Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients

Authors: Matthias Sczesny-Kaiser, Oliver Höffken, Mirko Aach, Oliver Cruciger, Dennis Grasmücke, Renate Meindl, Thomas A. Schildhauer, Peter Schwenkreis, Martin Tegenthoff

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

Reorganization in the sensorimotor cortex accompanied by increased excitability and enlarged body representations is a consequence of spinal cord injury (SCI). Robotic-assisted bodyweight supported treadmill training (BWSTT) was hypothesized to induce reorganization and improve walking function.

Objective

To assess whether BWSTT with hybrid assistive limb® (HAL®) exoskeleton affects cortical excitability in the primary somatosensory cortex (S1) in SCI patients, as measured by paired-pulse somatosensory evoked potentials (ppSEP) stimulated above the level of injury.

Methods

Eleven SCI patients took part in HAL® assisted BWSTT for 3 months. PpSEP were conducted before and after this training period, where the amplitude ratios (SEP amplitude following double pulses - SEP amplitude following single pulses) were assessed and compared to eleven healthy control subjects. To assess improvement in walking function, we used the 10-m walk test, timed-up-and-go test, the 6-min walk test, and the lower extremity motor score.

Results

PpSEPs were significantly increased in SCI patients as compared to controls at baseline. Following training, ppSEPs were increased from baseline and no longer significantly differed from controls. Walking parameters also showed significant improvements, yet there was no significant correlation between ppSEP measures and walking parameters.

Conclusions

The findings suggest that robotic-assisted BWSTT with HAL® in SCI patients is capable of inducing cortical plasticity following highly repetitive, active locomotive use of paretic legs. While there was no significant correlation of excitability with walking parameters, brain areas other than S1 might reflect improvement of walking functions. EEG and neuroimaging studies may provide further information about supraspinal plastic processes and foci in SCI rehabilitation.
Literature
1.
go back to reference Cohen LG, Roth BJ, Wassermann EM, Topka H, Fuhr P, Schultz J, et al. Magnetic stimulation of the human cerebral cortex, an indicator of reorganization in motor pathways in certain pathological conditions. J Clin Neurophysiol. 1991;8:56–65.CrossRefPubMed Cohen LG, Roth BJ, Wassermann EM, Topka H, Fuhr P, Schultz J, et al. Magnetic stimulation of the human cerebral cortex, an indicator of reorganization in motor pathways in certain pathological conditions. J Clin Neurophysiol. 1991;8:56–65.CrossRefPubMed
2.
go back to reference Levy WJ, Amassian VE, Traad M, Cadwell J. Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res. 1990;510:130–4.CrossRefPubMed Levy WJ, Amassian VE, Traad M, Cadwell J. Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res. 1990;510:130–4.CrossRefPubMed
3.
go back to reference Laubis-Herrmann U, Dichgans J, Bilow H, Topka H. Motor reorganization after spinal cord injury: evidence of adaptive changes in remote muscles. Restor Neurol Neurosci. 2000;17:175–81.PubMed Laubis-Herrmann U, Dichgans J, Bilow H, Topka H. Motor reorganization after spinal cord injury: evidence of adaptive changes in remote muscles. Restor Neurol Neurosci. 2000;17:175–81.PubMed
4.
go back to reference Topka H, Cohen LG, Cole RA, Hallett M. Reorganization of corticospinal pathways following spinal cord injury. Neurology. 1991;41:1276–83.CrossRefPubMed Topka H, Cohen LG, Cole RA, Hallett M. Reorganization of corticospinal pathways following spinal cord injury. Neurology. 1991;41:1276–83.CrossRefPubMed
5.
go back to reference Lotze M, Laubis-Herrmann U, Topka H, Erb M, Grodd W. Reorganization in the primary motor cortex after spinal cord injury—A functional Magnetic Resonance (fMRI) study. Restor Neurol Neurosci. 1999;14:183–7. Lotze M, Laubis-Herrmann U, Topka H, Erb M, Grodd W. Reorganization in the primary motor cortex after spinal cord injury—A functional Magnetic Resonance (fMRI) study. Restor Neurol Neurosci. 1999;14:183–7.
6.
go back to reference Henderson LA, Gustin SM, Macey PM, Wrigley PJ, Siddall PJ. Functional reorganization of the brain in humans following spinal cord injury: evidence for underlying changes in cortical anatomy. J Neurosci. 2011;31:2630–7.CrossRefPubMed Henderson LA, Gustin SM, Macey PM, Wrigley PJ, Siddall PJ. Functional reorganization of the brain in humans following spinal cord injury: evidence for underlying changes in cortical anatomy. J Neurosci. 2011;31:2630–7.CrossRefPubMed
7.
go back to reference Humanes-Valera D, Aguilar J, Foffani G. Reorganization of the intact somatosensory cortex immediately after spinal cord injury. PLoS One. 2013;8, e69655.PubMedCentralCrossRefPubMed Humanes-Valera D, Aguilar J, Foffani G. Reorganization of the intact somatosensory cortex immediately after spinal cord injury. PLoS One. 2013;8, e69655.PubMedCentralCrossRefPubMed
8.
go back to reference Jurkiewicz MT, Mikulis DJ, McIlroy WE, Fehlings MG, Verrier MC. Sensorimotor Cortical Plasticity During Recovery Following Spinal Cord Injury: A Longitudinal fMRI Study. Neurorehabil Neural Repair. 2007;21:527–38.CrossRefPubMed Jurkiewicz MT, Mikulis DJ, McIlroy WE, Fehlings MG, Verrier MC. Sensorimotor Cortical Plasticity During Recovery Following Spinal Cord Injury: A Longitudinal fMRI Study. Neurorehabil Neural Repair. 2007;21:527–38.CrossRefPubMed
9.
go back to reference Streletz LJ, Belevich JK, Jones SM, Bhushan A, Shah SH, Herbison GJ. Transcranial magnetic stimulation: cortical motor maps in acute spinal cord injury. Brain Topogr. 1995;7:245–50.CrossRefPubMed Streletz LJ, Belevich JK, Jones SM, Bhushan A, Shah SH, Herbison GJ. Transcranial magnetic stimulation: cortical motor maps in acute spinal cord injury. Brain Topogr. 1995;7:245–50.CrossRefPubMed
10.
go back to reference Curt A, Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond M-C, Kollias SS. Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain. 2002;125:2567–78.CrossRefPubMed Curt A, Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond M-C, Kollias SS. Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain. 2002;125:2567–78.CrossRefPubMed
11.
go back to reference Rijntjes M, Tegenthoff M, Liepert J, Leonhardt G, Kotterba S, Müller S, et al. Cortical reorganization in patients with facial palsy. Ann Neurol. 1997;41:621–30.CrossRefPubMed Rijntjes M, Tegenthoff M, Liepert J, Leonhardt G, Kotterba S, Müller S, et al. Cortical reorganization in patients with facial palsy. Ann Neurol. 1997;41:621–30.CrossRefPubMed
12.
go back to reference Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252:1857–60.CrossRefPubMed Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252:1857–60.CrossRefPubMed
13.
go back to reference Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.PubMedCentralCrossRefPubMed Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.PubMedCentralCrossRefPubMed
14.
go back to reference Rosenkranz K, Williamon A, Rothwell JC. Motorcortical Excitability and Synaptic Plasticity Is Enhanced in Professional Musicians. J Neurosci. 2007;27:5200–6.CrossRefPubMed Rosenkranz K, Williamon A, Rothwell JC. Motorcortical Excitability and Synaptic Plasticity Is Enhanced in Professional Musicians. J Neurosci. 2007;27:5200–6.CrossRefPubMed
15.
go back to reference Shagass C, Schwartz M. Recovery functions of somatosensory peripheral nerve and cerebral evoked responses in man. Electroencephalogr Clin Neurophysiol. 1964;17:126–35.CrossRefPubMed Shagass C, Schwartz M. Recovery functions of somatosensory peripheral nerve and cerebral evoked responses in man. Electroencephalogr Clin Neurophysiol. 1964;17:126–35.CrossRefPubMed
16.
go back to reference Ragert P, Dinse HR, Pleger B, Wilimzig C, Frombach E, Schwenkreis P, et al. Combination of 5 Hz repetitive transcranial magnetic stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans. Neurosci Lett. 2003;348:105–8.CrossRefPubMed Ragert P, Dinse HR, Pleger B, Wilimzig C, Frombach E, Schwenkreis P, et al. Combination of 5 Hz repetitive transcranial magnetic stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans. Neurosci Lett. 2003;348:105–8.CrossRefPubMed
17.
go back to reference Höffken O, Veit M, Knossalla F, Lissek S, Bliem B, Ragert P, et al. Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. J Physiol. 2007;584:463–71.PubMedCentralCrossRefPubMed Höffken O, Veit M, Knossalla F, Lissek S, Bliem B, Ragert P, et al. Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. J Physiol. 2007;584:463–71.PubMedCentralCrossRefPubMed
18.
go back to reference Höffken O, Tannwitz J, Lenz M, Sczesny-Kaiser M, Tegenthoff M, Schwenkreis P. Influence of parameter settings on paired-pulse-suppression in somatosensory evoked potentials: A systematic analysis. Clin Neurophysiol. 2013;124:574–80.CrossRefPubMed Höffken O, Tannwitz J, Lenz M, Sczesny-Kaiser M, Tegenthoff M, Schwenkreis P. Influence of parameter settings on paired-pulse-suppression in somatosensory evoked potentials: A systematic analysis. Clin Neurophysiol. 2013;124:574–80.CrossRefPubMed
19.
go back to reference Hoshiyama M, Kakigi R. New concept for the recovery function of short-latency somatosensory evoked cortical potentials following median nerve stimulation. Clin Neurophysiol. 2002;113:535–41.CrossRefPubMed Hoshiyama M, Kakigi R. New concept for the recovery function of short-latency somatosensory evoked cortical potentials following median nerve stimulation. Clin Neurophysiol. 2002;113:535–41.CrossRefPubMed
20.
go back to reference Lenz M, Höffken O, Stude P, Lissek S, Schwenkreis P, Reinersmann A, et al. Bilateral somatosensory cortex disinhibition in complex regional pain syndrome type I. Neurology. 2011;77:1096–101.CrossRefPubMed Lenz M, Höffken O, Stude P, Lissek S, Schwenkreis P, Reinersmann A, et al. Bilateral somatosensory cortex disinhibition in complex regional pain syndrome type I. Neurology. 2011;77:1096–101.CrossRefPubMed
21.
go back to reference Ragert P, Franzkowiak S, Schwenkreis P, Tegenthoff M, Dinse HR. Improvement of tactile perception and enhancement of cortical excitability through intermittent theta burst rTMS over human primary somatosensory cortex. Exp Brain Res. 2008;184:1–11.CrossRefPubMed Ragert P, Franzkowiak S, Schwenkreis P, Tegenthoff M, Dinse HR. Improvement of tactile perception and enhancement of cortical excitability through intermittent theta burst rTMS over human primary somatosensory cortex. Exp Brain Res. 2008;184:1–11.CrossRefPubMed
22.
go back to reference Protas EJ, Holmes SA, Qureshy H, Johnson A, Lee D, Sherwood AM. Supported treadmill ambulation training after spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2001;82:825–31.CrossRefPubMed Protas EJ, Holmes SA, Qureshy H, Johnson A, Lee D, Sherwood AM. Supported treadmill ambulation training after spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2001;82:825–31.CrossRefPubMed
23.
go back to reference Macias M, Nowicka D, Czupryn A, Sulejczak D, Skup M, Skangiel-Kramska J, et al. Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers. BMC Neurosci. 2009;10:144.PubMedCentralCrossRefPubMed Macias M, Nowicka D, Czupryn A, Sulejczak D, Skup M, Skangiel-Kramska J, et al. Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers. BMC Neurosci. 2009;10:144.PubMedCentralCrossRefPubMed
24.
go back to reference de Leon RD, Tamaki H, Hodgson JA, Roy RR, Edgerton VR. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J Neurophysiol. 1999;82:359–69.PubMed de Leon RD, Tamaki H, Hodgson JA, Roy RR, Edgerton VR. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J Neurophysiol. 1999;82:359–69.PubMed
25.
go back to reference Girgis J, Merrett D, Kirkland S, Metz GAS, Verge V, Fouad K. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain. 2007;130:2993–3003.CrossRefPubMed Girgis J, Merrett D, Kirkland S, Metz GAS, Verge V, Fouad K. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain. 2007;130:2993–3003.CrossRefPubMed
26.
go back to reference Krajacic A, Weishaupt N, Girgis J, Tetzlaff W, Fouad K. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects. Behav Brain Res. 2010;214:323–31.CrossRefPubMed Krajacic A, Weishaupt N, Girgis J, Tetzlaff W, Fouad K. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects. Behav Brain Res. 2010;214:323–31.CrossRefPubMed
27.
go back to reference Kubota S, Nakata Y, Eguchi K, Kawamoto H, Kamibayashi K, Sakane M, et al. Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Arch Phys Med Rehabil. 2013;94:1080–7.CrossRefPubMed Kubota S, Nakata Y, Eguchi K, Kawamoto H, Kamibayashi K, Sakane M, et al. Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Arch Phys Med Rehabil. 2013;94:1080–7.CrossRefPubMed
28.
go back to reference Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RC, Tegenthoff M, et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14:2847–53.CrossRefPubMed Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RC, Tegenthoff M, et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14:2847–53.CrossRefPubMed
29.
go back to reference Cruciger O, Tegenthoff M, Schwenkreis P, Schildhauer TA, Aach M. Locomotion training using voluntary driven exoskeleton (HAL) in acute incomplete SCI. Neurology. 2014;83:474–4.CrossRefPubMed Cruciger O, Tegenthoff M, Schwenkreis P, Schildhauer TA, Aach M. Locomotion training using voluntary driven exoskeleton (HAL) in acute incomplete SCI. Neurology. 2014;83:474–4.CrossRefPubMed
30.
go back to reference Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.CrossRefPubMed Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.CrossRefPubMed
31.
go back to reference Nielsen JB. How we walk: central control of muscle activity during human walking. Neuroscientist. 2003;9:195–204.CrossRefPubMed Nielsen JB. How we walk: central control of muscle activity during human walking. Neuroscientist. 2003;9:195–204.CrossRefPubMed
32.
go back to reference Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 2013;13:141.PubMedCentralCrossRefPubMed Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 2013;13:141.PubMedCentralCrossRefPubMed
33.
go back to reference Dinse HR. Long-term sensory stimulation therapy improves hand function and restores cortical responsiveness in patients with chronic cerebral lesions. Three single case studies. Front Hum Neurosci. 2012;6:1–13. Dinse HR. Long-term sensory stimulation therapy improves hand function and restores cortical responsiveness in patients with chronic cerebral lesions. Three single case studies. Front Hum Neurosci. 2012;6:1–13.
34.
go back to reference Waters RL, Adkins R, Yakura J, Vigil D. Prediction of ambulatory performance based on motor scores derived from standards of the American Spinal Injury Association. Arch Phys Med Rehabil. 1994;75:756–60.CrossRefPubMed Waters RL, Adkins R, Yakura J, Vigil D. Prediction of ambulatory performance based on motor scores derived from standards of the American Spinal Injury Association. Arch Phys Med Rehabil. 1994;75:756–60.CrossRefPubMed
35.
go back to reference Guideline thirteen: guidelines for standard electrode position nomenclature. American Electroencephalographic Society. J Clin Neurophysiol. 1994;11:111–3.CrossRef Guideline thirteen: guidelines for standard electrode position nomenclature. American Electroencephalographic Society. J Clin Neurophysiol. 1994;11:111–3.CrossRef
36.
go back to reference Guideline nine: guidelines on evoked potentials. American Electroencephalographic Society. J Clin Neurophysiol. 1994;11(1):40–73.CrossRef Guideline nine: guidelines on evoked potentials. American Electroencephalographic Society. J Clin Neurophysiol. 1994;11(1):40–73.CrossRef
37.
go back to reference Schwenkreis P, Tegenthoff M. Evozierte Potenziale in der Diagnostik spinaler Erkrankungen. Klin Neurophysiol. 2005. Schwenkreis P, Tegenthoff M. Evozierte Potenziale in der Diagnostik spinaler Erkrankungen. Klin Neurophysiol. 2005.
38.
go back to reference van Hedel HJ, Wirz M, Dietz V. Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehabil. 2005;86:190–6.CrossRefPubMed van Hedel HJ, Wirz M, Dietz V. Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehabil. 2005;86:190–6.CrossRefPubMed
39.
go back to reference van Hedel HJA, Wirz M, Dietz V. Standardized assessment of walking capacity after spinal cord injury: the European network approach. Neurol Res. 2008;30:61–73.CrossRefPubMed van Hedel HJA, Wirz M, Dietz V. Standardized assessment of walking capacity after spinal cord injury: the European network approach. Neurol Res. 2008;30:61–73.CrossRefPubMed
40.
go back to reference Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.CrossRefPubMed Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8.CrossRefPubMed
41.
go back to reference Harada ND, Chiu V, Stewart AL. Mobility-related function in older adults: assessment with a 6-min walk test. Arch Phys Med Rehabil. 1999;80:837–41.CrossRefPubMed Harada ND, Chiu V, Stewart AL. Mobility-related function in older adults: assessment with a 6-min walk test. Arch Phys Med Rehabil. 1999;80:837–41.CrossRefPubMed
42.
go back to reference Piepmeier JM, Jenkins NR. Late neurological changes following traumatic spinal cord injury. J Neurosurg. 1988;69:399–402.CrossRefPubMed Piepmeier JM, Jenkins NR. Late neurological changes following traumatic spinal cord injury. J Neurosurg. 1988;69:399–402.CrossRefPubMed
43.
go back to reference Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94:2297–308.CrossRefPubMed Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94:2297–308.CrossRefPubMed
44.
go back to reference Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19:313–24.CrossRefPubMed Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19:313–24.CrossRefPubMed
45.
go back to reference Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One. 2012;7, e51298.PubMedCentralCrossRefPubMed Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One. 2012;7, e51298.PubMedCentralCrossRefPubMed
46.
go back to reference Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014;111:2264–75.CrossRefPubMed Knikou M, Mummidisetty CK. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J Neurophysiol. 2014;111:2264–75.CrossRefPubMed
47.
go back to reference Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol. 2010;121:1655–68.CrossRefPubMed Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol. 2010;121:1655–68.CrossRefPubMed
48.
go back to reference Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain. 2009;132:2196–205.CrossRefPubMed Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain. 2009;132:2196–205.CrossRefPubMed
49.
go back to reference Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci. 2014;8:25.PubMedCentralPubMed Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci. 2014;8:25.PubMedCentralPubMed
50.
go back to reference Edgerton VR, Roy RR. The nervous system and movement. In: ACSM’s Advanced Exercise Physiology, edited by Tipton CM. Philadelphia: Lippincott Williams & Wilkins, 2006, p. 41–94. Edgerton VR, Roy RR. The nervous system and movement. In: ACSM’s Advanced Exercise Physiology, edited by Tipton CM. Philadelphia: Lippincott Williams & Wilkins, 2006, p. 41–94.
51.
52.
go back to reference Hodgson JA, Roy RR, de Leon R, Dobkin B, Edgerton VR. Can the mammalian lumbar spinal cord learn a motor task? Med Sci Sports Exerc. 1994;26:1491–7.CrossRefPubMed Hodgson JA, Roy RR, de Leon R, Dobkin B, Edgerton VR. Can the mammalian lumbar spinal cord learn a motor task? Med Sci Sports Exerc. 1994;26:1491–7.CrossRefPubMed
53.
go back to reference Edgerton VR, Roy RR. A new age for rehabilitation. Eur J Phys Rehabil Med. 2012;48:99–109.PubMed Edgerton VR, Roy RR. A new age for rehabilitation. Eur J Phys Rehabil Med. 2012;48:99–109.PubMed
54.
go back to reference Solopova IA, Selionov VA, Sylos-Labini F, Gurfinkel VS, Lacquaniti F, Ivanenko YP. Tapping into rhythm generation circuitry in humans during simulated weightlessness conditions. Front Syst Neurosci. 2015;9:14.PubMedCentralCrossRefPubMed Solopova IA, Selionov VA, Sylos-Labini F, Gurfinkel VS, Lacquaniti F, Ivanenko YP. Tapping into rhythm generation circuitry in humans during simulated weightlessness conditions. Front Syst Neurosci. 2015;9:14.PubMedCentralCrossRefPubMed
55.
go back to reference Fouad K, Rank MM, Vavrek R, Murray KC, Sanelli L, Bennett DJ. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. J Neurophysiol. 2010;104:2975–84.PubMedCentralCrossRefPubMed Fouad K, Rank MM, Vavrek R, Murray KC, Sanelli L, Bennett DJ. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. J Neurophysiol. 2010;104:2975–84.PubMedCentralCrossRefPubMed
56.
go back to reference Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16:302–7.CrossRefPubMed Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16:302–7.CrossRefPubMed
57.
go back to reference Boyce VS, Tumolo M, Fischer I, Murray M, Lemay MA. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol. 2007;98:1988–96.CrossRefPubMed Boyce VS, Tumolo M, Fischer I, Murray M, Lemay MA. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol. 2007;98:1988–96.CrossRefPubMed
59.
go back to reference Kao T, Shumsky JS, Murray M, Moxon KA. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat. J Neurosci. 2009;29:7549–57.PubMedCentralCrossRefPubMed Kao T, Shumsky JS, Murray M, Moxon KA. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat. J Neurosci. 2009;29:7549–57.PubMedCentralCrossRefPubMed
60.
go back to reference Kao T, Shumsky JS, Knudsen EB, Murray M, Moxon KA. Functional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection. J Neurophysiol. 2011;106:2662–74.PubMedCentralCrossRefPubMed Kao T, Shumsky JS, Knudsen EB, Murray M, Moxon KA. Functional role of exercise-induced cortical organization of sensorimotor cortex after spinal transection. J Neurophysiol. 2011;106:2662–74.PubMedCentralCrossRefPubMed
61.
go back to reference Klostermann F, Funk T, Vesper J, Siedenberg R, Curio G. Double-pulse stimulation dissociates intrathalamic and cortical high-frequency (>400Hz) SEP components in man. Neuroreport. 2000;11:1295–9.CrossRefPubMed Klostermann F, Funk T, Vesper J, Siedenberg R, Curio G. Double-pulse stimulation dissociates intrathalamic and cortical high-frequency (>400Hz) SEP components in man. Neuroreport. 2000;11:1295–9.CrossRefPubMed
62.
go back to reference Lenz M, Tegenthoff M, Kohlhaas K, Stude P, Höffken O, Gatica Tossi MA, et al. Increased excitability of somatosensory cortex in aged humans is associated with impaired tactile acuity. J Neurosci. 2012;32:1811–6.CrossRefPubMed Lenz M, Tegenthoff M, Kohlhaas K, Stude P, Höffken O, Gatica Tossi MA, et al. Increased excitability of somatosensory cortex in aged humans is associated with impaired tactile acuity. J Neurosci. 2012;32:1811–6.CrossRefPubMed
64.
go back to reference Christensen LO, Johannsen P, Sinkjaer T, Petersen N, Pyndt HS, Nielsen JB. Cerebral activation during bicycle movements in man. Exp Brain Res. 2000;135:66–72.CrossRefPubMed Christensen LO, Johannsen P, Sinkjaer T, Petersen N, Pyndt HS, Nielsen JB. Cerebral activation during bicycle movements in man. Exp Brain Res. 2000;135:66–72.CrossRefPubMed
65.
go back to reference Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26:9107–16.CrossRefPubMed Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26:9107–16.CrossRefPubMed
66.
go back to reference Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.CrossRefPubMed Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.CrossRefPubMed
Metadata
Title
HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients
Authors
Matthias Sczesny-Kaiser
Oliver Höffken
Mirko Aach
Oliver Cruciger
Dennis Grasmücke
Renate Meindl
Thomas A. Schildhauer
Peter Schwenkreis
Martin Tegenthoff
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0058-9

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue