Skip to main content
Top
Published in: Molecular Pain 1/2015

Open Access 01-12-2015 | Review

mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia

Authors: Brianna Marie Lutz, Sam Nia, Ming Xiong, Yuan-Xiang Tao, Alex Bekker

Published in: Molecular Pain | Issue 1/2015

Login to get access

Abstract

Chronic pain is a major public health problem with limited treatment options. Opioids remain a routine treatment for chronic pain, but extended exposure to opioid therapy can produce opioid tolerance and hyperalgesia. Although the mechanisms underlying chronic pain, opioid-induced tolerance, and opioid-induced hyperalgesia remain to be uncovered, mammalian target of rapamycin (mTOR) is involved in these disorders. The mTOR complex 1 and its triggered protein translation are required for the initiation and maintenance of chronic pain (including cancer pain) and opioid-induced tolerance/hyperalgesia. Given that mTOR inhibitors are FDA-approved drugs and an mTOR inhibitor is approved for the treatment of several cancers, these findings suggest that mTOR inhibitors will likely have multiple clinical benefits, including anticancer, antinociception/anti-cancer pain, and antitolerance/hyperalgesia. This paper compares the role of mTOR complex 1 in chronic pain, opioid-induced tolerance, and opioid-induced hyperalgesia.
Literature
1.
go back to reference Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH. The prevalence of chronic pain in united states adults: results of an internet-based survey. The Journal of Pain. 2010;11(11):1230–9.PubMedCrossRef Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH. The prevalence of chronic pain in united states adults: results of an internet-based survey. The Journal of Pain. 2010;11(11):1230–9.PubMedCrossRef
2.
go back to reference Pizzo PA, Clark NM. Alleviating suffering 101–pain releif in the United States. N Engl J Med. 2012;366:197–9.PubMedCrossRef Pizzo PA, Clark NM. Alleviating suffering 101–pain releif in the United States. N Engl J Med. 2012;366:197–9.PubMedCrossRef
5.
go back to reference Deyo RA, Von Korff M, Duhrkoop D. Opioids for low back pain. BMJ. 2015;350. Deyo RA, Von Korff M, Duhrkoop D. Opioids for low back pain. BMJ. 2015;350.
7.
go back to reference Mao J, Mayer DJ. Spinal cord neuroplasticity following repeated opioid exposure and its relation to pathological pain. Ann N Y Acad Sci. 2001;933:175–84.PubMedCrossRef Mao J, Mayer DJ. Spinal cord neuroplasticity following repeated opioid exposure and its relation to pathological pain. Ann N Y Acad Sci. 2001;933:175–84.PubMedCrossRef
8.
go back to reference Mayer DJ, Mao J, Holt J, Price DD. Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci U S A. 1999;96(14):7731–6.PubMedCentralPubMedCrossRef Mayer DJ, Mao J, Holt J, Price DD. Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci U S A. 1999;96(14):7731–6.PubMedCentralPubMedCrossRef
9.
go back to reference Zeitz KP, Malmberg AB, Gilbert H, Basbaum AI. Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKC gamma mutant mice. Pain. 2001;94(3):245–53.PubMedCrossRef Zeitz KP, Malmberg AB, Gilbert H, Basbaum AI. Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKC gamma mutant mice. Pain. 2001;94(3):245–53.PubMedCrossRef
10.
go back to reference Granados-Soto V, Kalcheva I, Hua X, Newton A, Yaksh TL. Spinal PKC activity and expression: role in tolerance produced by continuous spinal morphine infusion. Pain. 2000;85(3):395–404.PubMedCrossRef Granados-Soto V, Kalcheva I, Hua X, Newton A, Yaksh TL. Spinal PKC activity and expression: role in tolerance produced by continuous spinal morphine infusion. Pain. 2000;85(3):395–404.PubMedCrossRef
11.
go back to reference Liang D, Li X, Clark JD. Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure. Neuroscience. 2004;123(3):769–75.PubMedCrossRef Liang D, Li X, Clark JD. Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure. Neuroscience. 2004;123(3):769–75.PubMedCrossRef
12.
go back to reference Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci. 2007;27(51):13958–67.PubMedCentralPubMedCrossRef Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci. 2007;27(51):13958–67.PubMedCentralPubMedCrossRef
13.
go back to reference Norsted GE, Codeluppi S, Gregory JA, Steinauer J, Svensson CI. Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience. 2010;169(3):1392–402.CrossRef Norsted GE, Codeluppi S, Gregory JA, Steinauer J, Svensson CI. Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience. 2010;169(3):1392–402.CrossRef
14.
go back to reference Cui J, He W, Yi B, Zhao H, Lu K, Ruan H, et al. mTOR pathway is involved in ADP-evoked astrocyte activation and ATP release in the spinal dorsal horn in a rat neuropathic pain model. Neuroscience. 2014;275:395–403.PubMedCrossRef Cui J, He W, Yi B, Zhao H, Lu K, Ruan H, et al. mTOR pathway is involved in ADP-evoked astrocyte activation and ATP release in the spinal dorsal horn in a rat neuropathic pain model. Neuroscience. 2014;275:395–403.PubMedCrossRef
15.
go back to reference Cui Y, Zhang XQ, Cui Y, Xin WJ, Jing J, Liu XG. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats. Neuroscience. 2010;171(1):134–43.PubMedCrossRef Cui Y, Zhang XQ, Cui Y, Xin WJ, Jing J, Liu XG. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats. Neuroscience. 2010;171(1):134–43.PubMedCrossRef
16.
go back to reference Liang L, Tao B, Fan L, Yaster M, Zhang Y, Tao YX. mTOR and its downstream pathway are activated in the dorsal root ganglion and spinal cord after peripheral inflammation, but not after nerve injury. Brain Res. 2013;1513:17–25.PubMedCentralPubMedCrossRef Liang L, Tao B, Fan L, Yaster M, Zhang Y, Tao YX. mTOR and its downstream pathway are activated in the dorsal root ganglion and spinal cord after peripheral inflammation, but not after nerve injury. Brain Res. 2013;1513:17–25.PubMedCentralPubMedCrossRef
17.
go back to reference Obara I, Tochiki KK, Geranton SM, Carr FB, Lumb BM, Liu Q, et al. Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain. 2011;152(11):2582–95.PubMedCrossRef Obara I, Tochiki KK, Geranton SM, Carr FB, Lumb BM, Liu Q, et al. Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain. 2011;152(11):2582–95.PubMedCrossRef
18.
go back to reference Shih MH, Kao SC, Wang W, Yaster M, Tao YX. Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. The Journal of Pain. 2012;13(4):338–49.PubMedCentralPubMedCrossRef Shih MH, Kao SC, Wang W, Yaster M, Tao YX. Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. The Journal of Pain. 2012;13(4):338–49.PubMedCentralPubMedCrossRef
19.
go back to reference Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, et al. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest. 2014;124(2):592–603.PubMedCentralPubMedCrossRef Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, et al. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest. 2014;124(2):592–603.PubMedCentralPubMedCrossRef
20.
go back to reference Xu Q, Fitzsimmons B, Steinauer J, Neill AO, Newton AC, Hua XY, et al. Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. The Journal of Neuroscience. 2011;31(6):2113–24.PubMedCentralPubMedCrossRef Xu Q, Fitzsimmons B, Steinauer J, Neill AO, Newton AC, Hua XY, et al. Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. The Journal of Neuroscience. 2011;31(6):2113–24.PubMedCentralPubMedCrossRef
21.
go back to reference Zhang W, Sun XF, Bo JH, Zhang J, Liu XJ, Wu LP, et al. Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice. Pharmacol Biochem Behav. 2013;111:64–70.PubMedCrossRef Zhang W, Sun XF, Bo JH, Zhang J, Liu XJ, Wu LP, et al. Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice. Pharmacol Biochem Behav. 2013;111:64–70.PubMedCrossRef
23.
go back to reference Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J. 2007;403(2):217–34.PubMedCrossRef Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J. 2007;403(2):217–34.PubMedCrossRef
24.
go back to reference Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.PubMedCrossRef Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.PubMedCrossRef
25.
go back to reference Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15(3):658–64.PubMedCentralPubMed Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15(3):658–64.PubMedCentralPubMed
26.
go back to reference Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80.PubMedCrossRef Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80.PubMedCrossRef
27.
go back to reference Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006;25(12):2781–91.PubMedCentralPubMedCrossRef Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006;25(12):2781–91.PubMedCentralPubMedCrossRef
28.
go back to reference Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol. 2006;34(3):205–19.PubMedCrossRef Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol. 2006;34(3):205–19.PubMedCrossRef
29.
go back to reference Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta. 2008;1784(1):116–32.PubMedCrossRef Swiech L, Perycz M, Malik A, Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta. 2008;1784(1):116–32.PubMedCrossRef
30.
go back to reference Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16(12):3693–704.PubMedCentralPubMedCrossRef Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16(12):3693–704.PubMedCentralPubMedCrossRef
31.
go back to reference Gibbons JJ, Abraham RT, Yu K. Mammalian Target of Rapamycin: Discovery of Rapamycin Reveals a Signaling Pathway Important for Normal and Cancer Cell Growth. Seminars in Oncology 2009; 36, Supplement 3(0):S3-S17. Gibbons JJ, Abraham RT, Yu K. Mammalian Target of Rapamycin: Discovery of Rapamycin Reveals a Signaling Pathway Important for Normal and Cancer Cell Growth. Seminars in Oncology 2009; 36, Supplement 3(0):S3-S17.
32.
go back to reference Singh K, Sun S, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. IV Mechanism of action J Antibiot. 1979;32(6):630–45. Singh K, Sun S, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. IV Mechanism of action J Antibiot. 1979;32(6):630–45.
33.
go back to reference Lopez P, Kohler S, Dimri S. Interstitial lung disease associated with mTOR inhibitors in solid organ transplant recipients: results from a large phase III clinical trial program of everolimus and review of the literature. Journal of Transplantation. 2014;2014. Lopez P, Kohler S, Dimri S. Interstitial lung disease associated with mTOR inhibitors in solid organ transplant recipients: results from a large phase III clinical trial program of everolimus and review of the literature. Journal of Transplantation. 2014;2014.
34.
go back to reference Yee KW, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12(17):5165–73.PubMedCrossRef Yee KW, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12(17):5165–73.PubMedCrossRef
35.
go back to reference Al-Batran SE, Ducreux M, Ohtsu A. mTOR as a therapeutic target in patients with gastric cancer. Int J Cancer. 2012;130(3):491–6.PubMedCrossRef Al-Batran SE, Ducreux M, Ohtsu A. mTOR as a therapeutic target in patients with gastric cancer. Int J Cancer. 2012;130(3):491–6.PubMedCrossRef
36.
go back to reference Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179–93.PubMedCrossRef Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179–93.PubMedCrossRef
37.
go back to reference Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9):729–34.PubMedCrossRef Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9):729–34.PubMedCrossRef
38.
go back to reference Fan QW, Weiss W. Inhibition of PI3K-Akt-mTOR Signaling in Glioblastoma by mTORC1/2 Inhibitors. In: Weichhart T, editor. mTOR. 821 ed. Humana Press; 2012. p. 349–359. Fan QW, Weiss W. Inhibition of PI3K-Akt-mTOR Signaling in Glioblastoma by mTORC1/2 Inhibitors. In: Weichhart T, editor. mTOR. 821 ed. Humana Press; 2012. p. 349–359.
39.
go back to reference Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1GÇôAssociated human and mouse brain tumors. Cancer Res. 2005;65(7):2755–60.PubMedCrossRef Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1GÇôAssociated human and mouse brain tumors. Cancer Res. 2005;65(7):2755–60.PubMedCrossRef
40.
go back to reference Lisi L, Aceto P, Navarra P, Dello Russo C. mTOR Kinase: A possible Pharmacological Target in the Management of Chronic Pain. BioMed Research International 2015; 2015. Lisi L, Aceto P, Navarra P, Dello Russo C. mTOR Kinase: A possible Pharmacological Target in the Management of Chronic Pain. BioMed Research International 2015; 2015.
41.
go back to reference Molina AM, Feldman DR, Voss MH, Ginsberg MS, Baum MS, Brocks DR et al. Phase 1 trial of everolimus plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 2011. Molina AM, Feldman DR, Voss MH, Ginsberg MS, Baum MS, Brocks DR et al. Phase 1 trial of everolimus plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 2011.
42.
go back to reference Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, et al. Rapamycin, but Not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A: Biol Med Sci. 2011;66A(2):191–201.CrossRef Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, et al. Rapamycin, but Not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A: Biol Med Sci. 2011;66A(2):191–201.CrossRef
43.
go back to reference Xu JT, Zhao X, Yaster M, Tao YX. Expression and distribution of mTOR, p70S6K, 4E-BP1, and their phosphorylated counterparts in rat dorsal root ganglion and spinal cord dorsal horn. Brain Res. 2010;1336:46–57.PubMedCrossRef Xu JT, Zhao X, Yaster M, Tao YX. Expression and distribution of mTOR, p70S6K, 4E-BP1, and their phosphorylated counterparts in rat dorsal root ganglion and spinal cord dorsal horn. Brain Res. 2010;1336:46–57.PubMedCrossRef
44.
go back to reference Lucas LK, Lipman AG. Recent advances in pharmacotherapy for cancer pain management. Cancer Pract. 2002;10 Suppl 1:S14–20.PubMedCrossRef Lucas LK, Lipman AG. Recent advances in pharmacotherapy for cancer pain management. Cancer Pract. 2002;10 Suppl 1:S14–20.PubMedCrossRef
45.
go back to reference Puig S, Sorkin L. Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain. 1996;64:345–55.PubMedCrossRef Puig S, Sorkin L. Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain. 1996;64:345–55.PubMedCrossRef
46.
go back to reference Asante CO, Wallace VC, Dickenson AH. Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain. 2010;11(12):1356–67.PubMedCrossRef Asante CO, Wallace VC, Dickenson AH. Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain. 2010;11(12):1356–67.PubMedCrossRef
47.
go back to reference Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, et al. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 2009;29(47):15017–27.PubMedCentralPubMedCrossRef Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, et al. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 2009;29(47):15017–27.PubMedCentralPubMedCrossRef
48.
go back to reference Belanger S, Ma W, Chabot JG, Quirion R. Expression of calcitonin gene-related peptide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates. Neuroscience. 2002;115(2):441–53.PubMedCrossRef Belanger S, Ma W, Chabot JG, Quirion R. Expression of calcitonin gene-related peptide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates. Neuroscience. 2002;115(2):441–53.PubMedCrossRef
49.
go back to reference Chakrabarti S, Regec A, Gintzler AR. Chronic morphine acts via a protein kinase Cgamma-G(beta)-adenylyl cyclase complex to augment phosphorylation of G(beta) and G(betagamma) stimulatory adenylyl cyclase signaling. Brain Res Mol Brain Res. 2005;138(1):94–103.PubMedCrossRef Chakrabarti S, Regec A, Gintzler AR. Chronic morphine acts via a protein kinase Cgamma-G(beta)-adenylyl cyclase complex to augment phosphorylation of G(beta) and G(betagamma) stimulatory adenylyl cyclase signaling. Brain Res Mol Brain Res. 2005;138(1):94–103.PubMedCrossRef
50.
go back to reference Gintzler AR, Chakrabarti S. Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules. Life Sci. 2006;79(8):717–22.PubMedCrossRef Gintzler AR, Chakrabarti S. Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules. Life Sci. 2006;79(8):717–22.PubMedCrossRef
51.
go back to reference Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81(1):299–343.PubMed Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81(1):299–343.PubMed
Metadata
Title
mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia
Authors
Brianna Marie Lutz
Sam Nia
Ming Xiong
Yuan-Xiang Tao
Alex Bekker
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2015
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/s12990-015-0030-5

Other articles of this Issue 1/2015

Molecular Pain 1/2015 Go to the issue