal tissue complication probability was performed.

Results

Daily 1MV-CBCTs result in undesirable high dose regions in the target volume. The DVH shows that the scenarios with actual imaging performed, daily kV-CBCT and daily 6MV imaging (1x CBCT, 4x planar images per week) do not differ exceedingly from the original plan; especially imaging with daily kV-CBCT has little influence to the sparing of organs at risk. In contrast, daily 1MV- CBCT entails an additional dose of up to two fraction doses. Due to the additional dose amount some DVH constraints for plan acceptability could no longer be satisfied, especially for the daily 1MV-CBCT scenario. This scenario also shows increased NTCP for the rectum.

Conclusion

Daily kV-CBCT has negligible influence on plan quality and is commendable for the clinical routine. If no kV-modality is available, a daily IGRT scenario with one CBCT per week and planar axial images on the other days should be preferred over daily MV-CBCT.
Literature
1.
go back to reference Suzuki M, Nishimura Y, Nakamatsu K, et al. Analysis of interfractional set-up errors and intrafractional organmotions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins. Radiother Oncol. 2006;78:283–90.CrossRefPubMed Suzuki M, Nishimura Y, Nakamatsu K, et al. Analysis of interfractional set-up errors and intrafractional organmotions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins. Radiother Oncol. 2006;78:283–90.CrossRefPubMed
2.
go back to reference Oehler C, Lang S, Dimmerling P, et al. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol. 2014;9:229.CrossRefPubMedPubMedCentral Oehler C, Lang S, Dimmerling P, et al. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol. 2014;9:229.CrossRefPubMedPubMedCentral
4.
go back to reference Stroom JC, de Boer HC, Huizenga H, et al. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys. 1999;43:905–19.CrossRefPubMed Stroom JC, de Boer HC, Huizenga H, et al. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys. 1999;43:905–19.CrossRefPubMed
5.
go back to reference Huang K, Palma DA, Scott D, et al. Inter- and intrafraction uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2011;84(2):402–7.CrossRef Huang K, Palma DA, Scott D, et al. Inter- and intrafraction uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2011;84(2):402–7.CrossRef
6.
go back to reference Ost P, De Meerleer G, De Gersem W, et al. Analysis of prostate bed motion using daily cone-beam computed tomography during postprostatectomy radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(1):188–94.CrossRefPubMed Ost P, De Meerleer G, De Gersem W, et al. Analysis of prostate bed motion using daily cone-beam computed tomography during postprostatectomy radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(1):188–94.CrossRefPubMed
7.
go back to reference Mayyas E, Chetty IJ, Chetvertkov M, Wen N, et al. Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: a prospective study. Med Phys. 2013;40:041707.CrossRefPubMed Mayyas E, Chetty IJ, Chetvertkov M, Wen N, et al. Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: a prospective study. Med Phys. 2013;40:041707.CrossRefPubMed
8.
go back to reference Piotrowski T, Kaczmarek K, Bajon T, et al. Evaluation of image-guidance strategies for prostate cancer. Technol Cancer Res Treat. 2014;13(6):583–91.PubMedPubMedCentral Piotrowski T, Kaczmarek K, Bajon T, et al. Evaluation of image-guidance strategies for prostate cancer. Technol Cancer Res Treat. 2014;13(6):583–91.PubMedPubMedCentral
9.
go back to reference Fast MF, Krauss A, Oelfke U, Nill S. Position detection accuracy of a novel linac-mounted intrafractional x-ray imaging system. Med Phys. 2012a; 39:109–118. Fast MF, Krauss A, Oelfke U, Nill S. Position detection accuracy of a novel linac-mounted intrafractional x-ray imaging system. Med Phys. 2012a; 39:109–118.
10.
go back to reference Faddegon BA, Wu V, Pouliot J, et al. Low dose megavoltage cone beam computed tomography with an unflattened 4MV beam from a carbon target. Med Phys. 2008;35(12):5777–86.CrossRefPubMed Faddegon BA, Wu V, Pouliot J, et al. Low dose megavoltage cone beam computed tomography with an unflattened 4MV beam from a carbon target. Med Phys. 2008;35(12):5777–86.CrossRefPubMed
11.
go back to reference Ostapiak OZ, O’Brien PF, Faddegon BA. Megavoltage imaging with low Z targets: Implementation and characterization of an investigational system. Med Phys. 1998;25:1910–8.CrossRefPubMed Ostapiak OZ, O’Brien PF, Faddegon BA. Megavoltage imaging with low Z targets: Implementation and characterization of an investigational system. Med Phys. 1998;25:1910–8.CrossRefPubMed
12.
go back to reference Akino Y, Koizumi M, Sumida I, et al. Megavoltage cone beam computed tomography dose and the necessity of reoptimization for imaging dose-integrated intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82:1715–22.CrossRefPubMed Akino Y, Koizumi M, Sumida I, et al. Megavoltage cone beam computed tomography dose and the necessity of reoptimization for imaging dose-integrated intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82:1715–22.CrossRefPubMed
13.
go back to reference Amer A, Marchant T, Sykes J, et al. Imaging doses from the Elekta Synergy X-ray cone beam CT system. Brit J Radiol. 2007;80:476–82.CrossRefPubMed Amer A, Marchant T, Sykes J, et al. Imaging doses from the Elekta Synergy X-ray cone beam CT system. Brit J Radiol. 2007;80:476–82.CrossRefPubMed
14.
go back to reference Beltran C, Lukose R, Gangadharan B, et al. Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J App Clin Med Phys. 2009;10:3023. Beltran C, Lukose R, Gangadharan B, et al. Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J App Clin Med Phys. 2009;10:3023.
15.
go back to reference Ariyante H, Chesham H, Pettingell J, et al. Image-guided radiotherapy for prostate cancer with cone beam CT: dosimetric effects of imaging frequency and PTV margin. Radiother Oncol. 2016;121(1):103–8.CrossRef Ariyante H, Chesham H, Pettingell J, et al. Image-guided radiotherapy for prostate cancer with cone beam CT: dosimetric effects of imaging frequency and PTV margin. Radiother Oncol. 2016;121(1):103–8.CrossRef
17.
go back to reference Dzierma Y, Ames E, Nuesken F, et al. Image quality and dose distributions of three linac-based imaging modalities. Strahlenther Onkol. 2015;191:365–74.CrossRefPubMed Dzierma Y, Ames E, Nuesken F, et al. Image quality and dose distributions of three linac-based imaging modalities. Strahlenther Onkol. 2015;191:365–74.CrossRefPubMed
18.
go back to reference Alaei P, Spezi E. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system. J App Clin Med Phys. 2012;13:19–33. Alaei P, Spezi E. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system. J App Clin Med Phys. 2012;13:19–33.
19.
go back to reference Alaei P, Ding G, Guan H. Inclusion of the dose from kilovoltage cone beam CT in the radiation therapy treatment plans. Med Phys. 2012;37:244–8.CrossRef Alaei P, Ding G, Guan H. Inclusion of the dose from kilovoltage cone beam CT in the radiation therapy treatment plans. Med Phys. 2012;37:244–8.CrossRef
20.
go back to reference Alaei P, Spezi E, Reynolds M. Dose calculation and treatment plan optimization including imaging dose from kilovoltage cone beam computed tomography. Acta Oncol. 2014;53(6):839–44.CrossRefPubMed Alaei P, Spezi E, Reynolds M. Dose calculation and treatment plan optimization including imaging dose from kilovoltage cone beam computed tomography. Acta Oncol. 2014;53(6):839–44.CrossRefPubMed
21.
go back to reference Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy. Phys Med. 2015;31(7):647–58.CrossRefPubMed Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy. Phys Med. 2015;31(7):647–58.CrossRefPubMed
22.
go back to reference Dzierma Y, Beys M, Palm J, et al. Set-up errors and planning margins in planar and CBCT image-guided radiotherapy using three different imaging systems: a clinical study for prostate and head-and-neck cancer. Phys Med. 2015;31(8):1055–9.CrossRefPubMed Dzierma Y, Beys M, Palm J, et al. Set-up errors and planning margins in planar and CBCT image-guided radiotherapy using three different imaging systems: a clinical study for prostate and head-and-neck cancer. Phys Med. 2015;31(8):1055–9.CrossRefPubMed
23.
go back to reference Dzierma Y, Nuesken F, Licht NP, Ruebe C. Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target. Strahlenther Onkol. 2013;189:566–72.CrossRefPubMed Dzierma Y, Nuesken F, Licht NP, Ruebe C. Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target. Strahlenther Onkol. 2013;189:566–72.CrossRefPubMed
24.
go back to reference Dzierma Y, Nuesken F, Otto W, et al. Dosimetry of an in-line kilovoltage imaging system and implementation in treatment planning. Int J Radiat Oncol Biol Phys. 2014;88(4):913–9.CrossRefPubMed Dzierma Y, Nuesken F, Otto W, et al. Dosimetry of an in-line kilovoltage imaging system and implementation in treatment planning. Int J Radiat Oncol Biol Phys. 2014;88(4):913–9.CrossRefPubMed
25.
go back to reference Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62(2):249–62.CrossRefPubMed Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62(2):249–62.CrossRefPubMed
26.
go back to reference Löf J. Development of a general framework for optimization of radiation therapy. PhD thesis. Stockholm: Stockholm University; 2000. Löf J. Development of a general framework for optimization of radiation therapy. PhD thesis. Stockholm: Stockholm University; 2000.
27.
go back to reference Gulliford S, Partridge M, Sydes M, et al. Parameters for the Lyman Kutcher Burman (LKB) model of normal tissue complication probability (NTCP for specific rectal complications observed in clinical pratise. Radiother Oncol. 2012;102:347–51.CrossRefPubMed Gulliford S, Partridge M, Sydes M, et al. Parameters for the Lyman Kutcher Burman (LKB) model of normal tissue complication probability (NTCP for specific rectal complications observed in clinical pratise. Radiother Oncol. 2012;102:347–51.CrossRefPubMed
28.
go back to reference Philips Medical Systems. Pinnacle3 version 9.2. Treatment planning system, Plan evaluation tools. 2015. p. 40. Philips Medical Systems. Pinnacle3 version 9.2. Treatment planning system, Plan evaluation tools. 2015. p. 40.
29.
go back to reference Schaake W, Van der Schaaf A, van Dijk L, et al. Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer patients. Radiother Oncol. 2016;119:381–7.CrossRefPubMed Schaake W, Van der Schaaf A, van Dijk L, et al. Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer patients. Radiother Oncol. 2016;119:381–7.CrossRefPubMed
30.
go back to reference Rancati T, Fiori C, Fellin G, et al. Inclusion of clinical risk factors into NTCP modelling of late rectal toxicity after high dose radiotherapy for prostate cancer. Radiother Oncol. 2011;100:124–30.CrossRefPubMed Rancati T, Fiori C, Fellin G, et al. Inclusion of clinical risk factors into NTCP modelling of late rectal toxicity after high dose radiotherapy for prostate cancer. Radiother Oncol. 2011;100:124–30.CrossRefPubMed
31.
go back to reference Defranene G, van den Bergh L, Al-Mamgani A, et al. The benefits of including clinical factors in rectal normal tissue complication probability modeling after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(3):1233–42.CrossRef Defranene G, van den Bergh L, Al-Mamgani A, et al. The benefits of including clinical factors in rectal normal tissue complication probability modeling after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(3):1233–42.CrossRef
32.
go back to reference Kumar AS, Singh IR, Sharma SD, et al. Radiation dose measurements during kilovoltage-cone beam computed tomography imaging in radiotherapy. J Cancer Res Ther. 2016;12(2):858–63.CrossRefPubMed Kumar AS, Singh IR, Sharma SD, et al. Radiation dose measurements during kilovoltage-cone beam computed tomography imaging in radiotherapy. J Cancer Res Ther. 2016;12(2):858–63.CrossRefPubMed
Metadata
Title
Influence of daily imaging on plan quality and normal tissue toxicity for prostate cancer radiotherapy
Authors
Katharina Bell
Marina Heitfeld
Norbert Licht
Christian Rübe
Yvonne Dzierma
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0757-9

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue