Skip to main content
Top
Published in: Chiropractic & Manual Therapies 1/2015

Open Access 01-12-2015 | Research

Reliability of diagnostic ultrasound in measuring the multifidus muscle

Authors: Eirik Johan Skeie, Jan Arve Borge, Charlotte Leboeuf-Yde, Jenni Bolton, Niels Wedderkopp

Published in: Chiropractic & Manual Therapies | Issue 1/2015

Login to get access

Abstract

Background

Ultrasound is frequently used to measure activity in the lumbar multifidus muscle (LMM). However previous reliability studies on diagnostic ultrasound and LMM have included a limited number of subjects and few have used Bland-Altman’s Limits of Agreement (LOA). Further one does not know if activity affects the subjects’ ability to contract the LMM.

Methods

From January 2012 to December 2012 an inter- and intra-examiner reliability study was carried out in a clinical setting. It consisted of a total of four experiments with 30 subjects in each study. Two experienced examiners performed all measurements. Ultrasound measurements were made of: 1. the LMM in the resting state, 2. during a contracted state, 3. on subsequent days, and, before and after walking. Reliability and agreement was tested for 1. resting LMM, 2. contracted LMM, and 3. thickness change in the LMM. Mean values of three measurements were used for statistical analysis for each spinal level. The intra-class correlation coefficient (ICC) 3.1 and 3.2 was used to test for reliability, and Bland-Altman’s LOA method to test for agreement.

Results

All of the studies indicate high levels of reliability, but as the LMM thickness increased (increasing contraction) the agreement between examiners was poorer than for low levels of contraction.

Conclusions

The use of diagnostic ultrasound to measure the LMM seems to be reliable in subjects who have little or no change in thickness of the LMM with contraction.
Literature
1.
go back to reference Donelson R, McIntosh G, Hall H. Is it time to rethink the typical course of low back pain? PMR. 2012;4(6):394–401.CrossRef Donelson R, McIntosh G, Hall H. Is it time to rethink the typical course of low back pain? PMR. 2012;4(6):394–401.CrossRef
2.
go back to reference Kjaer P, Bendix T, Sorensen JS, Korsholm L, Leboeuf-Yde C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. 2007;5:2. doi:10.1186/1741-7015-5-2.CrossRefPubMedCentralPubMed Kjaer P, Bendix T, Sorensen JS, Korsholm L, Leboeuf-Yde C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. 2007;5:2. doi:10.1186/1741-7015-5-2.CrossRefPubMedCentralPubMed
3.
go back to reference Zhao WP, Kawaguchi Y, Matsui H, Kanamori M, Kimura T. Histochemistry and morphology of the multifidus muscle in lumbar disc herniation: comparative study between diseased and normal sides. Spine. 2000;25(17):2191–9.CrossRefPubMed Zhao WP, Kawaguchi Y, Matsui H, Kanamori M, Kimura T. Histochemistry and morphology of the multifidus muscle in lumbar disc herniation: comparative study between diseased and normal sides. Spine. 2000;25(17):2191–9.CrossRefPubMed
4.
go back to reference Yoshihara K, Nakayama Y, Fujii N, Aoki T, Ito H. Atrophy of the multifidus muscle in patients with lumbar disk herniation: histochemical and electromyographic study. Orthopedics. 2003;26(5):493–5.PubMed Yoshihara K, Nakayama Y, Fujii N, Aoki T, Ito H. Atrophy of the multifidus muscle in patients with lumbar disk herniation: histochemical and electromyographic study. Orthopedics. 2003;26(5):493–5.PubMed
5.
go back to reference Kader DF, Wardlaw D, Smith FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000;55(2):145–9.CrossRefPubMed Kader DF, Wardlaw D, Smith FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000;55(2):145–9.CrossRefPubMed
6.
go back to reference Hides J, Gilmore C, Stanton W, Bohlscheid E. Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther. 2008;13(1):43–9.CrossRefPubMed Hides J, Gilmore C, Stanton W, Bohlscheid E. Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther. 2008;13(1):43–9.CrossRefPubMed
7.
go back to reference Danneels L, Coorevits P, Cools A, Vanderstraeten G, Cambier D, Witvrouw E, et al. Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain. Eur Spine J. 2002;11(1):13–9.CrossRefPubMedCentralPubMed Danneels L, Coorevits P, Cools A, Vanderstraeten G, Cambier D, Witvrouw E, et al. Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain. Eur Spine J. 2002;11(1):13–9.CrossRefPubMedCentralPubMed
8.
go back to reference Parkkola RR, Rytökoski UU, Kormano MM. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine. 1993;18(7):830–6.CrossRefPubMed Parkkola RR, Rytökoski UU, Kormano MM. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine. 1993;18(7):830–6.CrossRefPubMed
9.
go back to reference Wallwork TL, Stanton WR, Freke M, Hides JA. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Man Ther. 2008;14(5):496–500.CrossRefPubMed Wallwork TL, Stanton WR, Freke M, Hides JA. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Man Ther. 2008;14(5):496–500.CrossRefPubMed
10.
go back to reference Lee HI, Song J, Lee HS, Kang JY, Kim M, Ryu JS. Association between cross-sectional areas of lumbar muscles on magnetic resonance imaging and chronicity of low back pain. Ann Rehabil Med. 2011;35(6):852–9.CrossRefPubMedCentralPubMed Lee HI, Song J, Lee HS, Kang JY, Kim M, Ryu JS. Association between cross-sectional areas of lumbar muscles on magnetic resonance imaging and chronicity of low back pain. Ann Rehabil Med. 2011;35(6):852–9.CrossRefPubMedCentralPubMed
11.
go back to reference Heydari A, Nargol AVF, Jones APC, Humphrey AR, Greenough CG. EMG analysis of lumbar paraspinal muscles as a predictor of the risk of low-back pain. Eur Spine J. 2010;19(7):1145–52.CrossRefPubMedCentralPubMed Heydari A, Nargol AVF, Jones APC, Humphrey AR, Greenough CG. EMG analysis of lumbar paraspinal muscles as a predictor of the risk of low-back pain. Eur Spine J. 2010;19(7):1145–52.CrossRefPubMedCentralPubMed
12.
go back to reference Wong AYL, Parent EC, Funabashi M, Stanton TR, Kawchuk GN. Do various baseline characteristics of transversus abdominis and lumbar multifidus predict clinical outcomes in non-specific low back pain? A systematic review. Pain. 2013;154(12):2589–602.CrossRefPubMed Wong AYL, Parent EC, Funabashi M, Stanton TR, Kawchuk GN. Do various baseline characteristics of transversus abdominis and lumbar multifidus predict clinical outcomes in non-specific low back pain? A systematic review. Pain. 2013;154(12):2589–602.CrossRefPubMed
13.
go back to reference Zielinski KA, Henry SM, Ouellette-Morton RH, DeSarno MJ. Lumbar multifidus muscle thickness does not predict patients with low back pain who improve with trunk stabilization exercises. Arch Phys Med Rehabil. 2013;94(6):1132–8.CrossRefPubMedCentralPubMed Zielinski KA, Henry SM, Ouellette-Morton RH, DeSarno MJ. Lumbar multifidus muscle thickness does not predict patients with low back pain who improve with trunk stabilization exercises. Arch Phys Med Rehabil. 2013;94(6):1132–8.CrossRefPubMedCentralPubMed
14.
go back to reference Danneels L, Vanderstraeten G, Cambier D, Witvrouw E, Bourgois J, Dankaerts W, et al. Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br J Sports Med. 2001;35(3):186–91.CrossRefPubMedCentralPubMed Danneels L, Vanderstraeten G, Cambier D, Witvrouw E, Bourgois J, Dankaerts W, et al. Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br J Sports Med. 2001;35(3):186–91.CrossRefPubMedCentralPubMed
15.
go back to reference Weber BRB, Grob DD, Dvorák JJ, Müntener MM. Posterior surgical approach to the lumbar spine and its effect on the multifidus muscle. Spine. 1997;22(15):1765–72.CrossRefPubMed Weber BRB, Grob DD, Dvorák JJ, Müntener MM. Posterior surgical approach to the lumbar spine and its effect on the multifidus muscle. Spine. 1997;22(15):1765–72.CrossRefPubMed
16.
go back to reference Hides JA, Jull GA, Richardson CA. Long-term effects of specific stabilizing exercises for first-episode low back pain. Spine. 2001;26(11):E243–8.CrossRefPubMed Hides JA, Jull GA, Richardson CA. Long-term effects of specific stabilizing exercises for first-episode low back pain. Spine. 2001;26(11):E243–8.CrossRefPubMed
17.
go back to reference Macdonald D, Moseley GL, Hodges PW. Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain. 2009;142(3):183–8.CrossRefPubMed Macdonald D, Moseley GL, Hodges PW. Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain. 2009;142(3):183–8.CrossRefPubMed
18.
go back to reference Kiesel KB, Uhl T, Underwood FB, Nitz AJ. Rehabilitative ultrasound measurement of select trunk muscle activation during induced pain. Man Ther. 2008;13(2):132–8.CrossRefPubMed Kiesel KB, Uhl T, Underwood FB, Nitz AJ. Rehabilitative ultrasound measurement of select trunk muscle activation during induced pain. Man Ther. 2008;13(2):132–8.CrossRefPubMed
19.
go back to reference Hodges PW, Pengel LHM, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. 2003;27(6):682–92.CrossRefPubMed Hodges PW, Pengel LHM, Herbert RD, Gandevia SC. Measurement of muscle contraction with ultrasound imaging. Muscle Nerve. 2003;27(6):682–92.CrossRefPubMed
20.
go back to reference Kiesel KB, Uhl TL, Underwood FB, Rodd DW, Nitz AJ. Measurement of lumbar multifidus muscle contraction with rehabilitative ultrasound imaging. Man Ther. 2007;12(2):161–6.CrossRefPubMed Kiesel KB, Uhl TL, Underwood FB, Rodd DW, Nitz AJ. Measurement of lumbar multifidus muscle contraction with rehabilitative ultrasound imaging. Man Ther. 2007;12(2):161–6.CrossRefPubMed
21.
go back to reference Hebert JJ, Koppenhaver SL, Parent EC, Fritz JM. A systematic review of the reliability of rehabilitative ultrasound imaging for the quantitative assessment of the abdominal and lumbar trunk muscles. Spine. 2009;34(23):E848–56.CrossRefPubMed Hebert JJ, Koppenhaver SL, Parent EC, Fritz JM. A systematic review of the reliability of rehabilitative ultrasound imaging for the quantitative assessment of the abdominal and lumbar trunk muscles. Spine. 2009;34(23):E848–56.CrossRefPubMed
22.
go back to reference Koppenhaver SL, Parent EC, Teyhen DS, Hebert JJ, Fritz JM. The effect of averaging multiple trials on measurement error during ultrasound imaging of transversus abdominis and lumbar multifidus muscles in individuals with low back pain. J Orthop Sports Phys Ther. 2009;39(8):604–11.CrossRefPubMed Koppenhaver SL, Parent EC, Teyhen DS, Hebert JJ, Fritz JM. The effect of averaging multiple trials on measurement error during ultrasound imaging of transversus abdominis and lumbar multifidus muscles in individuals with low back pain. J Orthop Sports Phys Ther. 2009;39(8):604–11.CrossRefPubMed
23.
go back to reference Larivière C, Gagnon D, De Oliveira E, Henry SM, Mecheri H, Dumas J-P. Ultrasound measures of the lumbar multifidus: effect of task and transducer position on reliability. PMR. 2013;5(8):678–87.CrossRef Larivière C, Gagnon D, De Oliveira E, Henry SM, Mecheri H, Dumas J-P. Ultrasound measures of the lumbar multifidus: effect of task and transducer position on reliability. PMR. 2013;5(8):678–87.CrossRef
24.
go back to reference Wallwork TL, Hides JA, Stanton WR. Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther. 2007;37(10):608–12.CrossRefPubMed Wallwork TL, Hides JA, Stanton WR. Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther. 2007;37(10):608–12.CrossRefPubMed
25.
go back to reference Van K, Hides JA, Richardson CA. The use of real-time ultrasound imaging for biofeedback of lumbar multifidus muscle contraction in healthy subjects. J Orthop Sports Phys Ther. 2006;36(12):920–5.CrossRefPubMed Van K, Hides JA, Richardson CA. The use of real-time ultrasound imaging for biofeedback of lumbar multifidus muscle contraction in healthy subjects. J Orthop Sports Phys Ther. 2006;36(12):920–5.CrossRefPubMed
26.
go back to reference Koppenhaver SL, Hebert JJ, Fritz JM, Parent EC, Teyhen DS, Magel JS. Reliability of rehabilitative ultrasound imaging of the transversus abdominis and lumbar multifidus muscles. Arch Phys Med Rehabil. 2009;90(1):87–94.CrossRefPubMed Koppenhaver SL, Hebert JJ, Fritz JM, Parent EC, Teyhen DS, Magel JS. Reliability of rehabilitative ultrasound imaging of the transversus abdominis and lumbar multifidus muscles. Arch Phys Med Rehabil. 2009;90(1):87–94.CrossRefPubMed
27.
go back to reference Wong AYL, Parent EC, Kawchuk GN. Reliability of two ultrasonic imaging analysis methods in quantifying lumbar multifidus thickness. J Orthop Sports Phys Ther. 2012;43(4):251–62.CrossRefPubMed Wong AYL, Parent EC, Kawchuk GN. Reliability of two ultrasonic imaging analysis methods in quantifying lumbar multifidus thickness. J Orthop Sports Phys Ther. 2012;43(4):251–62.CrossRefPubMed
28.
go back to reference Gracovetsky S. An hypothesis for the role of the spine in human locomotion: a challenge to current thinking. J Biomed Eng. 1985;7(3):205–16.CrossRefPubMed Gracovetsky S. An hypothesis for the role of the spine in human locomotion: a challenge to current thinking. J Biomed Eng. 1985;7(3):205–16.CrossRefPubMed
29.
go back to reference Saunders SW, Schache A, Rath D, Hodges PW. Changes in three dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and mode of locomotion. Clin Biomech. 2005;20(8):784–93.CrossRef Saunders SW, Schache A, Rath D, Hodges PW. Changes in three dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and mode of locomotion. Clin Biomech. 2005;20(8):784–93.CrossRef
30.
go back to reference Zaki R, Bulgiba A, Ismail R, Ismail NA. Statistical methods used to test for agreement of medical instruments measuring continuous variables in method comparison studies: a systematic review. PLoS One. 2011;7(5):e37908. doi:10.1371/journal.pone.0037908.CrossRef Zaki R, Bulgiba A, Ismail R, Ismail NA. Statistical methods used to test for agreement of medical instruments measuring continuous variables in method comparison studies: a systematic review. PLoS One. 2011;7(5):e37908. doi:10.1371/journal.pone.0037908.CrossRef
31.
go back to reference Hanneman SK. Design, analysis, and interpretation of method-comparison studies. Adv Crit Care. 2008;19(2):223–34.CrossRef Hanneman SK. Design, analysis, and interpretation of method-comparison studies. Adv Crit Care. 2008;19(2):223–34.CrossRef
32.
go back to reference Bland JMJ, Altman DGD. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed Bland JMJ, Altman DGD. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefPubMed
33.
go back to reference Kottner JJ, Audige LL, Brorson SS, Donner AA, Gajewski BJB, Hróbjartsson AA, et al. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. Int J Nurs Stud. 2011;48(6):661–71.CrossRefPubMed Kottner JJ, Audige LL, Brorson SS, Donner AA, Gajewski BJB, Hróbjartsson AA, et al. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. Int J Nurs Stud. 2011;48(6):661–71.CrossRefPubMed
34.
go back to reference Rankin G, Stokes M. Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehabil. 1998;12(3):187–99.CrossRefPubMed Rankin G, Stokes M. Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehabil. 1998;12(3):187–99.CrossRefPubMed
35.
go back to reference Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998;7(3):301–17.CrossRefPubMed Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998;7(3):301–17.CrossRefPubMed
36.
go back to reference Teyhen DS, Childs JD, Stokes MJ, Wright AC, Dugan JL, George SZ. Abdominal and lumbar multifidus muscle size and symmetry at rest and during contracted states normative reference ranges. J Ultrasound Med. 2012;31(7):1099–110.PubMed Teyhen DS, Childs JD, Stokes MJ, Wright AC, Dugan JL, George SZ. Abdominal and lumbar multifidus muscle size and symmetry at rest and during contracted states normative reference ranges. J Ultrasound Med. 2012;31(7):1099–110.PubMed
Metadata
Title
Reliability of diagnostic ultrasound in measuring the multifidus muscle
Authors
Eirik Johan Skeie
Jan Arve Borge
Charlotte Leboeuf-Yde
Jenni Bolton
Niels Wedderkopp
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Chiropractic & Manual Therapies / Issue 1/2015
Electronic ISSN: 2045-709X
DOI
https://doi.org/10.1186/s12998-015-0059-6

Other articles of this Issue 1/2015

Chiropractic & Manual Therapies 1/2015 Go to the issue