Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2015

Open Access 01-12-2015 | Research

Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface

Authors: Siegfried Hänselmann, Matthias Schneiders, Norbert Weidner, Rüdiger Rupp

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2015

Login to get access

Abstract

Background

For the translation of noninvasive motor imagery (MI)-based brain-computer interfaces (BCIs) from the lab environment to end users at their homes, their handling must be improved. As a key component, the number of electroencephalogram (EEG)-recording electrodes has to be kept at a minimum. However, due to inter-individual anatomical and physiological variations, reducing the number of electrodes bares the risk of electrode misplacement, which will directly translate into a limited BCI performance of end users. The aim of the study is to evaluate the use of focal transcranial magnetic stimulation (TMS) as an easy tool to individually optimize electrode positioning for a MI-based BCI. For this, the area of MI-induced mu-rhythm modulation was compared with the motor hand representation area in respect to their localization and to the control performance of a MI-based BCI.

Methods

Focal TMS was applied to map the motor hand areas and a 48-channel high-resolution EEG was used to localize MI-induced mu-rhythm modulations in 11 able-bodied, right-handed subjects (5 male, age: 23–31). The online BCI performances of the study participants were assessed with a single next-neighbor Laplace channel consecutively placed over the motor hand area and over the area of the strongest mu-modulation.

Results

For most subjects, a consistent deviation between the position of the mu-modulation center and the corresponding motor hand areas well above the localization error could be observed in mediolateral and to a lesser degree in anterior-posterior direction. On an individual level, the MI-induced mu-rhythm modulation was at average found 1.6 cm (standard deviation (SD) = 1.30 cm) lateral and 0.31 cm anterior (SD = 1.39 cm) to the motor hand area and enabled a significantly better online BCI performance than the motor hand areas.

Conclusion

On an individual level a trend towards a consistent average spatial distance between motor hand area and mu-rhythm modulation center was found indicating that TMS may be used as a simple tool for quick individual optimization of EEG-recording electrode positions of MI-based BCIs. The study results indicate that motor hand areas of the primary motor cortex determined by TMS are not the main generators of the cortical mu-rhythm.
Literature
2.
go back to reference Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.CrossRefPubMed Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.CrossRefPubMed
4.
go back to reference Cochin S, Barthelemy C, Roux S, Martineau J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci. 1999;11(5):1839–42.CrossRefPubMed Cochin S, Barthelemy C, Roux S, Martineau J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci. 1999;11(5):1839–42.CrossRefPubMed
5.
go back to reference Pfurtscheller G, Stancak Jr A, Neuper C. Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol. 1996;24(1–2):39–46.CrossRefPubMed Pfurtscheller G, Stancak Jr A, Neuper C. Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol. 1996;24(1–2):39–46.CrossRefPubMed
9.
go back to reference Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G. Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol. 2003;114(3):399–409.CrossRefPubMed Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G. Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol. 2003;114(3):399–409.CrossRefPubMed
15.
go back to reference Pfurtscheller G, Flotzinger D, Pregenzer M, Wolpaw JR, McFarland D. EEG-based Brain Computer Interface (BCI) - Search for optimal electrode positions and frequency components. Med Prog Technol. 1995;21(3):111–21.PubMed Pfurtscheller G, Flotzinger D, Pregenzer M, Wolpaw JR, McFarland D. EEG-based Brain Computer Interface (BCI) - Search for optimal electrode positions and frequency components. Med Prog Technol. 1995;21(3):111–21.PubMed
17.
go back to reference Ramoser H, Müller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng. 2000;8(4):441–6.CrossRefPubMed Ramoser H, Müller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng. 2000;8(4):441–6.CrossRefPubMed
18.
go back to reference Stippich C, Ochmann H, Sartor K. Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett. 2002;331(1):50–4.CrossRefPubMed Stippich C, Ochmann H, Sartor K. Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett. 2002;331(1):50–4.CrossRefPubMed
19.
21.
22.
go back to reference Steingrüber HJ, Lienert GA. Hand-Dominanz-Test H-D-T. 2nd ed. Göttingen: Verlag für Psychologie Dr. C.J. Hogrefe; 1976. Steingrüber HJ, Lienert GA. Hand-Dominanz-Test H-D-T. 2nd ed. Göttingen: Verlag für Psychologie Dr. C.J. Hogrefe; 1976.
23.
go back to reference Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Topper R. Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol. 1999;110(4):699–704.CrossRefPubMed Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Topper R. Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol. 1999;110(4):699–704.CrossRefPubMed
24.
go back to reference Krings T, Naujokat C, von Keyserlingk DG. Representation of cortical motor function as revealed by stereotactic transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1998;109(2):85–93.CrossRefPubMed Krings T, Naujokat C, von Keyserlingk DG. Representation of cortical motor function as revealed by stereotactic transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1998;109(2):85–93.CrossRefPubMed
26.
go back to reference Wilson SA, Thickbroom GW, Mastaglia FL. Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles. J Neurol Sci. 1993;118(2):134–44.CrossRefPubMed Wilson SA, Thickbroom GW, Mastaglia FL. Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. The representation of two intrinsic hand muscles. J Neurol Sci. 1993;118(2):134–44.CrossRefPubMed
28.
go back to reference Pfurtscheller G, Müller-Putz GR, Pfurtscheller J, Rupp R. EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. Eurasip J Appl Sig P. 2005;2005(19):3152–5. doi:10.1155/Asp.2005.3152.CrossRef Pfurtscheller G, Müller-Putz GR, Pfurtscheller J, Rupp R. EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. Eurasip J Appl Sig P. 2005;2005(19):3152–5. doi:10.​1155/​Asp.​2005.​3152.CrossRef
30.
go back to reference Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. Int J Psychophysiol. 1997;26(1–3):121–35.CrossRefPubMed Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. Int J Psychophysiol. 1997;26(1–3):121–35.CrossRefPubMed
32.
go back to reference Hoshi E, Tanji J. Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution. J Neurophysiol. 2004;92(6):3482–99. doi:10.1152/jn.00547.2004.CrossRefPubMed Hoshi E, Tanji J. Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution. J Neurophysiol. 2004;92(6):3482–99. doi:10.​1152/​jn.​00547.​2004.CrossRefPubMed
34.
go back to reference Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.CrossRefPubMed Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501.CrossRefPubMed
35.
go back to reference Boecker H, Ceballos-Baumann AO, Bartenstein P, Dagher A, Forster K, Haslinger B, et al. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction. Neuroimage. 2002;17(2):999–1009.CrossRefPubMed Boecker H, Ceballos-Baumann AO, Bartenstein P, Dagher A, Forster K, Haslinger B, et al. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction. Neuroimage. 2002;17(2):999–1009.CrossRefPubMed
36.
go back to reference Deiber MP, Ibanez V, Honda M, Sadato N, Raman R, Hallett M. Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage. 1998;7(2):73–85. doi:10.1006/nimg.1997.0314.CrossRefPubMed Deiber MP, Ibanez V, Honda M, Sadato N, Raman R, Hallett M. Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Neuroimage. 1998;7(2):73–85. doi:10.​1006/​nimg.​1997.​0314.CrossRefPubMed
38.
go back to reference Facchini S, Muellbacher W, Battaglia F, Boroojerdi B, Hallett M. Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurol Scand. 2002;105(3):146–51.CrossRefPubMed Facchini S, Muellbacher W, Battaglia F, Boroojerdi B, Hallett M. Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study. Acta Neurol Scand. 2002;105(3):146–51.CrossRefPubMed
39.
go back to reference Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997;239(2–3):65–8.CrossRefPubMed Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997;239(2–3):65–8.CrossRefPubMed
40.
go back to reference Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.CrossRefPubMed Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.CrossRefPubMed
41.
go back to reference Pfurtscheller G, Pregenzer M, Neuper C. Visualization of sensorimotor areas involved in preparation for hand movement based on classification of mu and central beta rhythms in single EEG trials in man. Neurosci Lett. 1994;181(1–2):43–6.CrossRefPubMed Pfurtscheller G, Pregenzer M, Neuper C. Visualization of sensorimotor areas involved in preparation for hand movement based on classification of mu and central beta rhythms in single EEG trials in man. Neurosci Lett. 1994;181(1–2):43–6.CrossRefPubMed
42.
go back to reference Salmelin R, Hamalainen M, Kajola M, Hari R. Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage. 1995;2(4):237–43.CrossRefPubMed Salmelin R, Hamalainen M, Kajola M, Hari R. Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage. 1995;2(4):237–43.CrossRefPubMed
43.
go back to reference Nii Y, Uematsu S, Lesser RP, Gordon B. Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology. 1996;46(2):360–7.CrossRefPubMed Nii Y, Uematsu S, Lesser RP, Gordon B. Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology. 1996;46(2):360–7.CrossRefPubMed
Metadata
Title
Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface
Authors
Siegfried Hänselmann
Matthias Schneiders
Norbert Weidner
Rüdiger Rupp
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2015
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-015-0063-z

Other articles of this Issue 1/2015

Journal of NeuroEngineering and Rehabilitation 1/2015 Go to the issue