Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2020

Open Access 01-12-2020 | Stroke | Review

Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: a systematic review with network meta-analysis of randomized controlled trials

Authors: Bernhard Elsner, Joachim Kugler, Jan Mehrholz

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2020

Login to get access

Summary

Background

Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving aphasia after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types.

Methods

This is a systematic review of randomized controlled trials with network meta-analysis (NMA). We searched the following databases until 4 February 2020: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of functional communication, versus control, after stroke. PROSPERO ID: CRD42019135696.

Results

We included 25 studies with 471 participants. Our NMA showed that tDCS did not improve our primary outcome, that of functional communication. There was evidence of an effect of anodal tDCS, particularly over the left inferior frontal gyrus, in improving our secondary outcome, that of performance in naming nouns (SMD = 0.51; 95% CI 0.11 to 0.90). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events.

Conclusion

Comparing different application/protocols of tDCS shows that the anodal application, particularly over the left inferior frontal gyrus, seems to be the most promising tDCS treatment option to improve performance in naming in people with stroke.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.PubMedCrossRef Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.PubMedCrossRef
2.
go back to reference Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.PubMedPubMedCentralCrossRef Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.PubMedPubMedCentralCrossRef
3.
go back to reference Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.PubMedPubMedCentralCrossRef Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.PubMedPubMedCentralCrossRef
4.
go back to reference Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–60.PubMedCrossRef Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–60.PubMedCrossRef
5.
go back to reference Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1:97–105.PubMedCrossRef Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1:97–105.PubMedCrossRef
6.
go back to reference Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Tillery SI, Tyler WJ. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66:681–94.PubMedCrossRef Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Tillery SI, Tyler WJ. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66:681–94.PubMedCrossRef
7.
go back to reference Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.CrossRefPubMed Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.CrossRefPubMed
8.
go back to reference Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114:600–4.PubMedCrossRef Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114:600–4.PubMedCrossRef
9.
go back to reference Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.PubMedCrossRef Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.PubMedCrossRef
10.
go back to reference Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol. 2016;127:3425–54.PubMedPubMedCentralCrossRef Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, Bikson M. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol. 2016;127:3425–54.PubMedPubMedCentralCrossRef
11.
go back to reference Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79:451–3.PubMedCrossRef Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79:451–3.PubMedCrossRef
12.
go back to reference List J, Lesemann A, Kubke JC, Kulzow N, Schreiber SJ, Floel A. Impact of tDCS on cerebral autoregulation in aging and in patients with cerebrovascular diseases. Neurology. 2015;84:626–8.PubMedCrossRef List J, Lesemann A, Kubke JC, Kulzow N, Schreiber SJ, Floel A. Impact of tDCS on cerebral autoregulation in aging and in patients with cerebrovascular diseases. Neurology. 2015;84:626–8.PubMedCrossRef
13.
go back to reference Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103.PubMedPubMedCentralCrossRef Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103.PubMedPubMedCentralCrossRef
14.
go back to reference Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S, Wolters CH, Stegeman DF, Oostendorp TF. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 2014;22:441–52.CrossRef Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S, Wolters CH, Stegeman DF, Oostendorp TF. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 2014;22:441–52.CrossRef
15.
go back to reference Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang. 2011;118:40–50.PubMedPubMedCentralCrossRef Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang. 2011;118:40–50.PubMedPubMedCentralCrossRef
16.
go back to reference Simonetti D, Zollo L, Milighetti S, Miccinilli S, Bravi M, Ranieri F, Magrone G, Guglielmelli E, Di Lazzaro V, Sterzi S. Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front Hum Neurosci. 2017;11:268.PubMedPubMedCentralCrossRef Simonetti D, Zollo L, Milighetti S, Miccinilli S, Bravi M, Ranieri F, Magrone G, Guglielmelli E, Di Lazzaro V, Sterzi S. Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front Hum Neurosci. 2017;11:268.PubMedPubMedCentralCrossRef
17.
go back to reference Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. The Cochrane database of systematic reviews. 2019;5:CD009760.PubMed Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. The Cochrane database of systematic reviews. 2019;5:CD009760.PubMed
18.
go back to reference Ioannidis JP, Karassa FB. The need to consider the wider agenda in systematic reviews and meta-analyses: breadth, timing, and depth of the evidence. BMJ. 2010;341:c4875.PubMedCrossRef Ioannidis JP, Karassa FB. The need to consider the wider agenda in systematic reviews and meta-analyses: breadth, timing, and depth of the evidence. BMJ. 2010;341:c4875.PubMedCrossRef
19.
20.
go back to reference Mills EJ, Bansback N, Ghement I, Thorlund K, Kelly S, Puhan MA. Multiple treatment comparison meta-analyses: a step forward into complexity. Clin Epidemiol. 2011;3. Mills EJ, Bansback N, Ghement I, Thorlund K, Kelly S, Puhan MA. Multiple treatment comparison meta-analyses: a step forward into complexity. Clin Epidemiol. 2011;3.
21.
go back to reference Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation. 2011;4:169–74.PubMedCrossRef Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation. 2011;4:169–74.PubMedCrossRef
22.
go back to reference Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. BMJ. 2013;346:f2914.PubMedCrossRef Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. BMJ. 2013;346:f2914.PubMedCrossRef
23.
go back to reference Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004;23:3105–24.CrossRefPubMed Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004;23:3105–24.CrossRefPubMed
24.
25.
go back to reference Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.CrossRefPubMed Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.CrossRefPubMed
26.
go back to reference Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.PubMedCrossRef Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.PubMedCrossRef
27.
go back to reference Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71.PubMedCrossRef Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71.PubMedCrossRef
28.
go back to reference Higgins JPT, Altman DG, Sterne JAC: Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane collaboration, 2011. In Available from wwwcochrane-handbookorg. Higgins JPT, Altman DG, Sterne JAC: Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane collaboration, 2011. In Available from wwwcochrane-handbookorg.
29.
go back to reference Chaimani A, Salanti G. Visualizing assumptions and results in network meta-analysis: the network graphs package. Stata J. 2015;15:905–50.CrossRef Chaimani A, Salanti G. Visualizing assumptions and results in network meta-analysis: the network graphs package. Stata J. 2015;15:905–50.CrossRef
30.
go back to reference Stata Corp LLC: Stata Statistical Software: Release 15. College Station, TX:; 2017. Stata Corp LLC: Stata Statistical Software: Release 15. College Station, TX:; 2017.
31.
go back to reference White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3:111–25.PubMedPubMedCentralCrossRef White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3:111–25.PubMedPubMedCentralCrossRef
32.
go back to reference Schwarzer G, Carpenter JR, Rücker G. Meta-analysis with R. Heidelber: Springer; 2015.CrossRef Schwarzer G, Carpenter JR, Rücker G. Meta-analysis with R. Heidelber: Springer; 2015.CrossRef
33.
34.
go back to reference Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010;29:932–44.PubMedCrossRef Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010;29:932–44.PubMedCrossRef
35.
go back to reference Marangolo P, Marinelli CV, Bonifazi S, Fiori V, Ceravolo MG, Provinciali L, Tomaiuolo F. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res. 2011;225:498–504.PubMedCrossRef Marangolo P, Marinelli CV, Bonifazi S, Fiori V, Ceravolo MG, Provinciali L, Tomaiuolo F. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res. 2011;225:498–504.PubMedCrossRef
36.
go back to reference Fridriksson J, Rorden C, Elm J, Sen S, George MS, Bonilha L. Transcranial direct current stimulation vs sham stimulation to treat aphasia after stroke: a randomized clinical trial. JAMA Neurol. 2018. Fridriksson J, Rorden C, Elm J, Sen S, George MS, Bonilha L. Transcranial direct current stimulation vs sham stimulation to treat aphasia after stroke: a randomized clinical trial. JAMA Neurol. 2018.
37.
go back to reference Meinzer M, Darkow R, Lindenberg R, Flöel A: Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. In Brain pp 1152-1163; 2016:1152–1163. Meinzer M, Darkow R, Lindenberg R, Flöel A: Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. In Brain pp 1152-1163; 2016:1152–1163.
38.
go back to reference Spielmann K, Sandt-Koenderman WM, Heijenbrok-Kal MH, Ribbers GM: Transcranial direct current stimulation in post-stroke sub-acute aphasia: study protocol for a randomized controlled trial. In Trials. pp. 380; 2016:380. Spielmann K, Sandt-Koenderman WM, Heijenbrok-Kal MH, Ribbers GM: Transcranial direct current stimulation in post-stroke sub-acute aphasia: study protocol for a randomized controlled trial. In Trials. pp. 380; 2016:380.
40.
go back to reference Fiori V, Cipollari S, Di Paola M, Razzano C, Caltagirone C, Marangolo P. tDCS stimulation segregates words in the brain: evidence from aphasia. Front Hum Neurosci. 2013;24. Fiori V, Cipollari S, Di Paola M, Razzano C, Caltagirone C, Marangolo P. tDCS stimulation segregates words in the brain: evidence from aphasia. Front Hum Neurosci. 2013;24.
41.
go back to reference Floel A, Meinzer M, Kirstein R, Nijhof S, Deppe M, Knecht S, Breitenstein C. Short-term anomia training and electrical brain stimulation. Stroke. 2011;42:2065–7.PubMedCrossRef Floel A, Meinzer M, Kirstein R, Nijhof S, Deppe M, Knecht S, Breitenstein C. Short-term anomia training and electrical brain stimulation. Stroke. 2011;42:2065–7.PubMedCrossRef
42.
go back to reference Kang EK, Kim YK, Sohn HM, Cohen LG, Paik N-J. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restorative Neurology & Neuroscience. 2011;29:141–52.CrossRef Kang EK, Kim YK, Sohn HM, Cohen LG, Paik N-J. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restorative Neurology & Neuroscience. 2011;29:141–52.CrossRef
43.
go back to reference Marangolo P, Fiori V, Cipollari S, Campana S, Razzano C, Di Paola M, Koch G, Caltagirone C. Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. Eur J Neurosci. 2013b;38:3370–7.PubMedCrossRef Marangolo P, Fiori V, Cipollari S, Campana S, Razzano C, Di Paola M, Koch G, Caltagirone C. Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. Eur J Neurosci. 2013b;38:3370–7.PubMedCrossRef
44.
go back to reference Polanowska K, Lesniak M, Seniow J. Anodal transcranial direct current stimulation in early treatment of post-stroke non-fluent aphasia. Clin Neurophysiol. 2013;124(10):e118–9.CrossRef Polanowska K, Lesniak M, Seniow J. Anodal transcranial direct current stimulation in early treatment of post-stroke non-fluent aphasia. Clin Neurophysiol. 2013;124(10):e118–9.CrossRef
45.
go back to reference Spielmann K, van de Sandt-Koenderman WME, Heijenbrok-Kal MH, Ribbers GM: Transcranial Direct Current Stimulation Does Not Improve Language Outcome in Subacute Poststroke Aphasia. Stroke (00392499) 2018, 49:1018–1020. Spielmann K, van de Sandt-Koenderman WME, Heijenbrok-Kal MH, Ribbers GM: Transcranial Direct Current Stimulation Does Not Improve Language Outcome in Subacute Poststroke Aphasia. Stroke (00392499) 2018, 49:1018–1020.
46.
go back to reference You DS, Kim DY, Chun MH, Jung SE, Park SJ. Cathodal transcranial direct current stimulation of the right Wernicke's area improves comprehension in subacute stroke patients. Brain & Language. 2011;119:1–5.CrossRef You DS, Kim DY, Chun MH, Jung SE, Park SJ. Cathodal transcranial direct current stimulation of the right Wernicke's area improves comprehension in subacute stroke patients. Brain & Language. 2011;119:1–5.CrossRef
47.
go back to reference Marangolo P, Fiori V, Caltagirone C, Pisano F, Priori A. Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. In Journal of Cognitive Neuroscience pp. 2018;188-199:188–99.CrossRef Marangolo P, Fiori V, Caltagirone C, Pisano F, Priori A. Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. In Journal of Cognitive Neuroscience pp. 2018;188-199:188–99.CrossRef
48.
go back to reference Lee SJ, Chun MH. Combination Transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch Phys Med Rehabil. 2014;95:431–8.PubMedCrossRef Lee SJ, Chun MH. Combination Transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch Phys Med Rehabil. 2014;95:431–8.PubMedCrossRef
49.
go back to reference Cha HK, Ji SG, Kim MK, Chang JS. Effect of Transcranial direct current stimulation of function in patients with stroke. J Phys Ther Sci. 2014;26:363–5.PubMedPubMedCentralCrossRef Cha HK, Ji SG, Kim MK, Chang JS. Effect of Transcranial direct current stimulation of function in patients with stroke. J Phys Ther Sci. 2014;26:363–5.PubMedPubMedCentralCrossRef
51.
go back to reference Dos Santos MDD, Cavenaghi VB, Mac-Kay A, Serafim V, Venturi A, Truong DQ, Huang Y, Boggio PS, Fregni F, Simis M, et al. Non-invasive brain stimulation and computational models in post-stroke aphasic patients: single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial In Sao Paulo Medical Journal pp. 2017;475-480:475–80.CrossRef Dos Santos MDD, Cavenaghi VB, Mac-Kay A, Serafim V, Venturi A, Truong DQ, Huang Y, Boggio PS, Fregni F, Simis M, et al. Non-invasive brain stimulation and computational models in post-stroke aphasic patients: single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial In Sao Paulo Medical Journal pp. 2017;475-480:475–80.CrossRef
52.
go back to reference Shah-Basak PP, Wurzman R, Purcell JB, Gervits F, Hamilton R. Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor Neurol Neurosci. 2016;34:537–58.PubMed Shah-Basak PP, Wurzman R, Purcell JB, Gervits F, Hamilton R. Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor Neurol Neurosci. 2016;34:537–58.PubMed
53.
go back to reference ALHarbi MF, Armijo-Olivo S, Kim ES: Transcranial direct current stimulation (tDCS) to improve naming ability in post-stroke aphasia: a critical review. Behav Brain Res 2017, 332:7–15. ALHarbi MF, Armijo-Olivo S, Kim ES: Transcranial direct current stimulation (tDCS) to improve naming ability in post-stroke aphasia: a critical review. Behav Brain Res 2017, 332:7–15.
54.
go back to reference Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain. 2005;128:1122–38.PubMedCrossRef Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain. 2005;128:1122–38.PubMedCrossRef
55.
go back to reference Buma F, Kwakkel G, Ramsey N. Understanding upper limb recovery after stroke. Restorative Neurology & Neuroscience. 2013;31:707–22.CrossRef Buma F, Kwakkel G, Ramsey N. Understanding upper limb recovery after stroke. Restorative Neurology & Neuroscience. 2013;31:707–22.CrossRef
56.
go back to reference Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, Ranieri F, Tombini M, Ziemann U, Rothwell JC, Di Lazzaro V. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10:597–608.PubMedCrossRef Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, Ranieri F, Tombini M, Ziemann U, Rothwell JC, Di Lazzaro V. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10:597–608.PubMedCrossRef
57.
go back to reference Mohr B, MacGregor LJ, Difrancesco S, Harrington K, Pulvermüller F, Shtyrov Y. Hemispheric contributions to language reorganisation: an MEG study of neuroplasticity in chronic post stroke aphasia. Neuropsychologia. 2016;93:413–24.PubMedCrossRef Mohr B, MacGregor LJ, Difrancesco S, Harrington K, Pulvermüller F, Shtyrov Y. Hemispheric contributions to language reorganisation: an MEG study of neuroplasticity in chronic post stroke aphasia. Neuropsychologia. 2016;93:413–24.PubMedCrossRef
58.
go back to reference Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. Journal of NeuroEngineering and Rehabilitation. 2017;14:95.PubMedPubMedCentralCrossRef Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. Journal of NeuroEngineering and Rehabilitation. 2017;14:95.PubMedPubMedCentralCrossRef
59.
go back to reference Floel A. TDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage. 2014;85:934–47.PubMedCrossRef Floel A. TDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage. 2014;85:934–47.PubMedCrossRef
60.
go back to reference Jamil A, Batsikadze G, Kuo HI, Labruna L, Hasan A. Paulus W. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol: Nitsche MA; 2016. Jamil A, Batsikadze G, Kuo HI, Labruna L, Hasan A. Paulus W. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol: Nitsche MA; 2016.
61.
go back to reference Fridriksson J, Elm J, Stark BC, Basilakos A, Rorden C, Sen S, George MS, Gottfried M, Bonilha L. BDNF genotype and tDCS interaction in aphasia treatment. Brain Stimulation. 2018;11:1276–81.PubMedPubMedCentralCrossRef Fridriksson J, Elm J, Stark BC, Basilakos A, Rorden C, Sen S, George MS, Gottfried M, Bonilha L. BDNF genotype and tDCS interaction in aphasia treatment. Brain Stimulation. 2018;11:1276–81.PubMedPubMedCentralCrossRef
62.
go back to reference Tonin FS, Rotta I, Mendes AM, Pontarolo R. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons. Pharm Pract (Granada). 2017;15:943.CrossRef Tonin FS, Rotta I, Mendes AM, Pontarolo R. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons. Pharm Pract (Granada). 2017;15:943.CrossRef
Metadata
Title
Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: a systematic review with network meta-analysis of randomized controlled trials
Authors
Bernhard Elsner
Joachim Kugler
Jan Mehrholz
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
Stroke
Aphasia
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2020
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-020-00708-z

Other articles of this Issue 1/2020

Journal of NeuroEngineering and Rehabilitation 1/2020 Go to the issue